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RESEARCH ARTICLE

The αvβ6 integrin in cancer cell-derived small extracellular vesicles enhances
angiogenesis
Shiv Ram Krishna,b, Israa Salema,b, Fabio Quagliaa,b, Nicole M. Naranjoa,b, Ekta Agarwalc,d, Qin Liu e,
Srawasti Sarkera,b, Jessica Kopenhaverb, Peter A. McCuef, Paul H. Weinrebg, Shelia M. Violetteg,h, Dario C. Altieric,d

and Lucia R. Languinoa,b

aProstate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, USA; bDepartment of Cancer Biology,
Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA; cProstate Cancer Discovery and Development Program, The
Wistar Institute, Philadelphia, USA; dImmunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, USA;
eMolecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, USA; fDepartment of Pathology, Thomas Jefferson
University, Philadelphia, USA; gBiogen Inc., Cambridge, USA; hAdmirx Tx, Cambridge

ABSTRACT
Prostate cancer (PrCa) cells crosstalk with the tumour microenvironment by releasing small
extracellular vesicles (sEVs). sEVs, as well as large extracellular vesicles (LEVs), isolated via iodix-
anol density gradients from PrCa cell culture media, express the epithelial-specific αvβ6 integrin,
which is known to be induced in cancer. In this study, we show sEV-mediated protein transfer of
αvβ6 integrin to microvascular endothelial cells (human microvascular endothelial cells 1 –
HMEC1) and demonstrate that de novo αvβ6 integrin expression is not caused by increased
mRNA levels. Incubation of HMEC1 with sEVs isolated from PrCa PC3 cells that express the αvβ6
integrin results in a highly significant increase in the number of nodes, junctions and tubules. In
contrast, incubation of HMEC1 with sEVs isolated from β6 negative PC3 cells, generated by shRNA
against β6, results in a reduction in the number of nodes, junctions and tubules, a decrease in
survivin levels and an increase in a negative regulator of angiogenesis, pSTAT1. Furthermore,
treatment of HMEC1 with sEVs generated by CRISPR/Cas9-mediated down-regulation of β6,
causes up-regulation of pSTAT1. Overall, our findings suggest that αvβ6 integrin in cancer sEVs
regulates angiogenesis during PrCa progression.
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Introduction

Among US men, prostate cancer (PrCa) is the most
common malignancy and the second leading cause of
cancer death [1]. To reduce mortality from PrCa, it is
necessary to understand the underlying biochemical
events and molecular mechanisms involved in PrCa
progression. In particular, tumour angiogenesis plays
a role in the progression of PrCa [2] based on findings
that microvessel density in PrCa strongly correlates
with Gleason grade and may predict disease progres-
sion [3]. Recent studies have focused on small extra-
cellular vesicles (sEVs) as crucial mediators of tumour
angiogenesis [4,5] and as modulators of the tumour
microenvironment (TME), thereby supporting aggres-
sive cancer [6–8].

While large extracellular vesicles (LEVs) are plasma
membrane-derived extracellular vesicles (EVs) 100-
1000 nm in size, recovered by a 10,000 g centrifugation
step [9], the sEVs are a population of EVs recovered by
a 100,000 g high-speed ultracentrifugation step, < 200

nm in size, of endosomal or non-endosomal in origin
and secreted upon fusion with the plasma membrane
[9–12]. The sEV subtype sediments in the light frac-
tions of the high-speed density gradient ultracentrifu-
gation, and it is enriched in tetra-spanins (CD9, CD63
and CD81) [11]. The sEVs carry proteins, mRNAs and
miRNAs as cargo to mediate intercellular communica-
tion and modify the functional state of the recipient
cells that interact with these secreted sEVs [13–15].

Integrins are transmembrane receptors that are
expressed on PrCa cell-derived sEVs [6,16–19].
During tumour angiogenesis, integrins appear to
play an important role in endothelial cell migration
and survival [20,21]. However, the impact of PrCa
cell-derived sEV-associated integrins on endothelial
cells has not been explored so far. In particular,
researchers have identified αvβ6 integrin as an
epithelial-specific integrin that is not expressed in
endothelial cells under normal conditions but can
be induced [22–24,25]. The αvβ6 integrin is known
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to be up-regulated in many cancers [26] and corre-
lates with poor survival in breast cancer [27–29],
non-small cell lung cancer [30] and colon cancer
[31,32] patients. It is not expressed in healthy pros-
tate but is highly expressed in primary and metastatic
PrCa [33,34]. Our previous studies have shown that
the PrCa cell-derived sEV-associated αvβ6 integrin
functionally modulates cells of the prostate TME
[17,19]. The αvβ6 integrin is actively packaged into
sEVs isolated from PrCa cell lines, and is efficiently
transferred via these sEVs to β6-negative PrCa cells
or monocytes, thus resulting in increased migration
of recipient PrCa cells [17] and M2 polarisation of
recipient monocytes, respectively [19]. These previous
studies led us to hypothesise that PrCa cell-derived
sEVs that express αvβ6 integrin (αvβ6-positive sEVs)
may functionally impact endothelial cells.

In this study, we demonstrate for the first time that
PrCa cell-derived αvβ6 integrin is transferred via sEVs
as a functionally active molecule to β6-negative
endothelial cells and significantly impact the angio-
genic potential of endothelial cells. Despite the impor-
tant role of angiogenesis in PrCa progression, clinical
trials with anti-angiogenic therapy in this disease have
not been effective [35–37]. Owing to our novel find-
ings, targeting αvβ6 integrin in combination with cur-
rent anti-angiogenic therapies may provide a novel
approach to develop effective therapies against PrCa.

Materials and methods

Cell lines

Bovine aortic endothelial cells (BAECs) were cultured
in Dulbecco's modified eagle medium (DMEM) sup-
plemented with 10% foetal bovine serum (FBS), 100
μg/mL streptomycin and 100 U/mL penicillin (Corning
Cellgro, USA) in a humidified atmosphere of 5% CO2

at 37°C [38].
Human microvascular endothelial cells 1 (HMEC1)

were cultured in endothelial cell growth media supple-
mented with endothelial cell growth supplement (R&D
Systems, Cat. # CCM027), 100 μg/mL streptomycin
and 100 U/mL penicillin (Corning Cellgro, USA) in a
humidified atmosphere of 5% CO2 at 37°C.

C4-2B cell lines were maintained in Roswell park
memorial institute (RPMI) media with L-glutamine
(Corning, USA) supplemented with 5% FBS, 1 mM
sodium pyruvate (Corning Cellgro, USA), non-essen-
tial amino acids (Corning Cellgro, USA), 100 μg/mL
streptomycin and 100 U/mL penicillin (Corning
Cellgro, USA) in a humidified atmosphere of 5% CO2

at 37°C. The C4-2B PrCa cells stably transfected with

either empty vector (C4-2B-Mock) or β6 cDNA-
expression vector (C4-2B-αvβ6) were maintained as
previously described [33].

PC3 cell lines were maintained in RPMI media with
L-glutamine (Corning, USA) supplemented with 10%
FBS, 100 μg/mL streptomycin and 100 U/mL penicillin
(Corning Cellgro, USA) in a humidified atmosphere of
5% CO2 at 37°C. PC3 cells stably transfected with
control shRNA (PC3-shCtrl) or shRNA specifically
targeting β5 integrin subunit (PC3-shβ5) or β6 integrin
subunit (PC3-shβ6) were maintained as previously
described [33,39].

