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TIA1 mutations in amyotrophic lateral sclerosis and 
frontotemporal dementia promote phase separation and alter 
stress granule dynamics
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SUMMARY

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related 

neurodegenerative disorders with shared genetic etiologies and overlapping clinical and 

pathological features. Here we studied a novel ALS/FTD family and identified the P362L 

mutation in the low complexity domain (LCD) of T-cell-restricted intracellular antigen-1 (TIA1). 

Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in 

ALS patients compared to controls (P = 8.7×10−6). Postmortem neuropathology of five TIA1 
mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR 

DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the 

propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed 
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stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that 

harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification 

of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics 

in ALS/FTD pathogenesis.

Keywords

amyotrophic lateral sclerosis; frontotemporal dementia; T-cell-restricted intracellular antigen-1; 
stress granules; TDP-43

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, 

characterized by progressive degeneration of upper and lower motor neurons that ultimately 

leads to death by respiratory failure (Taylor et al., 2016a). While most patients present with 

ALS alone, a subset of individuals present with concomitant frontotemporal dementia (ALS/

FTD) (Hardy and Rogaeva, 2014). Recent gene discoveries and clinicopathological studies 

have highlighted that ALS and FTD are part of a disease continuum with a shared genetic 

etiology (Ji et al., 2017; Neumann et al., 2006). Repeat expansions in the chromosome 9 

open reading frame 72 gene (C9orf72) and mutations in TBK1 (encoding TANK-binding 

kinase 1), and TARDBP (encoding transactive response DNA-binding protein 43, TDP-43) 

are among the most common genetic causes of the combined ALS/FTD phenotype and, 

notably, each of these mutations results in pathology characterized by TDP-43-positive 

neuronal cytoplasmic inclusions (Cirulli et al., 2015; DeJesus-Hernandez et al., 2011; 

Freischmidt et al., 2015; Kabashi et al., 2008; Renton et al., 2011; Sreedharan et al., 2008). 

However, the cause of a significant number of ALS and ALS/FTD cases remains unknown.

Many ALS-causing mutations impact proteins involved in RNA metabolism, including 

RNA-binding proteins such as TDP-43, fused in sarcoma (FUS), and heterogeneous nuclear 

ribonucleoprotein A1 (hnRNPA1) (Taylor et al., 2016). These and related RNA-binding 

proteins are components of membrane-less organelles found in the nucleus (e.g., nuclear 

speckles and nucleoli) and cytoplasm (e.g., processing bodies and stress granules, SGs) of 

neurons and other cell types (Brangwynne et al., 2011; Collier et al., 1988; Huang and 

Spector, 1992; Sheth and Parker, 2003; Taylor et al., 2016b). It has recently emerged that 

biophysical properties encoded in prion-like, low complexity sequence domains (LCDs) of 

RNA-binding proteins promote the assembly of membrane-less organelles through the 

process of liquid-liquid phase separation (LLPS) (Kato et al., 2012; Lin et al., 2015; Molliex 

et al., 2015; Patel et al., 2015).

Here we report the identification of rare mutations impacting the LCD of the RNA-binding 

protein T-cell-restricted intracellular antigen-1 (TIA1) in ALS and ALS/FTD patients. TIA1 

is a prominent SG component and the LCD of TIA1 plays a central role in promoting SG 

assembly (Gilks et al., 2004; Kedersha et al., 2000; Panas et al., 2016). We found that 

disease-associated mutations alter biophysical properties of TIA1 by significantly increasing 

the propensity towards phase separation, delaying SG disassembly, and promoting the 

accumulation of non-dynamic SGs that harbor TDP-43. Moreover, TDP-43 recruited into 
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SGs becomes less mobile and insoluble. These findings reinforce the importance of 

disturbed RNA metabolism in ALS/FTD and place altered membrane-less organelle 

dynamics at the center of ALS/FTD pathogenesis.

RESULTS

Identification of TIA1 Mutations in Patients with ALS and ALS/FTD

We performed whole-exome sequencing in a pair of second-degree relatives with clinical 

features of both ALS and FTD, and with autopsy confirmed TDP-43 pathology. These 

individuals were from a multigenerational ALS/FTD family of European ancestry (UBCU2), 

negative for mutations in known ALS- and FTD-causing genes (Figure 1A). To identify 

candidate causal mutations, we filtered the genetic variants to those that were observed in 

the heterozygous state in both affected family members, altered the amino acid sequence, 

were absent from the Exome Variant Server population, and were present two or fewer times 

in the Exome Aggregation Consortium (ExAC) (Kobayashi et al., 2017). Among the 17 

genes with such variants (all confirmed by Sanger sequencing), 15 were expressed in brain 

and five had variants with a combined annotation dependent depletion (CADD) score > 20, 

indicating that they are among the 1% most deleterious variants in the genome (Table S1). 

Interestingly, one of these was a missense variant (P362L) in TIA1. Similar to the ALS-

related disease proteins TDP-43, hnRNPA1 and FUS, TIA1 is an RNA-binding protein 

containing a prion-like LCD and assembles into membrane-less organelles, including SGs 

(Taylor et al., 2016a). A different heterozygous founder mutation that affects the TIA1 LCD 

(E384K) was previously reported in Swedish/Finnish patients as the cause of Welander 

distal myopathy (WDM) (Brand et al., 2016; Hackman et al., 2013; Klar et al., 2013), a 

rimmed vacuolar myopathy characterized by aggregates of TDP-43 and p62. WDM is 

clinically similar to and shares histopathological features with myopathies caused by 

mutations in valosin containing protein (VCP), p62/SQSTM1, HNRNPA1, HNRNPA2B1 
and MATR3, disease genes that have also been associated with ALS/FTD (Fecto et al., 

2011; Johnson et al., 2010; Johnson et al., 2014; Kim et al., 2013). Moreover, the P362L 

mutation in TIA1 affects a highly conserved residue in the LCD (Figure 1B) and was 

predicted to be possibly damaging or deleterious by several in silico prediction algorithms 

(SIFT, PolyPhen, Mutation Taster). Together, these observations led us to prioritize TIA1 as 

an ALS/FTD candidate gene. To this end, we analyzed the TIA1 LCD (encoded by exons 

11–13) in a cohort of 1039 ALS or ALS/FTD patients and 3036 controls free of 

neurodegenerative diseases, and identified an increased burden of rare heterozygous TIA1 
mutations in patients compared to controls (P = 8.7×10−6, SKAT-O adjusted for age and 

sex). Specifically, in the association cohort we identified five additional TIA1 mutations in a 

total of six unrelated patients, whereas no mutations were detected in controls (Figure 1B; 

Table S2). All TIA1 mutations identified in patients had CADD scores > 20 (Table S2).