For genomic depletion of the β6 integrin subunit,
PC3 cells were transfected with pX458 (Addgene plas-
mid #48,138), a plasmid expressing eGFP, spCas9 and a
sgRNA targeting the fifth coding exon of β6 integrin
(seed sequence: 5ʹ-GCTAATATTGACACACCCGA-3ʹ)
using Lipofectamine LTX with Plus Reagent
(ThermoFisher Scientific, Waltham, Massachusetts).
At 72 h after transfection, eGFP-positive cells were
single-cell sorted by a FACSAria II flow cytometer
(BD Biosciences, San Jose, California). Clonally
expanded cell populations were screened for frame-
shifting indels by amplifying the target locus by poly-
merase chain reaction (PCR) (forward primer: 5ʹ-
CAGTGAGATTCATAGCTGAGTTGCAG-3ʹ; reverse
primer: 5ʹ-GTAGAGACAGCAAACTTCCGAAGC-3ʹ)
and Sanger sequenced using both forward and reverse
primers above. Complete knockout was confirmed in
PC3-WT-clone 1, PC3-β6 KO-clone 5, PC3-β6 KO-
clone 7 cells by immunoblotting (IB) using an antibody
(Ab) to the αvβ6 integrin.

Antibodies for immunoblotting

The following primary Abs were used for IB analyses:
mouse monoclonal Abs against: ALIX (Abcam,
ab117600), αvβ6 integrin (6.2A1) [40], CD9 (Santa Cruz,
sc18869), CD63 (Abcam, ab8219), CD81 (Abcam,
ab23505); rabbit polyclonal Abs against: actin (Sigma
Aldrich, A2066), CANX (Santa Cruz, sc-11,397), STAT1
(Santa Cruz, sc-346), TSG101 (Abcam, ab30871); and rab-
bit monoclonal Abs against integrin β5 subunit (Cell
Signaling, 3629), pSTAT1(Y701) (Cell Signaling, 7649 S)
and survivin (Cell Signaling, 2808). The following second-
ary Abs were used for IB analyses: HRP-linked anti-mouse
IgG (Cell Signaling, 7076 S) and HRP-linked anti-rabbit
IgG (Cell Signaling, 7074 S).

LEV and sEV isolation and analysis

LEVs included large and intermediate EVs and were
isolated, as described previously [5,11]. Briefly, PrCa
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cells (PC3-parental) were plated in 150 mm cell culture
dishes (ThermoScientific) in their respective cell line
complete media. After 48 h of incubation at 37°C, cells
were transferred to starvation media (complete media
devoid of FBS) for the next 48 h. LEVs were isolated
from culture supernatant (SN) collected after 48 h of
serum starvation by differential centrifugation. Briefly,
the dead cells and cell debris were spun down from SN
at 2000 g, 4°C for 20 min. The SN collected was spun at
10,000 g, 4°C for 35 min in a Beckman Type 45 Ti
rotor using a Beckman L8-70 M Ultracentrifuge. The
10,000 g pellet was washed in phosphate buffer saline
(PBS) followed by a second spin at 16,000 g, 4°C for 40
min in a tabletop centrifuge. The final LEV pellet (PC3
LEVs) was resuspended in PBS.

For sEV isolation, PrCa cells (PC3-parental, -shCtrl,
-shβ6, -shβ5, -WT, -β6 KO-5, -β6 KO-7 and C4-2B-
Mock, -αvβ6) were plated in 150 mm cell culture dishes
(ThermoScientific) in their respective complete media.
After 48 h of incubation at 37°C, cells were transferred
to starvation media (complete media devoid of FBS) for
the next 48 h. sEVs were isolated from SN collected after
48 h of serum starvation by high-speed differential ultra-
centrifugation. Briefly, the dead cells and cell debris were
spun down from SN at 2000 g, 4°C for 20 min. The SN
collected was spun at 10,000 g, 4°C for 35 min in a
Beckman Type 45 Ti rotor using a Beckman L8-70 M
Ultracentrifuge. The SN collected without disturbing the
10,000 g pellet was spun at 100,000 g, 4°C for 70 min in a
Beckman Type 45 Ti rotor using a Beckman L8-70 M
Ultracentrifuge; the pellet was washed in PBS followed by
a second spin at 100,000 g, 4°C for 70 min in a Beckman
Type 45 Ti rotor using a Beckman L8-70 M
Ultracentrifuge. The final sEV pellet from each cell type
mentioned above was resuspended in PBS to get PC3
sEVs, PC3-shCtrl sEVs, PC3-shβ6 sEVs, PC3-shβ5
sEVs, PC3-WT sEVs, PC3-β6 KO-5 sEVs, PC3-β6 KO-7
sEVs, C4-2B-Mock sEVs and C4-2B-αvβ6 sEVs. The total
cell lysates (TCLs; 10–40 μg), LEV or sEV lysates were
prepared using radio immuno precipitation assay (RIPA)
buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM
EDTA, 0.1% SDS, 1%Triton X-100 and 1% sodium deox-
ycholate) supplemented with protease inhibitors (calpain,
aprotinin, leupeptin, pepstatin, sodium fluoride and
sodium orthovanadate). The total protein concentration
of sEVs was determined using BioRad DCTM protein
assay kit as per the manufacturer’s protocol. Equal
amounts of proteins in non-reducing (heated without 2-
mercaptoethanol) and reducing conditions (heated with
2-mercaptoethanol) were separated by sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE), transferred to polyvinylidene difluoride (PVDF)
membranes (immobilon-E PVDF membrane, pore size

0.45 µm, Millipore), blocked with blocking buffers [5%
non-fat drymilk in Tris Buffer Saline with 0.1%Tween 20
(TBST) or 5% bovine serum albumin (BSA) in TBST] for
1 h at room temperature, incubated overnight with pri-
maryAbs as described above, followed by TBSTwashes (4
× 10 min) at room temperature, incubation with horse-
radish peroxidase (HRP)-conjugated anti-mouse or -rab-
bit secondary Abs for 1 h at room temperature, followed
by TBST washes (4 × 10 min) at room temperature. For
visualisation, WesternBrightTM ECL HRP substrate kits
(Advansta Inc., CA,USA)were used. The size distribution
(mean and mode) and concentration of LEVs or sEVs
were determined by nanoparticle tracking analyses
(NTAs) detailed below.

Iodixanol density gradient

For iodixanol density gradient separation, a previously
described procedure was used [19]. Briefly, the LEVs
obtained from PC3-parental cells or sEVs obtained
from PC3 cells (PC3-parental, -shCtrl, -shβ5 and
-shβ6) or C4-2B cells (C4-2B-Mock, -αvβ6) were sus-
pended in 1.636 mL of 30% iodixanol solution [made
by mixing 1:1 of 60% (wt/vol) stock solution of iodix-
anol (OptiPrep™, Sigma # 1556) with a buffer (0.25 M
sucrose, 10 mM Tris pH 8.0, 1 mM EDTA, pH 7.4)]
and layered at the bottom of an ultracentrifugation
tube. Next, 0.709 mL of 20% (wt/vol) iodixanol and
0.654 mL of 10% (wt/vol) iodixanol solutions were
successively layered on top of the 30% iodixanol-vesicle
suspension to create a discontinuous gradient.
Gradient samples were centrifuged for 1 h at 350,000
g, 4°C in a SW55Ti rotor using a Beckman L8-70 M
Ultracentrifuge. Ten consecutive fractions of 0.267 mL
were collected from top to bottom of the gradient. The
refractive index of each fraction was assessed with an
ABBE-3 L refractometer (Fisher Scientific) and density
was calculated. All 10 fractions were diluted with 1 mL
PBS and centrifuged for 70 min at 100,000 g, 4°C in a
TLA-100.2 rotor using a Beckman, Optima TL
Ultracentrifuge. The pellets thus obtained in 10 respec-
tive fractions were again washed in 1 mL PBS and
centrifuged for 70 min at 100,000 g, 4°C in a TLA-
100.2 rotor using a Beckman, Optima TL
Ultracentrifuge. The final pellet in each fraction was
resuspended in 30 μL of PBS and stored at −80°C or
utilised for analysis by NTA or IB in non-reducing and
reducing conditions or functional assays.

Nanoparticle tracking analysis

The size distribution and concentration of sEVs isolated
from the PrCa cells (PC3-parental, -shCtrl, -shβ5, -shβ6,
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-WT, -β6 KO-5, -β6 KO-7, C4-2B-Mock and -αvβ6 cells)
were analysed using NanoSight NS300 instrument
(Malvern Panalytical, UK). Briefly, sEV suspensions
were diluted 1:1000 and/or 1:200 (for iodixanol density
gradient separated fractions) in PBS, and the analysis was
performed using camera levels ranging from 11 to 13 to
see the EV particles clearly in a way that they do not
appear saturated (coloured pixels). Using the script SOP
standard measurement, video files of 30- or 60-s duration
(repeated three times or five times) were captured with a
frame rate of 25 frames per second of particles moving
under Brownian motion at a temperature ranging from
22°C to 25°C. The analysis of videos was performed at a
detection threshold ranging from 3 to 5 using NTA soft-
ware version 3.1 (build 3.1.54).

Quantitative real-time PCR

HMEC1 or BAEC (2 × 105) were seeded on six-well cell
culture dishes. Next day, cells were washed with PBS,
incubated with endothelial cell basal media and either
PBS or sEVs (40 μg/mL) isolated from PC3 cells (4, 8
and 16 h for BAEC or 2, 4, 8, 16 and 24 h for HMEC1).
After incubation, cells were washed with PBS, trypsinised
and total RNA from HMEC1, BAEC or PC3 PrCa cells
(positive control for β6 mRNA expression) was isolated
using the Qiagen RNeasy Kits (Qiagen, Valencia, CA,
USA) as per manufacturer’s protocol. RNA (1 μg) was
reverse transcribed with random hexamer oligos
(Invitrogen) and SuperScript II RNase H-reverse tran-
scriptase enzyme (Invitrogen). Subsequently, for real-
time PCR analysis, complementary DNA (cDNA) was
amplified using the QuantStudio 12 K Flex Real-Time
PCR system. The gene expression of β6, BIRC5 and
GAPDH were profiled using primers for β6 (forward
primer, 5ʹ-GGTCTCATCTGGAAGCTACTGGTGTCA-
3ʹ; reverse primer, 5ʹ-GGTCTCCCAGATGCACAGTAG
GACAACC-3ʹ), BIRC5 (forward primer, 5ʹ-GACTTGGC
TCGATGCTGTGG-3ʹ; reverse primer, 5ʹ-TACGCCA
GACTTCAGCCCTG-3ʹ) and GAPDH (forward primer,
5ʹ-GGGAAGGTGAAGGTCGGAGT-3ʹ; reverse primer,
5ʹ-GTTCTCAGCCTTGACGGTGC-3ʹ). The relative
mRNA expression was calculated using the 2ΔΔCT
method. Each reaction was carried out in triplicate;
mean and standard error of mean were calculated using
Excel (Microsoft) software.

Analysis of sEV-mediated αvβ6 integrin transfer and
impact on angiogenic signalling via immunoblotting
To evaluate the PC3-sEV-mediated internalisation of
αvβ6 integrin, the HMEC1 or BAEC (2 × 105) cultured
in serum- and growth factor-starved conditions were
incubated with the PBS as vehicle control or the same

dose of sEVs (20 µg/mL) at different time lengths (6, 16
and 24 h for HMEC1 and 4, 8 and 16 h for BAEC). The
efficiency of PC3 sEV-mediated αvβ6 integrin interna-
lisation in HMEC1 was also evaluated after acid wash
[sodium acetate buffer (0.2 M acetic acid/0.5 M NaCl,
pH 2.8]. The sEV-mediated internalisation of αvβ6
integrin in HMEC1 was also tested upon incubation
of HMEC1 (2 × 105) cultured in serum- and growth
factor-starved conditions with 40 µg/mL of sEVs
derived from PrCa cells (PC3-WT, -β6 KO-5 and -β6
KO-7) for 18 h. After incubation with sEVs, HMEC1
or BAEC were washed with PBS, trypsinised, collected,
lysed in RIPA buffer containing protease inhibitors and
TCL were subjected to IB analysis to measure β6 levels.

The effect of PrCa sEVs on angiogenic signalling in
HMEC1 was also evaluated after incubation of HMEC1
(2 × 105) with PBS or 40 µg/mL sEVs derived from
PrCa cells (PC3-WT, -β6 KO-5, -β6 KO-7, -shCtrl,
-shβ6, -shβ5 and C4-2B-Mock or -αvβ6) for 18 h.
After incubation with sEVs, HMEC1 were washed
with PBS, trypsinised, collected, lysed in RIPA buffer
containing protease inhibitors and TCL were subjected
to IB analysis to measure levels of angiogenic signalling
molecules.

Analysis of sEV-mediated αvβ6 integrin transfer
and cell surface expression via FACS

Fluorescence-activated cell sorting (FACS) analysis was
employed to detect sEV-mediated αvβ6 integrin trans-
fer and expression on the cell surface of HMEC1.
HMEC1 (2 × 106) plated in 100 mm cell culture dishes
were serum- and growth factor-starved and incubated
with PBS or 40 µg/mL PC3 sEVs for 18 h. After
incubation with PBS or sEVs, HMEC1 were trypsi-
nised, washed with PBS and 3 × 105 cells were incu-
bated with the Ab specific to αvβ6 integrin (mAb
6.4B4, 10 µg/mL in HMEC1 media) or mouse IgG as
isotype control (10 µg/mL in HMEC1 media) for 45
min at 4°C. Samples were washed three times with
complete media (RPMI with 10% FBS), pelleted and
incubated with Alexa FluorTM 488 F(ab’)2 fragment of
rabbit anti-mouse-IgG (H + L) (Invitrogen) in HMEC1
complete media for 30 min at 4°C, washed three times
with complete media (RPMI with 10% FBS), pelleted
and resuspended in 500 µL of PBS and analysed. The
data were acquired using BD Celesta flow cytometer
(BD Biosciences) and analysed by FlowJo software.

Trypan blue dye exclusion assay

HMEC1 (2 × 105) were seeded on six-well cell culture
dishes (replicates n = 3). Next day, cells were washed
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with PBS, incubated with endothelial cell basal media
and either PBS or iodixanol density gradient separated
sEVs (40 μg/mL) isolated from PrCa cells (PC3-shCtrl,
-shβ6, -shβ5, C4-2B-Mock and -αvβ6) at 37ºC for 18 h.
After 18 h of incubation with PBS or respective sEVs,
HMEC1 form each condition were washed with PBS,
trypsinised, collected and resuspended in endothelial
cell basal media. One part of the cell suspension was
mixed with one part of 0.4% trypan blue. The mixture
was allowed to incubate ∼3 min at room temperature
and 10 μL of the trypan blue/cell mixture was applied
to a haemocytometer and the unstained cells (viable)
were counted using a hand tally counter in 4 separate
grids (each having 16 squares) of haemocytometer
using the inverted microscope under 10× objective.
The total number of viable cells per mL = (the total
number of viable cells counted in 4 grids/4) × 10,000 ×
dilution factor. For PC3-shCtrl, -shβ6 and -shβ5 cells
(1 × 106) were seeded on 100 mm cell culture dishes
(replicates n = 3) in complete media, incubated for 72 h
at 37ºC and after incubation, the viable cells were
counted by trypan blue dye exclusion method as
described above.