Clinical and Pathological Presentation of TIA1 Mutation Carriers

The nine affected TIA1 mutation carriers (three members of UBCU2 and six additional 

unrelated patients) had an average disease onset age of 58.9 ± 13.7 years, with most patients 

presenting in mid-to-late adult life, with the exception of patient UBCU2-14 who had an 

unusually early onset of FTD and ALS symptoms at 28 years. Patients typically presented 
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with either focal weakness or aphasia and all eventually developed ALS-type motor 

dysfunction, with accompanying features of FTD in five patients (Table S2). A positive 

family history of a similar neurodegenerative disease was documented in three of seven 

probands, resulting in a frequency of potential pathogenic TIA1 mutations in 2.2% of 

familial patients (3/136) and 0.4% of sporadic patients (4/903). Although all nine confirmed 

mutation carriers were female, there were affected males in some of the families. Autopsy 

material available for UBCU2-1, UBCU2-14 and three other unrelated patients (TOR-1, 

NWU-1, and ALS752-1) revealed TDP-43-immunoreactive pathology in the extra-motor 

neocortex (characteristic of FTLD-TDP type B), motor cortex and spinal cord, which 

correlated with the clinical diagnoses of FTD and ALS in these patients, and which fell 

within the broad spectrum of pathology that is typically encountered in other cases of 

familial and sporadic ALS/FTD (Figure 1C; Table S3; Figure S1). In addition, all five 

autopsy cases showed large, round, hyaline, Lewy body-like cytoplasmic inclusions in lower 

motor neurons, visible with hematoxylin and eosin staining (Figure 1Cii, Figure S1) and also 

with TDP-43 immunohistochemistry (Figure 1Ciii, Figure S1). Although similar hyaline 

Lewy body-like inclusions are occasionally seen in sporadic ALS patients, their frequency 

and consistent presence in the five TIA1 mutation carriers suggests that these could be a 

pathological signature of TIA1-related disease (Figure S1). Immunohistochemistry and 

double-label immunofluorescence using a panel of commercial antibodies raised against 

different TIA1 epitopes did not demonstrate any difference in staining between ALS/FTD 

patients with and without TIA1 mutations; specifically, there was no co-localization of TIA1 

with TDP-43 immunoreactive inclusions (Figure S1). Consistent with these immunostaining 

results, protein extracts from post mortem tissue of TIA1 mutation carriers did not show an 

obvious increase in TIA1 levels in the urea fraction as compared to protein extracts from 

non-TIA1 mutation carriers and controls (Figure S1).

Mutations Alter the Biophysical Properties of TIA1 to Promote LLPS

TIA1 is a prototypical hnRNP that contains three RNA recognition motifs (RRMs) and a C-

terminal LCD that is predicted to be intrinsically disordered (Figure 2A). LCDs in RNA-

binding proteins such as hnRNPA1, TDP-43, and FUS contribute to the assembly of liquid-

like membrane-less organelles such as SGs through the biophysical process of LLPS (Lin et 

al., 2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al., 2015). Consistent with the 

behavior of these other RNA-binding proteins, the LCD (amino acids 290–386) of TIA1 has 

been shown to undergo LLPS in the presence of RNA (Lin et al., 2015). We found that full-

length TIA1 spontaneously phase separated at room temperature, in the absence of any co-

solute, at physiological ionic strength of 150 mM, and pH 7.5 (Figure 2B; Figures S2A and 

S2B). To examine the impact of disease-associated mutations on LLPS of TIA1, we 

expressed and purified two ALS-associated TIA1 mutants identified in this study (P362L 

and A381T) as well as the E384K mutant form associated with WDM (Figure 2A; Figure 

S2A and S2B) (Hackman et al., 2013; Klar et al., 2013). All three mutant proteins 

underwent spontaneous temperature- and concentration-dependent LLPS to create liquid 

droplets that at early time points were morphologically indistinguishable from liquid 

droplets formed by wild-type protein (Figure 2C). To quantify the propensity of each protein 

to undergo phase separation, we constructed a phase diagram by measuring the co-existence 

line of protein-depleted light phase and protein-enriched dense phase as a function of 
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temperature and protein concentration. The P362L, A381T, and E384K mutant proteins 

caused a significant leftward shift in the co-existence line to a lower protein concentration, 

indicating an increased propensity of mutant TIA1 to phase separate, due to stronger 

intermolecular protein-protein interactions (Figure 2C).

Upon phase separation, the RNA-binding proteins hnRNPA1, FUS, and TDP-43 can access 

a spectrum of assemblies that exhibit progressively increased order and decreased mobility, 

ranging from liquid droplet to hydrogel to amyloid-like fibril (Schmidt and Gorlich, 2016). 

Similar to observations in other RNA-binding proteins, we found that when TIA1 droplets 

were allowed to settle on a coverslip surface and observed over time, droplets of mutant 

forms of TIA1 converted to thioflavin T (ThT)-positive fibrils within the liquid droplets 

within 45 minutes, at which time the droplets dissipated (Figure S2C). Although droplets of 

wild-type TIA1 also converted to ThT-positive fibrillary material followed by droplet 

dissipation, this process occurred over a much longer time course (i.e., ≥ 24 hours). 

Transmission electron micrographs confirmed the formation of amyloid-like fibrils of wild-

type and mutant TIA1 (Figure S2D). Using a quantitative ThT fluorescence assay, we 

confirmed that disease-associated mutations in TIA1 significantly accelerated fibrillization 

of TIA1 (Figure S2E), similar to the consequence of disease-causing mutations in 

hnRNPA1, hnRNPA2B1, and FUS (Kim et al., 2013; Molliex et al., 2015; Patel et al., 2015). 

Although the importance of fibril formation in the normal physiological function of RNA-

binding proteins and in disease pathogenesis is currently not known, these results provide 

further evidence that disease-associated mutations alter biophysical properties of TIA1; 

specifically, strengthening intermolecular interactions of TIA1 assemblies.

We next used fluorescence recovery after photobleaching (FRAP) to measure the mobility of 

fluorescently tagged TIA1 (Matsuda and Nagai, 2014). We found that disease-associated 

mutations significantly altered the dynamic exchange of TIA1 between the dense droplet 

phase and the light mono-disperse phase, with increased half-recovery times and a smaller 

overall mobile fraction (Figure 2D, 2E, and 2F). These results suggest that the mutations 

changed the material properties of mutant TIA1 droplets by enhancing transient, nonspecific 

intermolecular interactions that reduce protein mobility. This observation raises the 

possibility that material properties of membrane-less organelles composed of TIA1 protein 

in live cells, such as SGs, could be adversely affected by the disease-associated mutations.

Mutations in TIA1 Impair Stress Granule Dynamics

TIA1 is a prominent SG component and the LCD of TIA1 plays a central role in promoting 

SG assembly (Gilks et al., 2004; Kedersha et al., 2000; Panas et al., 2016). To assess the 

impact of TIA1 mutations on SG dynamics, we established a live-cell assay that permits 

real-time monitoring of the kinetics of SG assembly and disassembly in response to a tightly 

controlled heat pulse. We used this system to monitor SG dynamics in HeLa cells expressing 

N-terminal GFP-tagged TIA1 wild-type, P362L, A381T, or E384K mutants (Video File). 

GFP-tagged TIA1 showed the identical subcellular distribution as endogenous or untagged 

TIA1 proteins, and the frequency and size of SGs containing these proteins were not altered 

by introduction of exogenous TIA1 at this modest expression level (Figure S3). We observed 

no significant impact of the P362L, A381T, or E384K TIA1 mutations on the rates of SG 
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assembly. By contrast, each of these disease-associated mutations resulted in significantly 

protracted SG disassembly, as assessed by both blinded manual counting and automated 

image analysis (Figure 3A and 3B; Figure S4A–D). The consequence of impaired SG 

disassembly in cells expressing mutant TIA1 was a significant accumulation of non-

dynamic, TDP-43-containing SGs that persisted for hours after SGs had disappeared from 

the cells expressing wild-type TIA1 (Figure 3C and 4A). This finding is consistent with a 

prior report that the E384K WDM-causing mutation is associated with increased numbers of 

SGs that show dynamics alterations as assessed by FRAP (Hackman et al., 2013).