Boyden chamber assay

HMEC1 (5 × 104) were seeded on Transwell cham-
bers (replicates n = 3) and incubated with PBS or
iodixanol density gradient separated sEVs (0.3 × 109

vesicles) isolated from the PrCa cells (PC3-parental,
-shCtrl, -shβ5, -shβ6, C4-2B-Mock and -αvβ6). To
acquire the 0.3 × 109 sEVs utilised for the functional
analyses, ~12 × 104 PC3 cells and ~2 × 105 C4-2B
cells are required. HMEC1 complete media were
placed in the bottom chamber as a chemoattractant
for sEV-incubated HMEC1 in Transwell chambers
and incubated for 24 h at 37ºC. In another set of
experiments, HMEC1 basal media were placed in the
bottom chamber for sEV-incubated HMEC1 in
Transwell chambers and incubated for 24 h at 37ºC.
After 24 h, Transwell inserts were placed in 100%
methanol for 10 min to allow the fixation of migrated
HMEC1. A cotton-tipped applicator was used to
remove the remaining methanol from the top of the
membranes and they were allowed to dry. For stain-
ing the fixed HMEC1, the membranes were posi-
tioned in a 0.5% crystal violet solution and
incubated at room temperature for 10 min. Excess
crystal violet was removed from the top of the mem-
branes with a cotton-tipped applicator. Membranes
were gently rinsed in distilled water to remove the
excess crystal violet. Pictures were captured under-
neath an inverted microscope and the number of

migrated cells was counted manually in different
fields of view (n = 6 or 9) to obtain an average total
number of cells that have migrated through the mem-
branes towards the chemo-attractant and attached to
the underside of the membranes.

Tube formation assay

For tube formation assays, 96-well plates were coated
with 70 µL of BD Matrigel™ Basement Membrane
Matrix (Cat. #354,230). Plates were incubated for 3 h
at 37ºC to allow the Matrigel to form a gel. A single-
cell suspension of 1.5 × 104 HMEC1 or BAEC/well
(replicates n = 3) were plated on to the solidified
Matrigel using 100 µL media/well and incubated with
PBS, or iodixanol density gradient separated sEVs (0.3
× 109 vesicles) isolated from the PrCa cells (PC3-
shCtrl, -shβ5, -shβ6, C4-2B-Mock and -αvβ6) and
incubated for 5 h for HMEC1 or 8 h for BAEC at
37ºC. The endothelial tubes formed were examined
after 5 h for HMEC1 or 8 h for BAEC using a light
microscope and images were captured in different
fields of view (n = 6). Using the ImageJ Angiogenesis
Analyser Plugin, the photomicrographs were analysed
and quantified for nodes, junctions and tubules
formed.

Human tissue specimens

All formalin-fixed and paraffin-embedded human tissue
specimens used in this study were de-identified and pro-
cessed in accordance with IRB approved protocols. Seven
metastatic prostate adenocarcinoma tissue samples
(Gleason Score [GS] 8 [n = 1], GS 9 [n = 2], GS 10 [n =
4]) were obtained from the Department of Pathology at
Thomas Jefferson University (Philadelphia, PA).
Additionally, nine human malignant prostate adenocarci-
nomas tissue samples (GS 7 [n = 5], GS 8 [n = 2], GS 9 [n =
1] and GS 10 [n = 1]) were obtained from the Cooperative
Human Tissue Network (CHTN) western division at
Vanderbilt University Medical Centre, TN, or Mid-
Atlantic division at University of Virginia, VA. The
CHTN is funded by the National Cancer Institute and
other investigators may have received specimens from the
same subjects.

Immunohistochemistry (IHC)

Following a standardised protocol, immunohistochem-
istry (IHC) was performed on the PrCa tissue sections.
The tissue sections were baked at 60°C for 1 h, followed
by deparaffinisation with xylene (3 min × 2), rehydra-
tion with graded alcohols (100%, 90%, 70%, 50% and
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30% for 3 min each) followed by deionised water (3
min × 2). The sections were incubated with 3% H2O2

solution for quenching endogenous peroxidase activity,
followed by antigen retrieval by pepsin (0.5% in 5 mM
HCl) digestion for αvβ6 integrin for 15 min at 37°C or
proteinase K (20 μg/mL in Tris-EDTA buffer, pH 8.0)
digestion for von Willebrand factor (vWF) for 15 min
at 37°C or sodium citrate buffer (10 mM sodium
citrate, 0.05% Tween 20, pH 6.0) for CD31 for 15
min at 95°C. Sections were washed once with deionised
water for 5 min, followed by PBS wash for 5 min and
blocked with 5% goat serum or horse serum made in
PBS with 0.1% Tween 20 (PBST) for 2 h. The tissue
sections were incubated overnight at 4°C with an Ab to
αvβ6 integrin (6.2A1, 2 μg/mL) or isotype control
mouse-IgG (mIgG, 2 μg/mL), vWF (Dako A0082, 3
μg/mL) or isotype control rabbit-IgG (rbIgG, 3 μg/
mL) and CD31 (ab28364, 1 μg/mL) or isotype control
rabbit-IgG (rbIgG, 1 μg/mL). The following day, the
tissue sections were washed with PBST (5 min × 2)
followed by PBS (5 min) and incubated with secondary
Ab in PBST (biotinylated horse anti-mouse-IgG [BA-
2000, Vector Laboratories, Burlingame, CA] or bioti-
nylated goat anti-rabbit-IgG [BA-1000, Vector
Laboratories, Burlingame, CA], 10 μg/mL) for 30 min
at room temperature. The unbound secondary Ab was
washed with PBST (5 min × 2), followed by PBS (5
min). The tissue sections were incubated with strepta-
vidin horseradish peroxidase (SAP) in PBS (SA-5004,
Vector Laboratories, Burlingame, CA, 5 μg/mL) for 30
min at room temperature. The unbound SAP was
washed with PBST (5 min × 2), followed by PBS (5
min). The colour was developed by adding substrate
chromogen, 3,3′-diaminobenzidine solution (DAB per-
oxidase substrate kit, SK-4100, Vector Laboratories,
Burlingame, CA). A brown precipitate indicated posi-
tive expression. The DAB reaction was stopped by
rinsing the tissue sections in deionised water. The sec-
tions were counterstained with Harris haematoxylin,
dehydrated in graded ethanol (30%, 50%, 70%, 90%
and 100% for 5 min each) followed by xylene (5 min
× 2), dried and finally mounted with Permount (Vector
Laboratories, Burlingame, CA).

At least two members of the team reviewed each
tumour section. The immunostaining intensity of αvβ6
integrin in PrCa epithelial cells or vWF, CD31 in
endothelial cells within each specimen was evaluated
by the pathologist and given a score. The scoring of
immunostaining intensity is summarised and grouped
as follows: negative, 0; negligible, 1+; weak, 2+ and
strong, 3+. For a given intensity, the percentage of
PrCa cells positive for αvβ6 integrin within a given

specimen was also scored on a scale of 0–100: 0%, no
cell staining; 100%, all cells positively stained.

Statistical analysis

For statistical analysis, Student’s t-test is used for com-
paring two group means. One-way ANOVA with post
hoc Fisher’s LSD test are applied to compare the means
of three or more independent groups. A two-sided P
value of ≤ 0.05 is considered statistically significant.
Software GraphPad Prism 7 is used for data analysis.

Results

Characterisation of prostate cancer cell-derived
αvβ6-positive LEVs and αvβ6-positive sEVs

EV subtypes include LEVs that are 100–1000 nm in
size and sEVs that are < 200 nm size [11]. These EV
subtypes can be isolated by flotation into iodixanol
density gradients on the basis of different buoyant
densities and sizes [11]. We have previously shown
that αvβ6 integrin is enriched in sEVs derived from
PrCa cells. We now also show the expression of αvβ6
integrin in LEVs. We utilised serum-starved condi-
tioned media from PrCa cells (PC3 cells) endogenously
expressing αvβ6 integrin for isolation of LEVs by dif-
ferential centrifugation (10,000 g). LEVs were then
floated on an iodixanol density gradient and 10 frac-
tions were collected from top to bottom. Our IB ana-
lysis shows that β6 and tetraspanins (CD63 and CD81)
are expressed in iodixanol density gradient fractions
(density range: 1.099–1.169 g/mL) from PC3-derived
LEV samples (Figure 1a). A previous study has also
shown expression of tetraspanins like CD81 in LEVs at
varying levels [41], although in one study, it was shown
that expression of CD81 in LEVs is lower than
sEVs [42].

After removal of LEVs, sEVs were isolated by high-
speed differential ultracentrifugation (100,000 g) fol-
lowed by flotation on an iodixanol density gradient.
We analyse the levels of the β6 and sEV markers
(CD63, CD81 and CD9) in each iodixanol density
gradient fraction from the PC3-derived sEV samples
and observed that their levels are the highest in the
1.123 g/mL density fraction (Figure 1b). None of the 10
iodixanol density gradient fractions shows the expres-
sion of Calnexin (CANX), an endoplasmic reticulum
(ER) marker known to be absent in sEVs which is
instead detected in PC3-total cell lysates (PC3-TCL)
(Figure 1b). Our proteomic analysis of PC3 sEVs [19]
had shown that several aberrations follow down-
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Figure 1. Characterisation of prostate cancer cell-derived αvβ6-positive LEVs and αvβ6-positive sEVs.
(a) Iodixanol density gradient analysis of PC3 cell-derived large extracellular vesicles (PC3 LEVs) was performed as described in the Materials and
methods. Expression of β6 integrin subunit, CD63 and CD81 analysed by immunoblotting (IB) (non-reducing conditions) in LEV lysates of 10
consecutive iodixanol density gradient fractions is shown. (b) Iodixanol density gradient analysis of PC3 cell-derived small extracellular vesicles (PC3
sEVs) was performed as described in the Materials and methods. IB analysis for expression of β6 integrin subunit, CD63 and CD81 (non-reducing
conditions) and CD9 (reducing conditions) in sEV lysates of 10 consecutive iodixanol density gradient fractions is shown. IB of CANX (reducing
conditions) in PC3-total cell lysates (PC3-TCL) and sEV lysates of 10 consecutive fractions is shown. Different gels were used to separate samples
under reducing or non- reducing conditions
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regulation of αvβ6 integrin and indicated that these
aberrant sEVs might impact endothelial cell behaviour
[19]. Given our results showing that the levels of αvβ6
integrin and sEV markers are the highest in the 1.123
g/mL fraction, we used this fraction [11] to narrow
down the subset that carries the functional αvβ6 integ-
rin and its downstream effectors.

Prostate cancer cell-derived small extracellular
vesicular-αvβ6 integrin is transferred to
endothelial cells

Endothelial cells are an important component of the
prostate TME and their role in increased angiogenesis
has been associated with prostate tumour progression
[2,3]. We have previously shown that the αvβ6 integrin
is packaged in sEVs shed by PrCa cells, transferred via
sEVs to recipient prostate cells and monocytes, and is
able to functionally modulate these cells [17,19]. We
hypothesised that transfer of PrCa cell-derived sEVs
that express αvβ6 integrin (αvβ6-positive sEVs) to β6-
negative endothelial cells might promote the angio-
genic potential of these recipient endothelial cells.

To study PrCa cell-derived sEV-mediated trans-
fer of αvβ6 integrin to endothelial cells, we selected
human microvascular endothelial cells (HMEC1)
and bovine aortic endothelial cells (BAEC) that do
not express β6. To investigate whether αvβ6 integrin
is transferred to endothelial cells via iodixanol den-
sity gradient isolated sEVs, we first collected the
100,000 g pellet and characterised it by NTA and
IB (Figure 2a,b). Then we isolated them using iodix-
anol density gradient as described in the previous
section. Our NTA shows that the sEVs from PC3
cells have a diameter of < 150 nm, confirming their
vesicular subtype identification as sEVs (Figure 2a).
The 100,000 g pellet is also characterised for expres-
sion of sEV-specific markers by IB; sEVs from PC3
cells show enrichment of β6 and sEV markers
CD63, CD81, ALIX and TSG101 compared to TCL
(Figure 2b). Furthermore, the sEVs do not express
CANX, an ER marker known to be present in TCL
(Figure 2b). Incubation of BAEC and HMEC1 with
PBS or αvβ6-positive sEVs from PC3 cells for dif-
ferent time points (4, 8 and 16 h for BAEC and 2, 4,
8, 16 and 24 h for HMEC1) shows that β6 mRNA
expression is not induced in endothelial cells
(Figure 2c,d). To test whether αvβ6 integrin is
transferred as protein via sEVs to endothelial cells,
we incubated HMEC1 and BAEC with PBS or
100,000 g isolated αvβ6-positive sEVs from PC3
cells for different time periods [6, 24 h for
HMEC1 (Figure 2e,f) and 4, 8, 16 h for BAEC

(Fig. S1)]. We observe that a low level of β6 integrin
subunit is transferred in 6 h while a more robust
amount is transferred in 24 h in HMEC1 (Figure
2e). While in BAEC, a low level of β6 integrin
subunit is transferred in as few as 4 h, a more
robust amount is transferred in 8 h (Fig. S1).
Furthermore, the results show that after sEV incu-
bation, acid wash (which removes non-specifically
trapped proteins from the cell surface) of recipient
HMEC1 does not reduce β6 levels transferred to
HMEC1, indicating an efficient microvascular
endothelial cell internalisation of the transferred
β6 integrin subunit (Figure 2e). These results were
confirmed using iodixanol density gradient isolated
αvβ6-positive sEVs and show that incubation of
HMEC1 with the β6-positive sEV fraction, corre-
sponding to 1.123 g/mL density, exhibits a very
efficient transfer of β6 integrin subunit to HMEC1
in as little as 6 h (Figure 2f). Since the αvβ6 integrin
is a cell-surface receptor, we further evaluated de
novo cell-surface expression of αvβ6 integrin after
transfer via sEVs into HMEC1. Using FACS ana-
lyses, we show that upon incubation with PC3 sEVs,
the αvβ6 integrin is transferred to HMEC1 and
detected on the cell surface (Figure 2g). Overall,
our data show that de novo expression of αvβ6
integrin on the plasma membrane of endothelial
cells can be attributed to efficient protein transfer
via PC3 sEVs.

αvβ6 integrin in sEVs does not affect expression of
sEV markers

To more specifically evaluate the functional impli-
cations of αvβ6-positive sEVs on endothelial cells,
we utilised PC3 cells stably transfected with control
shRNA (PC3-shCtrl), shRNA to β6 integrin subunit
(PC3-shβ6) or shRNA to β5 integrin subunit (PC3-
shβ5) and C4-2B PrCa cells transfected with either
empty vector (C4-2B-Mock) or β6 cDNA-expression
vector (C4-2B-αvβ6). We isolated sEVs from PC3-
shCtrl, -shβ6 and -shβ5 cells through high-speed
differential ultracentrifugation (100,000 g) and
further removed contaminants by iodixanol density
gradient centrifugation. The sEV fractions corre-
sponding to a density of 1.12 g/mL were charac-
terised for size distribution by NTA. The majority
of the PC3-shCtrl sEVs, -shβ6 sEVs and -shβ5 sEVs
are < 150 nm in size (Figure 3a). The average yield
of sEVs from PC3 cells is ~2.5 × 103 sEVs/cell/48 h.
Furthermore, NTA data from C4-2B-Mock sEVs
and -αvβ6 sEVs also show that the majority of the
sEVs exhibit a particle size of < 150 nm (Figure 3b).
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The average yield of sEVs from C4-2B cells is ~1.5
× 103 sEVs/cell/48 h. IB analysis of the TCL and the
sEVs from PC3-shβ5, -shCtrl and -shβ6 cells shows
similar levels of β6 integrin subunit in -shβ5 sEVs
and -shCtrl sEVs whereas its expression is signifi-
cantly reduced in the sEVs from -shβ6 cells (Figure
3c). Expression of sEV markers (CD63, CD81 and
TSG101) is enriched for sEVs in comparison to
respective TCL (Figure 3c). IB analysis of TCL and
sEVs from C4-2B-Mock and -αvβ6 cells shows the
expression of β6 only in the TCL and sEVs from
C4-2B-αvβ6 cells. Expression of sEV markers
(ALIX, TSG101 and CD9) is enriched for both C4-
2B-Mock sEVs and -αvβ6 sEVs in comparison to

their respective TCL (Figure 3d). Overall, our data
show that the αvβ6 integrin does not alter expres-
sion of sEV-specific markers in sEVs.