TDP-43 Recruited to Stress Granules Becomes Insoluble

TIA1 mutation carriers with ALS/FTD exhibit prominent TDP-43 pathology (Figure 1C; 

Figure S1; Table S3). The impact of mutant TIA1 on SG dynamics and the abnormal 

accumulation of TDP-43-containing SGs prompted us to examine the relationship between 

SG dynamics and TDP-43 solubility. Upon stress, TDP-43 is recruited to TIA1-positive SGs 

(Figure 4A). To examine the consequence of TDP-43 being recruitment into SGs, we 

transfected cells with TdTomato-tagged TDP-43 and assessed mobility of this protein using 

FRAP. In resting cells, TdTomato-TDP-43 in the nucleus and cytoplasm exhibited rapid 

mobility (Figure 4B and 4C). However, upon stress, the TdTomato-TDP-43 that was 

recruited to SGs became almost completely immobile, whereas the cytoplasmic TdTomato-

TDP-43 that was not associated with SGs, in these same cells, remained mobile (Figure 4B 

and 4C). Biochemical assessment revealed a correlation between reduced mobility of 

TDP-43 upon recruitment to SGs and reduced TDP-43 solubility. Specifically, in resting 

cells TDP-43 was largely recovered in a detergent-soluble fraction (Figure 4D and 4E). In 

contrast, the TDP-43 derived from cells that had been stressed for 30 minutes, showed a 

significant shift from the detergent-soluble fraction to an insoluble pellet that was recovered 

by treatment with urea (Figure 4D and 4E). Notably, the solubility change that occurred 

under these conditions was reversible; three hours after recovery from the 30 minute stress, 

and coincident with the clearance of SGs, TDP-43 returned to the detergent-soluble fraction 

(Figure 4D and 4E). However, the reversibility of insoluble TDP-43 accumulation was 

influenced by the duration of stress. Upon doubling the duration of stress from 30 minutes to 

one hour, we found that TDP-43 became permanently insoluble and failed to return to the 

detergent-soluble fraction after 3 hours of recovery. Taken together, these observations 

suggest that persistent, poorly dynamic SGs could promote the conversion of TDP-43 from a 

soluble to a stable insoluble form.

DISCUSSION

Using exome sequencing in a novel FTD/ALS family, we identified the P362L mutation in 

the LCD of TIA1 as a strong causal candidate for disease. We subsequently identified five 

additional LCD TIA1 mutations in a total of six unrelated patients; whereas, none was found 

in controls free of neurodegenerative disease (p=8.7×10−6 in gene burden analysis). While 

the lack of mutations in our well-characterized control population suggests the TIA1 
mutations are causal ALS-FTD gene mutations (with an age-related disease penetrance), we 

acknowledge that the same TIA1 mutations identified in our ALS-FTD patients are reported 

at very low frequency in the ExAC database (minor allele frequency<0.0001) classifying 
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them as strong ALS-FTD risk factors instead. Using the European non-Finnish population 

from the ExAC database, an allele count of 26 is reported for rare TIA1 alleles in the LCD, 

which compared to the frequency in our ALS patients would result in a conservative odds 

ratio (OR) of 6.9 (confidence interval, CI: 2.5–16.5) for TIA1 allele carriers to develop ALS 

(p=0.00018). This is likely an underestimate which assumes that only 26,725 individuals in 

ExAC were sequenced for the entire gene, that all variants reported are real and observed in 

heterozygous state in independent individuals and that all carriers would be free of ALS. 

This estimate also includes variants observed in ExAC with CADD<20, whereas all 

mutations identified in our ALS patients had CADD>20. The OR for carriers of a rare TIA1 
variant in the LCD with CADD>20 to develop ALS would be 15.1 (CI: 5.0–41.7; 

p=3.4×10−6). While future studies in ALS-FTD patient cohorts and control populations will 

be critical to evaluate the specific contribution of TIA1 mutations to ALS-FTD it is 

important to note that even the E384K mutation, considered pathogenic in WDM, is 

observed seven times in ExAC. Additionally, it is highly plausible that, as-yet-unknown, 

genetic and environmental factors affect the disease penetrance of TIA1 mutations and that 

these factors may have contributed to the development of ALS/FTD in our patients. While 

speculative, the fact that all of our affected confirmed mutation carriers are females may 

suggest that these mutations are more penetrant in females than males; however, this also 

needs to be studied in additional cohorts. Importantly, detailed neuropathological analysis 

revealed strikingly uniform pathology with an unusually high frequency of hyaline Lewy 

body-like cytoplasmic inclusions in lower motor neurons in all five TIA1 mutation carriers 

with autopsy confirmation (with four different TIA1 mutations), further supporting a 

common pathomechanism in these patients. Overall, our findings suggest that TIA1 
mutations are a rare cause of ALS ± FTD, accounting for ~2% of familial ALS and < 0.5% 

of sporadic ALS; frequencies that are comparable to those for mutations in other ALS genes 

such as VCP and profilin1 (PFN1) (Johnson et al., 2010; Wu et al., 2012).

Mounting evidence indicates that altered dynamics of membrane-less organelles such as SGs 

contribute to age-related degenerative diseases, including the most common forms of ALS, 

FTD, myopathy, and possibly Alzheimer’s disease and other tauopathies (Aulas and Vande 

Velde, 2015; Brunello et al., 2016; Taylor et al., 2016a; Vanderweyde et al., 2016; 

Vanderweyde et al., 2012); although the precise molecular mechanism for this disturbance in 

some cases has been unclear. The LCDs of RNA-binding proteins promote the assembly of 

membrane-less organelles through the process of LLPS (Lin et al., 2015; Molliex et al., 

2015; Patel et al., 2015). Disease-causing mutations that impact the LCDs of several RNA-

binding proteins, including hnRNPA1, FUS, and TDP-43, strengthen intermolecular LCD 

interactions, as evidenced by an increased propensity of these proteins to assemble into 

amyloid-like fibrils under experimental conditions (Kim et al., 2013; Molliex et al., 2015; 

Patel et al., 2015), although an impact on phase separation and the material properties of the 

liquid phase has not been previously documented and may be more physiologically relevant. 

Here we show that ALS/FTD-causing mutations in the LCD of the SG protein TIA1 

significantly alter biophysical properties of the protein, strengthening its intermolecular 

interactions and enhancing its propensity to undergo phase transition. In cells, this 

perturbation of TIA1 results in poorly dynamic SGs that fail to appropriately disassemble 

and persist in the cytoplasm long after the removal of stress. We suggest that the 
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accumulation of poorly dynamic SGs (and perhaps other membrane-less organelles that are 

composed of TIA1) create an environment where aggregation-prone molecules that are in 

high concentration (such as TDP-43) have an increased risk of gradually accumulating in an 

insoluble form (Neumann et al., 2006). Whereas TDP-43 forms detergent-resistant 

aggregates, TIA1 fibrils are labile and reversible, thus it is uncertain whether one would 

expect TIA1 or related SG markers to persist as components of the fully mature TDP-43-

positive inclusions that are present at the end-stage of the human disease process. Although 

we found no evidence for such colocalization in post-mortem material from TIA1 mutation 

carriers, prior studies have provided conflicting evidence as to whether or not TIA1 and 

other SG proteins colocalize with the TDP-43 pathology in cases of ALS and FTD in 

general (Aulas and Vande Velde, 2015). Importantly, the impact of ALS/FTD-associated 

TIA1 mutations on SG dynamics mirrors the recent observation that toxic, arginine-

containing poly-dipeptides produced by mutant C9orf72 also disturb phase transitions 

mediated by LCDs and disturb the dynamics of membrane-less organelles, including SGs 

(Lee et al., 2016). This discovery adds to the increasing evidence of a common pathogenic 

mechanism amongst ALS, FTD, and myopathy caused by mutations in RNA-binding 

proteins related to disturbed dynamics of membrane-less organelles, and adds TIA1 to the 

growing list of genes responsible for multisystem proteinopathies; a group of inherited 

pleiotropic degenerative disorders that can variably affect the nervous system, muscle, and 

bone (Taylor, 2015).