αvβ6 integrin in prostate cancer sEVs increases
motility and tube forming potential of endothelial
cells

Increased proliferation, motility and tube formation by
endothelial cells are considered to be hallmarks of
angiogenesis [43]. To test the impact of αvβ6-positive
sEVs on HMEC1 viability, we incubated HMEC1 with
PBS or sEVs from PC3-shCtrl, -shβ6, -shβ5 (data not

Figure 2. Transfer of prostate cancer cell-derived αvβ6-positive sEVs to microvascular and aortic endothelial cells.
(a) Nanoparticle tracking analysis (NTA) of PC3 sEVs. (b) Left panel, IB analysis for expression of β6 integrin subunit, CD63, CD81 and CANX (non-
reducing conditions) in TCL and sEV lysates from PC3 cells; right panel, expression of ALIX and TSG101 (reducing conditions) in TCL and sEV lysates
from PC3 cells. (c) Quantification of β6 mRNA expression by q-PCR in PC3 cells (positive control for β6 mRNA expression) and BAEC treated with
αvβ6-positive PC3 sEVs for 4, 8 and 16 h or PBS vehicle control for 16 h. The GAPDH levels were comparable in PC3 and BAEC. The β6 mRNA
expression is normalised to GAPDH. (d) Quantification of β6 mRNA expression by q-PCR in PC3 cells and HMEC1 treated with αvβ6-positive PC3 sEVs
for 2, 4, 8, 16 and 24 h or PBS vehicle control for 24 h. The GAPDH levels were comparable in PC3 and HMEC1. The β6 mRNA expression is
normalised to GAPDH. (e) HMEC1 plated (2 × 105) in six-well plates were incubated with PBS or PC3 sEVs for the indicated time lengths (6 and 24 h)
followed by IB analysis of TCL under non-reducing conditions for expression of β6 and CANX (loading control). (f) HMEC1 plated (2 × 105) in six-well
plates were incubated with PBS, or iodixanol density gradient separated PC3 sEVs for indicated time lengths (6, 16 and 24 h) followed by IB analysis
for expression of β6 integrin subunit and CANX (loading control) in TCL under non-reducing conditions. (g) FACS analysis of cell-surface expression
of αvβ6 integrin on HMEC1 incubated with PBS or PC3 sEVs for 18 h. The shift in fluorescence intensity for positive control PC3 cells (red line) or
HMEC1 incubated with PC3 sEVs (blue line) show cell-surface expression of αvβ6 integrin compared to the isotype control (green line) and HMEC1
incubated with PBS-only (orange line). Different gels were used to separate samples under reducing or non- reducing conditions.
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shown) and C4-2B-Mock, -αvβ6 cells and performed
trypan blue dye exclusion assays (Fig. S2). Our analysis
shows that relative to incubation with PBS, there is no

significant change in the viability of HMEC1 upon
incubation with respective sEVs (Fig. S2). We also
investigated the impact of β6 or β5 integrin subunit

Figure 3. Characterisation of prostate cancer cell-derived sEVs upon knockdown or expression of β6 integrin subunit in prostate cancer cells.
(a) NTA of the sEV fraction (density 1.12 g/mL) from the iodixanol density gradient of PC3-shCtrl, PC3-shβ6 and PC3-shβ5 cell-derived sEVs. (b) NTA
analysis of C4-2B-Mock or C4-2B-αvβ6-derived sEVs. (c) IB analysis for expression of β6 integrin subunit, CD63, CD81, (non-reducing conditions) and
TSG101 (reducing conditions) in TCL and sEV lysates from PC3-shβ5, -shCtrl and -shβ6 cells. (d) IB analysis for expression of β6 integrin subunit,
CANX (non-reducing conditions) and ALIX, TSG101, CD9 and CANX (reducing conditions) in TCL and sEV lysates from C4-2B-Mock or -αvβ6 cells.
Different gels were used to separate samples under reducing or non- reducing conditions.
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knockdown on the viability of PrCa cells. Our analysis
shows that there is no significant change in the viability
of PC3-shβ6 or PC3-shβ5 cells compared to PC3-
shCtrl cells (data not shown).

To further evaluate the role of αvβ6-positive sEVs on
the motility of HMEC1, we performed Boyden chamber
assays. In comparison to incubation with PBS, there is a
significant increase (P < 0.05) in the motility of HMEC1
upon incubation with PC3-shCtrl sEVs (Fig. S3A).
Compared to incubation with PC3-shCtrl sEVs, motility
of HMEC1 is significantly decreased (P < 0.0005) upon
incubation with PC3-shβ6 sEVs (Fig. S3A) and not sig-
nificantly altered upon incubation with PC3-shβ5 sEVs
(Fig. S3A). Furthermore, there is a significant increase in
motility of HMEC1 upon incubation with C4-2B-αvβ6
sEVs compared to both incubation with PBS (P < 0.005)
or C4-2B-Mock sEVs (P < 0.05) (Fig. S3B). Finally, we
investigated the impact of PC3 sEVs on the motility of
HMEC1 in the absence of chemotaxis. We demonstrate
that even in the absence of chemotaxis, there is a signifi-
cant increase in motility of HMEC1 upon incubation
with PC3 sEVs compared to incubation with PBS (P <
0.005) (Fig. S3C). Overall, the results from our study
show that αvβ6-positive sEVs significantly increase the
motility of HMEC1.

Angiogenesis is known to be a vital process associated
with PrCa progression [2]; however, the key molecular
mechanisms that regulate PrCa cell-mediated angiogen-
esis have been elusive. Owing to the significant impact
that αvβ6-positive sEVs have on the motility of micro-
vascular endothelial cells, we further evaluated the impli-
cations of αvβ6-positive sEVs on tube forming potential
of endothelial cells. We performed tube formation assays
which provided a rapid and quantitative method for
assessing the angiogenic potential of HMEC1 and
BAEC plated on Matrigel and incubated with PBS or
sEVs from PC3-shCtrl, -shβ6, -shβ5 and C4-2B-Mock,
-αvβ6 cells. The phase-contrast microscopy images from
these tube formation assays show extensive branching
and tube formation of HMEC1 upon incubation with
PC3-shCtrl sEVs (Figure 4, upper panel) compared to
incubation with the PBS-only control. On the other hand,
branching and tube formation is abrogated upon incuba-
tion with PC3-shβ6 sEVs (Figure 4, upper panel) and
mildly reduced upon incubation with PC3-shβ5 sEVs
(Figure 4, upper panel). The phase-contrast microscopy
images were further quantified for the number of nodes,
junctions and tubules formed in each sEV incubation
group. Compared to incubation with PBS, there is a
significant increase in the number of nodes (P < 0.05),
junctions (P < 0.05) and tubules (P < 0.05) formed upon
incubation with PC3-shCtrl sEVs (Figure 4, lower panel).
Compared to incubation with PC3-shCtrl sEVs, there is a

highly significant reduction in the number of nodes (P <
0.0005), junctions (P < 0.0005) and tubules (P < 0.0005)
formed upon incubation with PC3-shβ6 sEVs (Figure 4,
lower panel). In comparison to incubation with PBS,
there is no impact of PC3-shβ5 sEVs on formation of
nodes, junctions and tubules (Figure 4, lower panel). A
significant reduction in the number of nodes (P < 0.005),
junctions (P < 0.005) and tubules (P < 0.05) formed by
HMEC1 is observed upon incubation with PC3-shβ5
sEVs compared to incubation with PC3-shCtrl sEVs
(Figure 4, lower panel). A significant decrease in forma-
tion of nodes (P < 0.05), junctions (P < 0.05) and tubules
(P < 0.005) formed by HMEC1 is observed upon incuba-
tion with PC3-shβ6 sEVs compared to incubation with
PC3-shβ5 sEVs (Figure 4, lower panel). Furthermore, the
phase-contrast microscopy images show extensive
branching and tube formation of HMEC1 upon incuba-
tion with C42B-αvβ6 sEVs compared to incubation with
PBS controls (Figure 5a, upper panel). The quantification
of phase-contrast microscopy images for number of
nodes, junctions and tubules formed in each incubation
group also shows that there is a highly significant increase
in nodes (P < 0.0005), junctions (P < 0.0005) and tubules
(P < 0.005) formation by HMEC1 upon incubation with
C4-2B-αvβ6 sEVs compared to incubation with PBS
(Figure 5a, lower panel). In comparison to incubation
with C4-2B-Mock sEVs, there is a significant increase in
nodes (P < 0.005), junctions (P < 0.05) and tubules (P <
0.05) formation by HMEC1 upon incubation with C4-
2B-αvβ6 sEVs (Figure 5a, lower panel).

To test whether the impact of αvβ6-positive sEVs is not
limited only to microvascular endothelial cells, we
included another endothelial cell type, bovine aortic
endothelial cells (BAEC). Compared to incubation with
PBS, there is a significant increase in nodes (P < 0.005),
junctions (P < 0.05) and tubules (P < 0.005) formed by
BAEC upon incubation with C4-2B-αvβ6 sEVs (Figure
5b). In addition, compared to incubation with C4-2B-
Mock sEVs, there is a significant increase in nodes (P <
0.005), junctions (P < 0.005) and tubules (P < 0.05) formed
by BAEC upon incubation with C4-2B-αvβ6 sEVs (Figure
5b). Overall, the results from our study show that αvβ6-
positive sEVs support the tube formation capability of
endothelial cells.

Uptake of prostate cancer cell-derived αvβ6-
positive sEVs regulate angiogenic signalling in
microvascular endothelial cells

We have previously demonstrated that the αvβ6 integ-
rin negatively regulates protein levels of the signalling
molecule STAT1 both in PC3 cells and in the sEVs
derived from them [19]. Since elevated STAT1 is
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known to be a negative regulator of angiogenesis
[44,45], we hypothesised that the transfer of αvβ6-
positive sEVs to HMEC1 might negatively regulate

expression and activation of STAT1 protein in
HMEC1. To test this hypothesis, we utilised PrCa
cells harbouring CRISPR/Cas9-mediated down-

Figure 4. Down-regulation of αvβ6 integrin in prostate cancer sEVsmodulates the angiogenic potential ofmicrovascular endothelial cells.
HMEC1 were seeded (1.5 × 104, replicates n = 3) on 96-well plates coated with Matrigel and incubated with PBS or iodixanol density gradient
separated sEVs (0.3 × 109 vesicles) from PC3-shCtrl, -shβ6 or -shβ5 cells. The upper panel shows representative micrographs (n = 6 different fields
for each group) of tubes formed during tube formation assays on HMEC1 after 5 h incubation with respective sEV type. The lower panel shows dot
plots representing the number of nodes, junctions and tubules formed by HMEC1 in each sEV incubation group relative to PBS (n = 6 different
fields for each group). Values are reported as mean ± SEM, *P < 0.05; **P < 0.005; ***P < 0.0005 determined by one-way ANOVA with post hoc
Fisher’s LSD test.
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Figure 5. Expression of αvβ6 integrin in prostate cancer sEVs modulates the tube forming potential of endothelial cells.
(a) HMEC1 were seeded (1.5 × 104, replicates n = 3) on 96-well plates coated with Matrigel and incubated with PBS or iodixanol density
gradient separated sEVs (0.3 × 109 vesicles) from C4-2B-Mock or -αvβ6 cells. The upper panel shows representative micrographs (n = 6
different fields for each group) of tubes formed by HMEC1 after 5 h incubation with respective sEV type. The lower panel shows dot
plots representing the number of nodes, junctions and tubules formed by HMEC1 in each sEV incubation group relative to PBS (n = 6
different fields for each group). (b) BAEC were seeded (1.5 × 104, replicates n = 3) on 96-well plates coated with Matrigel and incubated
with PBS or iodixanol density gradient separated sEVs (0.3 × 109 vesicles) from C4-2B-Mock or -αvβ6 cells. Dot plots represent the
number of nodes, junctions and tubules formed by BAEC 8 h after incubation with each sEV group relative to PBS (n = 6 different fields
for each group). Values are reported as mean ± SEM, *P < 0.05; **P < 0.005; ***P < 0.0005 determined by one-way ANOVA with post
hoc Fisher’s LSD test.
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regulation of β6 integrin subunit (PC3-β6 KO-5 and
PC3-β6 KO-7) or CRISPR/Cas9 construct transfected
cells that endogenously express β6 integrin subunit
(PC3-WT). We isolated sEVs from PC3-WT, -β6 KO-
5 and -β6 KO-7 cells through high-speed differential
ultracentrifugation (100,000 g) and characterised them
for size distribution by NTA. The majority of PC3-WT,
-β6 KO-5 and -β6 KO-7 sEVs are < 150 nm in size
(Figure 6a). IB analysis of the sEVs and respective TCL
from PC3-WT, -β6 KO-5 and -β6 KO-7 cells shows
expression of β6 integrin subunit only in TCL and
sEVs from PC3-WT cells (Figure 6b). CANX is used
as the loading control for TCL and known to be absent
in sEVs (Figure 6b). As expected, the levels of CD63,
CD81, CD9 and TSG101 are highly enriched in the
sEV preparations as compared to TCL (Figure 6b).
The absence of CANX in the sEV preparations con-
firms the removal of contaminants in our isolated sEVs
(Figure 6b). Upon incubation with sEVs from αvβ6
integrin expressing cells (PC3-WT), by IB analysis we
demonstrate the efficient uptake of β6 in HMEC1,
while β6 is not present in HMEC1 incubated with
sEVs derived from β6-negative cells (PC3-β6 KO-5
and PC3-β6 KO-7) (Figure 6c). Further evaluation of
αvβ6-positive sEV-mediated impact on HMEC1 signal-
ling shows that incubation of HMEC1 with sEVs from
PC3-β6 KO-5 or -β6 KO-7 cells results in increased
expression of pSTAT1(Y701) in comparison with

HMEC1 incubated with sEVs from PC3-WT cells or
PBS (Figure 6d).

We further corroborated our findings with PC3-shCtrl,
-shβ6 and -shβ5 sEVs by testing their impact on angiogenic
pathways in recipientHMEC1. Incubation ofHMEC1with
PC3-shβ6 sEVs results in the up-regulation of pSTAT1
(Y701) levels compared to incubation with PBS or PC3-
shCtrl and -shβ5 sEVs (Figure 7a). Similar to the results
with PC3 sEVs, incubation of HMEC1 with C4-2B-αvβ6
sEVs results in lower pSTAT1(Y701) levels compared to
incubation with PBS or C4-2B-Mock sEVs (Fig. S4).