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

For further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Rosa Rademakers (rademakers.rosa@mayo.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Populations—One ALS/FTD family (UBCU2) and an ALS case-control 

association cohort were included in this study. All individuals agreed to be in the study and 

biological samples were obtained after informed consent from subjects and/or their proxies. 

UBCU2 is a multigenerational family of Irish/German and other European ancestry, with a 

family history of ALS and ALS with dementia. The proband (UBCU2-1) developed 

progressive limb weakness and hyper-reflexia at age 51, followed by a change in personality 

and behavior at age 54. She died at age 55 with a clinical diagnosis of ALS with early 

behavioral variant frontotemporal dementia (bvFTD). A niece of the proband (UBCU2-14) 

presented with childhood dyslexia and developed changes in personality and expressive 

aphasia at age 28, followed by bulbar and limb weakness a few months later. She suffered 

severe deterioration in language and cognition and progressive weakness during the final 

year and died at age 30 with a clinical diagnosis of FTD with probable ALS. The sister of 

the proband (UBCU2-2) displayed mild memory problems when assessed at age 56.

For the genetic association studies, we analyzed DNA samples of 1039 unrelated ALS 

patients (584 male, 455 female) available in our laboratory, including 38 with a diagnosis of 

FTD in addition to ALS (20 male, 18 female). All patients were of self-reported non-
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Hispanic white ancestry. The average age at diagnosis was 60.0 ± 11.7 years (range 19–88). 

A positive family history of ALS in a first or second degree relative was reported in 136 

patients (13.1%). Patients underwent a full neurological evaluation including 

electromyography, clinical laboratory testing, and imaging as appropriate to establish the 

clinical diagnosis of ALS and were recruited from eight centers: Mayo Clinic Jacksonville 

(n = 612), University of British Columbia, Canada (n = 171), University of Pittsburgh 

School of Medicine (n = 71), Coriell Institute for Medical Research (n = 75), University of 

Chicago Medicine (n = 57), Drexel University College of Medicine (n = 28), Northwestern 

University Feinberg School of Medicine (n = 10), University of Toronto, Canada (n = 11), 

and the University of Western Ontario, Canada (n = 4). Patients with ALS±FTD were 

compared to a group of 3036 controls free of neurodegenerative disease (1442 male, 1594 

female) for genetic association studies. The mean age at blood draw for controls was 64.0 

± 15.3 years (range 20–99). All controls were of non-Hispanic white ancestry ascertained at 

Mayo Clinic Jacksonville (n = 1071), Mayo Clinic Rochester (n = 1738; of which 959 from 

the Mayo Clinic Biobank) and Mayo Clinic Scottsdale (n = 227). All patients signed 

informed consent and this study was approved by the ethics committee of all respective 

institutions.

Mammalian Cell Culture—HeLa cells (of female origin) were grown and maintained in 

DMEM High Glucose (Hyclone SH30022.01) medium supplemented with 10% fetal bovine 

serum. Cells were passaged and plated using 1X TrypLE Express (Thermo Fisher 

Scientific). Cells were authenticated by short tandem repeat (STR) profiling.

Bacterial Cell Culture—cDNA clones were transformed into One Shot TOP10 

chemically competent E. coli (Thermo Fisher Scientific). Single colonies were grown 

overnight at 37°C in LB media containing selection antibiotic at a concentration of 50 μg/ml. 

Cells were pelleted by centrifugation and lysed for harvesting DNA. All competent bacterial 

cells [One Shot TOP10 and BL21(DE3) SOLOS] were stored at −80°C until transformation 

for cloning and recombinant protein expression.

METHOD DETAILS

Whole Exome Sequencing and Variant Calling—Paired-end indexed libraries were 

prepared using the Agilent Bravo liquid handler following the manufacturer’s protocol 

(Agilent Technologies). Briefly, 1 μg of genomic DNA (gDNA) was fragmented using the 

Covaris E210 Sonicator. The settings of duty cycle 10%, intensity 5, cycles 200, time 360 

seconds generated double-stranded DNA fragments with blunt or sticky ends with a 

fragment size mode of 150–200bp. The ends were repaired and phosphorylated using 

Klenow, T4 polymerase, and T4 polynucleotide kinase, after which an “A” base was added 

to the 3′ ends of double-stranded DNA using Klenow exo- (3′ to 5′ exo minus). Paired-end 

Index DNA adaptors (Agilent) with a single “T” base overhang at the 3′ end were ligated, 

and the resulting constructs were purified using AMPure SPRI beads from Agencourt 

(Beckman Coulter Genomics). The adapter-modified DNA fragments were enriched by 4 

cycles of polymerase chain reaction (PCR) using SureSelect forward and SureSelect Pre-

Capture indexing reverse (Agilent) primers. The concentration and size distribution of the 

libraries was determined via Agilent Bioanalyzer DNA 1000 chip.
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Whole exome capture of 75Mb was carried out using the Agilent Bravo liquid handler 

following the protocol for Agilent’s SureSelect XT Human Exome + UTR v5. 750 ng of the 

prepped library was incubated with whole exon biotinylated RNA capture baits supplied in 

the kit for 24 hours at 65°C. The captured DNA:RNA hybrids were recovered using 

Dynabeads MyOne Streptavidin T1 (Life Technologies). The DNA was eluted from the 

beads and purified using Ampure XP (Beckman Coulter Genomics). The purified capture 

products were then amplified using the SureSelect Post-Capture indexing forward and index 

PCR reverse primers (Agilent) for 12 cycles. Libraries were validated and quantified on the 

Agilent Bioanalyzer.

Libraries were pooled at equimolar concentrations in batches of three samples and loaded 

onto paired end flow cells at concentrations of 11 pM to generate cluster densities of 

600,000–800,000/mm2 following Illumina’s standard protocol using the Illumina cBot and 

HiSeq paired-end cluster kit version 3 (Illumina). The flow cells were sequenced as 101 × 2 

paired end reads on an Illumina HiSeq 2000 using TruSeq SBS sequencing kit version 3 and 

HiSeq data collection version 2.0.12 software. Base-calling was performed using Illumina’s 

RTA version 1.17.21.3. FastQ files were processed into the GENESIS pipeline (Gonzalez et 

al., 2015).

Filtering of Variants—Filtering of variants was performed in the GENESIS web 

application [Innovative genomic collaboration using the GENESIS (GEM.app) platform] 

(Gonzalez et al., 2015). Variants affecting protein sequence such as splice-site, missense, 

non-sense and frameshift variants were selected when present heterozygous in the two 

affected members of family UBCU2. Furthermore, variants were only retained when both 

were absent from the Exome Variant Server (EVS; http://evs.gs.washington.edu/EVS/) 

population, present two times or less in Exome Aggregation Consortium (ExAC; http://

exac.broadinstitute.org/) and the gene harboring the variant is expressed in brain tissue based 

on the GTEX database (http://www.gtexportal.org/). The remaining 15 variants were 

annotated using ANNOVAR (Wang et al., 2010).

Variant Confirmation and TIA1 Screening—For sequence validation of variants 

identified by exome sequencing, specific primers were designed surrounding each rare 

variant shared by UBCU2-1 and UBCU2-14. DNA fragments were amplified using Apex 

products, purified using the Agencourt Ampure system (Beckman Coulter Genomics), and 

sequenced using Big Dye Terminator V3.1 (Applied Biosystems). Sequencing products were 

then purified with CleanSEQ (Beckman Coulter Genomics) and then run on an ABI3730xl 

Genetic Analyzer (Thermo Fisher Scientific). Sequences were analyzed using Sequencher 

4.8 software (Gene Codes Corporation). TIA1 exons 11, 12 and 13 encoding the prion-like 

domain of TIA1 were sequenced from human gDNA in all 1045 patients from our 

association cohort and in 2077 controls. The remaining 959 controls from the Mayo Clinic 

Biobank were analyzed for coding TIA1 mutations using recently generated whole genome 

sequences generated on the HiSeq × Ten System (HudsonAlpha) and analyzed using our in-

house developed GenomeGPS v4.0 pipeline with BWA-MEM alignment to hg38 reference 

and variant calling using Genome Analysis Toolkit (Broad Institute). CADD scores for TIA1 
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variants identified in the additional ALS/FTD patients were generated using CADD web 

interface (https://cadd.gs.washington.edu/).

Mutagenesis—Mutations for TIA1 were created by using the site-directed mutagenesis kit 

(Agilent). TIA1 wild-type and mutants were subsequently cloned into pEGFP-C1 vector at 

BsrG1 and EcoRI site as a fusion gene without affecting the original reading frame of 

EGFP-C1. All clones were verified by restriction enzyme digestion and sequence analysis.

Immunofluorescence—HeLa cells were seeded on 8-well glass slides (Millipore). Cells 

were transfected 24 h after seeding using FuGene 6 (Promega) with GFP-TIA1-WT, GFP-

TIA1-P362L, GFP-TIA1-A381T, or GFP-TIA1-E384K construct. 48 h post transfection, 

cells were stressed with 500 μM sodium arsenite (Sigma-Aldrich) for 30 min. Cells were 

then fixed with 4% paraformaldehyde (Electron Microscopy Sciences), permeabilized with 

0.5% Triton X-100, and blocked in 3% bovine serum albumin (BSA). Primary antibodies 

used were against C-terminal TDP-43 (12892-1-AP; ProteinTech) and G3BP1 (611127; BD 

Biosciences). For visualization, the appropriate host-specific Alexa Fluor 555 or 647 

(Molecular Probes) secondary antibody was used. Slides were mounted using Prolong Gold 

Antifade Reagent with DAPI (Life Technologies). Images were captured using a Leica TCS 

SP8 STED 3X confocal microscope (Leica Biosystems) with a 63x objective.

Double label immunofluorescence was performed on 5-μm thick sections of formalin-fixed, 

paraffin-embedded post-mortem human spinal cord tissue from cases with TIA1 mutations 

(UBC2-1, UBC2-14, NWU-1 and ALS752-1), ALS/FTD patients without TIA1 mutations 

(N = 2) and a neurologically normal control subject. Tissue sections were heated to 60°C for 

20 min, then immediately deparaffinized and rehydrated. Antigen retrieval was performed in 

citrate buffer (10 mM, pH 6.0, 10 min at 95°C in a water bath). The sections were blocked 

for 1 hr with 5% donkey serum in 0.1% Triton X-100 in TBS. Incubation with various 

combinations of primary antibodies (rat anti-phosphorylated TDP-43 from M. Neumann 

(1:1000) (Neumann et al., 2009) combined with one of three anti-TIA1 antibodies: Santa 

Cruz goat anti-TIA1, 1:300; Santa Cruz rabbit anti-TIA1, 1:300; Proteintech rabbit anti-

TIA1, 1:100) was performed in the same blocking solution overnight at 4°C. The sections 

were then washed, and incubated with appropriate Alexa Fluor- or biotin-conjugated 

secondary antibodies at 1:1000 dilution for 1 hour at room temperature. Were needed, a third 

step with Alexa Fluor-conjugated streptavidin (1:1000) was added for 40 min. Background 

fluorescence was then quenched by staining with 0.1% Sudan Black in 70% ethanol for 15 

min. Slides were mounted after 15 minute incubation in DAPI with Prolong-Gold anti-fade 

reagent (Invitrogen). Microscopy was performed using a Nikon Eclipse i-80 epifluorescent 

microscope and NIS-Elements software. Images were further processed and merged using 

Image J.

Live-Cell Time-Lapse Imaging and Fluorescence Recovery After 
Photobleaching—HeLa cells (ATCC) were seeded on sterilized 40mm #1.5 thick 

coverslips (Bioptechs Inc.). Cells were transfected 24 h after seeding using FuGene 6 

(Promega) with 0.5 μg GFP-TIA-1-WT, GFP-TIA1-P362L, GFP-TIA1-A381T, GFP-TIA1-

E384K, or wild type TDP-43-TdTOMATO construct. 48 hours post transfection, the 

coverslip was transferred to a FCS2 chamber, assembled according to the manufacturer’s 
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instructions (Bioptechs Inc.). Media was perfused through the chamber, and then the 

chamber was placed into a Marianas Spinning Disk Confocal system with a stage-top 

incubator and 63× objective with an objective heater (Bioptechs Inc.), both preheated to 

37°C. The Microaqueduct Slide heater (part of the FCS2 system) was set to 37°C, and the 

heated objective with 37°C immersion oil (Zeiss) was raised until it immersed the coverslip, 

and the system was left to equilibrate for 10 minutes after both the Microaqueduct Slide and 

objective heaters read 37°C.

For time-lapse imaging, using SlideBook software with definite focus engaged, multipoint 

images were taken every 20 seconds with the 488 nm laser at 30% power. Two minutes into 

imaging, both the Microaqueduct Slide and Objective temperatures were raised to 43°C to 

begin heat shock. 30 min later, both were lowered back to 37°C to alleviate the stress and 

were imaged until granules disappeared or after 3–4 hours passed. 250–500 μL fresh media 

was perfused through the chamber at every hour of imaging.

For fluorescence recovery after photobleaching, using SlideBook software with continuous 

definite focus engaged, images were taken every 500 milliseconds with the 561 nm laser at 

15% power for 87.5 seconds. 5 frames into imaging cytoplasmic regions were 

photobleached at 50% 561nm FRAP laserstack power for 1ms. The microaqueduct slide and 

objective heaters were raised to 43°C to induce str ess granules and the stress granules were 

photobleached under the same conditions as the cytoplasmic regions prior to stress. 

Recovery curves were normalized to background fluorescence for subtracting noise, and 

adjacent non-bleached cells for fluorescence intensity fluctuations. Half recovery time and 

mobile fraction at the end of 87.5 seconds were empirically calculated. Average and 

standard errors were calculated from fifteen individual traces for cytoplasmic regions before 

heat shock, and sixteen individual traces after heat shock.

Recombinant TIA1 Cloning and Purification—Purification of TIA1 was followed as 

given in Lee et al. (Lee et al., 2016). Recombinant DNA for TIA1 wild-type, E384K, P362L 

and A381T constructs were cloned into pETite N-His SUMO Kan vector (Lucigen 

Corporation). Plasmids were chemically transformed into BL21_DE3 cells (Lucigen 

Corporation). A single bacterial colony, from a Luria-Broth (LB) agar plate with 600 μg/ml 

of kanamycin was grown overnight at 37°C, in 50 mL LB medium with 600 μg/ml of 

Kanamycin (LB-Kan), shaking at 200 rpm (New Brunswick Innova 44R shaker). Saturated 

overnight culture was transformed into two 2.5 L baffled flasks, each of 1 L LB medium 

with Kanamycin. Cell density, measured by OD600, was allowed to reach 0.5 by shaking at 

37°C. After inducing with 500 μM isopropyl β-D-1-thiogalactopyranoside (IPTG), 

expression was done for 20 h at 16°C.

Cells were pelleted at 4000 × g for 20 min at 4°C. Pellets from 1 L of cell culture were 

resuspended and solubilized in 50 ml of 50 mM HEPES, pH 7.5, 2 mM DTT, 250 mM NaCl 

buffer with cOmplete, Mini, EDTA-free protease inhibitor cocktail (Sigma-Aldrich). 

Resuspended cells were lysed by passing through a LM10 microfluidizer (Microfluidics) at 

18,000 psi. Cell debris were pelleted at 17,000 × g at 4°C for 1 h and the supernatant was 

decanted and filtered through a 0.45 micron PVDF membrane. Supernatant was loaded onto 

a HisTrap FF Ni-column (GE Healthcare), washed with lysis buffer, and eluted with 300 
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mM imidazole. The proteins were treated with 0.2 mg/ml RNase A (Roche) for 15 min at 

37°C. His-SUMO-TIA1, with a calculated isoelectric point of 6.5, was purified by ion 

exchange chromatography with a HiTrap Q column (GE Healthcare) using a salt gradient 

from 75 mM to 500 mM NaCl. The fractions were analyzed by SDS-PAGE gel, pooled, and 

concentrated. They were then subjected to size exclusion chromatography on a Superdex 

200 16/60 column (GE Healthcare) equilibrated in 50 mM HEPES, pH 7.5, 400 mM NaCl, 

and 5 mM dithiothreitol (DTT). The fractions were analyzed by SDS-PAGE gel, pooled, 

concentrated, and stored at −80°C. Absence of RNA was confirmed by TBE Urea gel 

electrophoresis and 260/280 absorbance ratio. Proteins were labelled with Oregon Green and 

Texas Red using Molecular Probes Protein Labeling Kits.

Phase Separation—Protocol from Elbaum-Garfinkle et al. (Elbaum-Garfinkle et al., 

2015) was modified to obtain the phase diagram (also known as co-existence line of T 

versus concentration of dilute phase) of TIA1 variants. Purified proteins were diluted to 15 

μM, 150 mM NaCl with 50 mM HEPES at pH 7.5. Dilution of salt from 400 mM NaCl 

(storage buffer) to 150 mM NaCl induced phase separation. Samples were filtered through a 

0.22 micron PVDF membrane to get rid of aggregates, and incubated at six different 

temperatures (5, 10, 15, 20, 25 and 30°C) for 30 min. After equilibration at six different 

temperatures, samples were centrifuged at their respective temperatures at 21,000 × g for 7 

min. Experiments were performed in six replicates for wild-type and P362L, and thrice for 

A381T and E384K to obtain the average and standard error of the mean (S.E.M.). Curves 

were fit to data using a quadratic equation (R2 wild-type=0.99; R2 P362L=0.99; R2 

A381T=0.97; R2 E384K=0.99). Light or protein-depleted phase was decanted, and 

concentration was measured using a NanoDrop at 280 nm with molar extinction coefficient 

of His-SUMO-TIA1 calculated as 82195 M-1 cm-1 (Wilkins et al., 1999). Standardization 

of protein concentration with respect to A280 was confirmed by SDS-PAGE. See also Figure 

S3.

In Vitro Fibrillization—Fibrillization was monitored by Thioflavin T (ThT) fluorescence 

at 480 nm. Filtered, phase separated samples of 20 μM of proteins and 5 μM ThT at 50 mM 

HEPES, pH 7.5, 5 mM DTT, 150 mM NaCl, were observed with a 100x oil objective 

through Leica SP8 confocal microscope. Kinetics of fibrillization was studied on a 96-well 

plate reader using filtered light phase (2.5 μM protein concentration) at room temperature. 

Samples were agitated on an Eppendorf Thermomixer C heat block at 300 rpm for 24 h. ThT 

fluorescence at 480 nm was observed at 0 h (defined as sample immediately after filtration), 

2, 5, 8 and 24 h. Baseline correction was performed using 2.5 μM BSA as a standard 

solution. Experiments were performed in six replicates for wild-type and P362L, and thrice 

for A381T and E384K to obtain average and S.E.M.

For transmission electron microscopy (TEM), reaction mixture (10 μl) of TIA1 wild-type or 

mutants, after 2 h agitation at 300 rpm of 20 μM proteins, was directly deposited on a 

surface of a TEM grid (CF-400-Cu; Electron Microscopy Sciences). The surface of the grid 

was washed three times with 10 μl of distilled water. The grid was subsequently stained for a 

few seconds with a 10 μl drop of 2% uranyl acetate. After the uranyl acetate solution was 
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blotted, the grid was dried in air. TEM images were obtained with a JEOL 1200EX electron 

microscope at 120 kV.

Fluorescence Recovery After Photobleaching in Droplets—Droplets of 25 μM 

protein samples (spiked with Oregon Green for wild-type, or Texas Red for P362L, A381T 

and E384K variants at a ratio of 1:1000 labeled to unlabeled protein) were observed on a 

Linkam PE100 thermal stage (at 20°C) mounted on a Marianas spinning disk confocal 

imaging system on a Zeiss Axio Observer inverted microscope platform. Droplets were 

photobleached using 70% FRAP laserstack power for 5 ms. Images were obtained every 300 

ms to observe fluorescence recovery up to 225 s. Recovery curves were normalized to 

background fluorescence for subtracting noise, and adjacent non-bleached droplet for 

fluorescence intensity fluctuations. Half recovery time and mobile fraction at the end of 225 

s were empirically calculated. Average and standard errors were calculated from six 

individual traces for wild-type and A381T, eight for P362L, and ten for E384K. All imaging 

were done on hydrophobic coverslips (HybriSlip; Molecular Probes) sandwiching Secure-

Seal Imaging Spacers (0.12 mm depth).

Human Tissue Solubility Assay—Urea fractions were prepared from human frontal 

cortex tissue as described previously with few modifications (Neumann et al., 2007; Zhang 

et al., 2007). Approximately 100 mg of brain tissue was homogenized in 500 μl Tris-

buffered saline (TBS) and centrifuged at 25,000 × g for 30 min at 4°C. Pellets were re-

homogenized in 500 μl TBS and re-centrifuged under the same conditions. Pellets were 

resuspended in TBS containing 1% Triton X-100 (TX buffer) and centrifuged at 180,000 × g 

for 30 min at 4°C. Pelle ts were again suspended in TX buffer supplemented with 30% 

sucrose and centrifuged at 180,000 × g for 30 min at 4°C. Pellets were re-homogenized in a 

1% sarkosyl solution, after which samples rotated at room temperature for 1 hr. Samples 

were then centrifuged at 180,000 × g for 30 min at room temperature before re-extracting 

the remaining pellet in 50 03BCl of 7M urea. All buffers, with the exception of urea, were 

supplemented with protease and phosphatase inhibitors. Urea-extracted samples were stored 

at −80°C until use.

Cell Culture Solubility Assay—Solubility and biochemical analysis was performed as 

described in Kim HJ et al., Nature 2013 with several modifications. For each sample ~3 × 

106 cells were washed twice with ice-cold 1x PBS and lysed in ice-cold RIPA buffer (25 

mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS; 

ThermoFisher 89900). Cell lysates were then passed through a 21□gauge needle 10 times 

before being cleared by centrifugation at 100,000 × g for 30 min at 4°C to generate RIPA-

soluble fraction. The pellets were washed twice with ice cold RIPA buffer and re-centrifuged 

for 10 min. RIPA-insoluble pellets were then extracted with urea buffer (7 M urea, 2 M 

thiourea, 4% CHAPS, 30 mM Tris, pH 8.5) by vortexing samples for 15 sec every 10 min 

for 30 min while at room temperature. The samples were then centrifuged at 100,000 g for 

30 min at 4°C. Halt Protease and Phosphatase Inhibi tor (ThermoFisher # 78443) was added 

to all buffers before use. Proteins were resolved by NuPAGE Novex 4–12% Bis-Tris Gel 

(Invitrogen).
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Western Blotting—For human urea fractions, an equal volume of sample and Tris-glycine 

Novex buffer (Life Technologies; supplemented with 5% β-mercaptoethanol) were prepared 

for Western blotting and were not further denatured. Samples were loaded into SDS 

polyacrylamide gels (Life Technologies) and electrophoresis was run at 80V. Protein was 

transferred onto an Immobilon PVDF membrane (Millipore) at 230 mA for 4 hrs. 

Membranes were blocked for 1 hr in 5% dehydrated milk (prepared in TBS containing 

0.05% Tween-20) before incubation with primary antibody. Horseradish peroxidase-

conjugated secondary antibody (Promega) incubation followed by enhanced 

chemiluminescence was used for the detection of proteins. Primary antibodies used were 

goat anti-TIA1 (1:2,000; Santa Cruz), phosphorylated TDP-43 (1:1000), and rabbit anti-

TDP-43 (1:10,000; ProteinTech).

Histology—Human tissues were stained with hematoxylin and eosin (HE), HE combined 

with Luxol fast blue (HE/LFB) and Bielschowsky silver method.

Immunohistochemistry (IHC)—Standard IHC was performed on 5-μm thick human 

tissue sections using the Ventana BenchMark XT automated staining system (Ventana) and 

developed with aminoethylcarbizole (AEC). The primary antibodies employed were as 

follows: ubiquitin (DAKO; 1:500 following microwave antigen retrieval), p62 Lck ligand 

(BD Biosciences; 1:500 following microwave antigen retrieval), TDP-43 (ProteinTech; 

1:1,000 following microwave antigen retrieval), hyperphosphorylated tau (clone AT-8; 

Innogenetics, Ghent, Belgium; 1:2,000 following microwave antigen retrieval), α-synuclein 

(Thermo Scientific; 1:10,000 following microwave antigen retrieval), anti-beta amyloid (Aβ; 

DAKO; 1:100 with initial incubation for 3 h at room temperature), and FUS (Sigma-Aldrich; 

1:200, initial overnight incubation at room temperature, following microwave antigen 

retrieval).

IHC was also performed on sections of spinal cord and frontal cortex from TIA1 mutation 

carriers, sporadic ALS patients in whom TIA1 mutations were excluded, and normal control 

subjects using a number of commercial antibodies raised against various N-terminal and C-

terminal epitopes of human TIA1, including: ProteinTech TIA1 (rabbit polyclonal against aa 

1–214: 1:50, overnight incubation following microwave antigen retrieval), Santa Cruz 

TIA-1/TIAR (clone H-120; rabbit polyclonal against aa 21–140; 1:200, overnight incubation 

following microwave antigen retrieval), Santa Cruz TIA-1/TIAR (clone D-9; mouse 

monoclonal against aa 21–140; 1:200, overnight incubation following microwave antigen 

retrieval), Santa Cruz TIA1 (clone C-20; goat polyclonal raised against the TIA1 C-

terminus; 1:5000 following steaming antigen retrieval in sodium citrate buffer, pH 6), 

Abcam TIA1 ab40693 (rabbit polyclonal antibody raised against aa 350-C-terminus; 1:500 

following microwave antigen retrieval), Abcam TIA1 ab140595 (rabbit monoclonal antibody 

against aa 350-C-terminus; 1:100, overnight incubation) and Beckman Coulter TIA1 

(IM2550; mouse monoclonal raised against human leukemia cells; 1:400 following heat 

retrieval).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Genetic Statistical Analyses—Gene-based analyses were performed using the SNP-set 

(Sequence) Kernel Association Test (SKAT) R package using variants with minor allele 

frequency < 0.0001 and adjusted for age and gender (Wu et al., 2011). We only tested TIA1 
and only rare variants in the LCD were included in the analysis based on the specific 

mutation identified by exome sequencing in family UBCU2 and prior functional evidence 

implicating LCDs of other RNA binding proteins in ALS-FTD. The 8.7×10−6 p-value 

associated with rare TIA1 LCD mutations is just short of exome-wide significance 

(p=2.5×10−6).

Live-Cell Analysis—Live-cell imaging analysis was done manually, determining when 

granules appeared and disappeared for each cell. Only viable cells which were not rounded 

and which did not have spontaneous granules (puncta present prior to the 2 minute mark in 

the video) were considered. For these cells, all of which being considered granule negative at 

the beginning of the video, were considered granule positive upon the frame at which 

distinct cytoplasmic puncta were visible. The frame at which no cytoplasmic puncta were 

visible any longer was when the cells were once again considered granule negative. Images 

were analyzed using SlideBook software. For n=24, 8, 19, and 8 videos for wild-type, 

P362L, A381T, and E384K, respectively, the percent of cells which were considered granule 

positive was determined and graphed at each time point. Two-way ANOVA with Dunnett’s 

multiple comparisons test was performed using GraphPad Prism v6. A p-value of less than 

0.05 was used to determine significance.

Automated Image Analysis—The same live-cell videos were subjected to automated 

puncta detection analysis using CellProfiler software (Broad Institute of Harvard and MIT). 

Individual frames of all movies were exported as tiff images and imported into the 

CellProfiler where each frame was individually analyzed. An automated analysis pipeline 

consisted of applying a “speckle” enhancement step prior to thresholding. A speckle is an 

area of enhanced intensity relative to its immediate neighborhood. The module enhances 

speckles using a white tophat filter with a feature size of 10 pixels. After the speckle 

enhancement the granules were detected by applying adaptive “Robust Background” 

thresholding method. Adaptive strategy partitions the input image into tiles of 30 pixels and 

calculates thresholds for each tile. For each tile, the calculated threshold is applied only to 

the pixels within that tile. This approach is well suited for cells with varying intensity in the 

same movie (field of view). The Robust Background thresholding method applied within the 

tiles assumes that the background distribution approximates a Gaussian and trims the 

brightest and dimmest 5% of pixel intensities. It then calculates the mean and standard 

deviation of the remaining pixels and calculates the threshold as the mean + 3 times the 

standard deviation. Following the thresholding step all detected puncta were separated based 

on intensity and shape variation. Finally, the number and area of all segmented puncta 

objects were calculated and exported for making the graphs of the number and the average 

of area of SGs versus time using Microsoft Excel and/or Igor Pro (Wavemetrics). All graphs 

were normalized to maximum values. The purpose of these graphs is to show the behavior of 

the sample response to heat shock and supports our manual observation and analysis (Figure 
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2B). The fluorescence signal from each cell type was compared for one selected frame 

(Figure S2C) when cells had significant number of mature SGs.

Phase Diagram, Fibrillization, and FRAP Analyses—Statistical analyses were 

performed using GraphPad Prism v6 or Microsoft Office Excel. All data are shown as the 

mean ± standard error of the mean (SEM). The statistical significance of each variant 

compared to wild-type TIA1 was investigated by Pearson correlation coefficient (Pearson’s 

chi-square test), ordinary one-way ANOVA followed by Dunnett’s multiple comparisons 

test, or two-way ANOVA followed by Dunnett’s multiple comparisons test. The number of 

samples analyzed per experiment is provided in the corresponding figure legends. A p-value 

of less than 0.05 was used to determine significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TIA1 Mutations Identified in Family UBCU2 and Patients with ALS or ALS/FTD
(A) Abbreviated pedigree of the UBCU2 family of European ancestry included in this study 

showing unaffected individuals (white), individuals diagnosed with ALS or ALS/FTD 

(black) and an individual with early memory problems (gray). The proband is denoted with 

an arrow. Two family members with pathological diagnosis of ALS and FTLD-TDP were 

examined by whole-exome sequencing (*). Sanger sequencing confirmed the TIA1 P362L 

mutation in III-1, III-2 and IV-14, the only family members with DNA available. (B) TIA1 
gene organization and protein structure with conserved regions of the TIA1 LCD. Mutations 

identified in this study are numbered and marked in red in relation to the known E384K 

mutation identified in Welander distal myopathy (blue). (C) Images of autopsy pathology 

from patient UBCU2-1 showing TDP-43-immunoreactive neuronal cytoplasmic inclusions 

in the frontal cortex (i) and hyaline Lewy body-like cytoplasmic inclusions in lower motor 

neurons, demonstrated with H&E stain (ii, arrowhead) and TDP-43 immunohistochemistry 

(iii). See also Figure S1, Table S1, Table S2, and Table S3.
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Figure 2. Phase Separation and Mobility of TIA1 is Altered by Disease-Causing Mutations
(A) Schematic representation showing PONDR score along the length of wild-type TIA1, 

the location of the LCD, and the positions of disease-causing missense mutations P362L, 

A381T, and E384K. (B) Temperature-sensitive, reversible phase separation of wild-type 

TIA1 was observed by DIC microscopy. BSA protein was used as a negative control. (C) 

Phase diagrams [temperature (T) versus concentration] showing co-existence lines of wild-

type, P362L, A381T, and E384K TIA1 (150 mM NaCl, pH 7.5 in absence of any co-

solutes). Insets represent characteristic DIC images of single-phase (upper left) and two-

phase (lower right) solutions of wild-type TIA1. n = 6 for wild-type and P362L, n = 3 for 

A381T and E384K; P < 0.001 for each variant compared to wild-type by Pearson’s chi-

square test. (D) Disease-causing mutations P362L, A381T, and E384K reduce the mobility 

of TIA1 in the dense phase. Fluorescence images of wild-type or mutant TIA1 droplets 0–

225 seconds after photobleaching within the region outlined in yellow (arrow). (E) TIA1 

fluorescence recovery after photobleaching in the dense phase indicates a significant 

reduction in mobility (n = 10 for E384K; n = 8 for P362L; n = 6 for wild-type and A381T). 

Recovery curves were normalized to background fluorescence (for subtracting noise) and 

adjacent non-bleached droplet (for fluorescence intensity fluctuations). P < 0.001 for each 

variant compared to wild-type by Pearson’s chi-square test. (F) Quantification of the half 

fluorescence recovery time and mobile fraction of wild-type and mutant TIA1. All graphs 

represent mean ± S.E.M. *P < 0.05, ***P < 0.001 by one-way ANOVA with Dunnett’s 

multiple comparisons test. Scale bars: 20 μm (B) and 10 μm (D). See also Figure S2.
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Figure 3. Live-cell Imaging Illustrates Prolongation of SG Recovery in Association with Disease-
Causing TIA1 Mutations
(A) Images of HeLa cells transfected with GFP-tagged wild-type or mutant (P362L, A381T, 

or E384K) TIA1. SGs were induced with a 30-minute heat shock at 43°C (shaded in orange) 

and images were taken 0–120 min after recovery at 37°C. (B) Line graph representing the 

percentage of cells with visible TIA1 puncta over time (n = 24, 8, 19, and 8 videos for wild-

type, P362L, A381T, and E384K, respectively). (C) Quantification of the percentage of cells 

with persistent SGs at 120 min. *P < 0.05, **P < 0.01, ***P < 0.001 by two-way ANOVA 

with Dunnett’s multiple comparisons test. Scale bar: 10 μm. See also Figure S3, Figure S4, 

and Video File.
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Figure 4. TDP-43 is Recruited to TIA1-positive Stress Granules and TDP-43 Becomes Insoluble 
in Response to Stress
(A) Immunofluorescence confocal microscopy shows intracellular colocalization of 

endogenous TDP-43 (using an antibody targeting the C-terminus) with TIA1-positive stress 

granules of all four variants. GFP-tagged TIA1 constructs were transiently transfected in 

HeLa cells and cells were stressed with sodium arsenite for 30 min. Cells were fixed and 

stained with DAPI (blue), TDP-43 (red), and G3BP (far red), another marker of stress 

granules. Scale bar: 10 μm. (B) FRAP of TDP-43-TdTomato in HeLa cells (outlined in 

white) shows that cytoplasmic TDP-43 in resting cells (preHS, top row) is highly mobile. 

However, after heat shock stress, the TDP-43 that is recruited into SGs becomes immobile 

(middle row), while the TDP-43 that remains in the cytoplasm of the same cells (not in SGs, 

bottom row) remains highly mobile. Scale bar: 10 μm. (C) Quantification of FRAP analysis 

in (B). Pre-bleach: n = 15 cells; Post-bleach: n = 16 cells (SGs) and 23 cells (cytoplasm). (D) 

Prolonged sodium arsenite (Ars) stress promotes insolubility of TDP-43. Sequential 

extractions of U2OS cells under the following conditions: control (Ctl), 30 min Ars, and 30 

min Ars + 3 hrs recovery (RE), 1 hr Ars, 1 hr Ars + 3 hrs RE, shows that TDP-43 

accumulates in the urea-soluble fraction in response to stress. (E) Quantification of RIPA 

and urea-soluble blots in (D) shows TDP-43 can recover from the urea-soluble to the RIPA-

soluble fraction after a 30-min stress but not after a 1-hr stress. n = 3 biological replicates. 

All graphs represent mean ± S.E.M. ***P < 0.001 by one-way ANOVA with Dunnett’s 

multiple comparisons test. n.s., not significant. See also Figure S4.
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