Since αvβ6 integrin is known to regulate survivin
expression in PrCa cells [34] and survivin is known to
promote angiogenesis [46–48], we also investigated
changes in the levels of survivin in HMEC1 upon incuba-
tion with αvβ6-positive sEVs. Our data demonstrate that
the expression of survivin protein is reduced in HMEC1
upon incubation with PC3-shβ6 sEVs compared to incu-
bation with PC3-shCtrl sEVs (Figure 7b). This led us to
investigate whether the BIRC5 (survivin) mRNA expres-
sion is altered in HMEC1 upon treatment with PC3 sEVs.
The qPCR data show no significant differences in survivin
mRNA levels in HMEC1 upon incubation with sEVs from
PC3-shCtrl, -shβ5 or -shβ6 (data not shown). We also
characterised PC3 sEVs for expression of survivin by IB.
In IB, the sEVs from PC3 cells show enrichment of survi-
vin, β5 integrin subunit (Figure 7c, right panel) along with
β6 integrin subunit, sEV markers CD63, CD81 (Figure 7c,

Figure 6. Transfer of αvβ6-positive sEVs derived from CRISPR/Cas9 genetically modified prostate cancer cells to microvascular
endothelial cells regulates STAT1 signalling.
(a) NTA of PC3-WT, PC3-β6 KO-5 and PC3-β6 KO-7 cell-derived sEVs. (b) IB analysis for expression of β6 integrin subunit, CD63, CD81 (non-reducing
conditions), TSG101, CD9 and CANX (reducing conditions) in TCL and sEV lysates from PC3-WT, PC3-β6 KO-5 or PC3-β6 KO-7 cells harbouring
CRISPR/Cas9-mediated down-regulation of β6 integrin subunit. (c) HMEC1 were plated (2 × 105) in six-well plates and incubated with sEVs derived
from PC3-WT, PC3-β6 KO-5 or PC3-β6 KO-7 cells for 18 h and after incubation, the TCL were analysed by IB under non-reducing conditions for
expression of β6 integrin subunit and CANX (loading control). (d) HMEC1 plated (2 × 105) in six-well plates were incubated with sEVs derived from
PC3-WT, PC3-β6 KO-5 or PC3-β6 KO-7 for 18 h and after incubation, the TCL were analysed by IB under reducing conditions for expression of
pSTAT1(Y701), STAT1 and ACTIN (loading control). Different gels were used to separate samples under reducing or non- reducing conditions
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left panel), ALIX, TSG101 andCD9 (Figure 7c, right panel)
compared to TCL (Figure 7c). sEVs did not express CANX
(Figure 7c). We also observe the expression of survivin
along with sEV markers (ALIX, TSG101, CD9, CD63 and
CD81) in iodixanol density gradient fractions from PC3-
derived sEV samples (Figure 7d). The ER marker CANX
known to be absent in sEVs is not expressed in any of the 10
fractions (Figure 7d). Interestingly, the expression of survi-
vin remains unaltered in PC3-shβ6 TCL compared to PC3-
shCtrl TCL, whereas it is significantly reduced in sEVs
from PC3-shβ6 cells compared to sEVs from PC3-shCtrl
cells (Figure 7e).

These findings suggest that incubation of HMEC1
with PrCa cell-derived sEVs harbouring down-regula-
tion of β6 integrin subunit and associated cargo may
increase STAT1 signalling or decrease survivin expres-
sion to modulate the angiogenic potential of HMEC1.

αvβ6 integrin is expressed in blood vessels found in
prostate cancer patient tissues

Based on our observation that αvβ6 integrin is transferred
via PC3 sEVs to endothelial cells, we hypothesised that

αvβ6 integrin might be expressed in blood vessels in
human PrCa tissue specimens. To test this hypothesis,
we performed IHC on serial sections from PrCa tissue
specimens to evaluate the expression of αvβ6 integrin in
blood vessels. The αvβ6 integrin is expressed in the
epithelial compartment in 11 of 16 PrCa cases evaluated.
Among the αvβ6 integrin-positive PrCa cases, the αvβ6
integrin is expressed in up to 75% of PrCa cells (3+
intensity). vWF or CD31, a marker of blood vessels, is
expressed (3+ intensity) in blood vessels. Using vWF and
CD31, we show that in three of 16 PrCa cases, αvβ6
integrin is detected in endothelial cells (Figure 8). All
these three cases have a Gleason score 10 diagnosis. The
cases diagnosed as Gleason scores 7, 8, 9 do not show
expression of αvβ6 integrin in blood vessels. In 5 of 16
PrCa cases, both epithelial and endothelial cells are nega-
tive for expression of αvβ6 integrin (Fig. S5A). In 8 of 16
PrCa cases, αvβ6 integrin is expressed only in epithelial
cells but not in endothelial cells (Fig. S5B). In conclusion,
this finding that the αvβ6 integrin is in endothelial cells in
PrCa patient samples is novel since αvβ6 integrin was
previously known to be either expressed by cells of
epithelial origin during conditions of injury, wound

Figure 7. Transfer of prostate cancer cell-derived αvβ6-positive sEVs to microvascular endothelial cells regulates survivin levels.
(a) HMEC1were plated (2× 105) in six-well plates and incubatedwith PBS or sEVs derived fromPC3-shCtrl, -shβ6 or -shβ5 cells for 18 h and after incubation, the
TCLwere analysed by IB under reducing conditions for expression of pSTAT1(Y701), STAT1 and ACTIN (loading control). (b) HMEC1were plated (2 × 105) in six-
well plates and incubated with PBS or sEVs derived from PC3-shCtrl, -shβ6 or -shβ5 cells for 18 h and after incubation, the TCL were analysed by IB under
reducing conditions for expression of survivin and ACTIN (loading control). (c) Left panel, IB analysis for expression of β6 integrin subunit, CD63, CD81 and
CANX (non-reducing conditions); right panel, IB analysis for expression of β5 integrin subunit, ALIX, TSG101, CD9, survivin and CANX (reducing conditions) in
TCL and sEV lysates from PC3 cells. (d) Iodixanol density gradient analysis of PC3 sEVs was performed as described in theMaterials andmethods. Expression of
ALIX, TSG101, survivin, CANX (reducing conditions), CD63 and CD81 (non-reducing conditions) analysed by IB of 10 consecutive iodixanol density gradient
fractions is shown. (e) IB analysis for expression of ALIX and survivin (reducing conditions) in TCL and sEV lysates from PC3-shCtrl and -shβ6 cells. Different gels
were used to separate samples under reducing or non- reducing conditions.
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healing and cancer [49,50] or de novo induced in
endothelial cells under conditions of infection and injury
[22–24].

Discussion

This is the first study that explores the functional impact
of PrCa cell-derived sEVs that express αvβ6 integrin
(αvβ6-positive sEVs) on endothelial cells in the TME.
The present study demonstrates for the first time that
the αvβ6 integrin protein is transferred by αvβ6-positive
sEVs to endothelial cells and is functionally active in the
recipient endothelial cells. Furthermore, this study also
demonstrates that the αvβ6-positive sEVs promote
microvascular endothelial cell motility and significantly
increase tube formation of endothelial cells. Overall, the
αvβ6-positive sEVs impact mechanistically endothelial
cell functions.

We show for the first time that the αvβ6 integrin is
also expressed in PC3 LEVs; however, in this study, our
focus is on sEVs since a prior proteomic analysis of
PC3 sEVs had shown that several aberrations follow
down-regulation of αvβ6 integrin and had indicated
that these aberrant sEVs might influence endothelial
cell behaviour [19].

De novo induction of αvβ6 integrin expression in
endothelial cells under conditions of infection and
injury has been reported [22–24]. In human dermal
microvascular endothelial cells and in tumour-asso-
ciated endothelial cells purified from human breast
carcinomas (B-TEC), oxytocin induces αvβ6 integrin
expression [22]. Among other examples, exposure to
lipopolysaccharide (LPS) enhances expression of αvβ6

integrin in a toll like receptor 4 (TLR)4-dependent
manner in cardiac endothelial cells (CEC) [23].
Similarly, cytomegalovirus (CMV) infection induces
αvβ6 integrin expression in both epithelial and
endothelial cells of pulmonary, uterine and placental
blood vessels at the sites of CMV infection-mediated
injury [24]. Furthermore, αvβ6 integrin expressed on
small vascular tufts during later stages of a healing skin
wound has been assumed to impact remodelling of the
vasculature [51]. In view of these previous studies, and
on the fact that sEVs are known to carry mRNA as
their cargo, we investigated the possibility of PrCa cell-
derived αvβ6-sEVs-mediated β6 mRNA transfer or
induction in HMEC1. We do not detect an increase
of β6 mRNA in endothelial cells upon incubation with
αvβ6-positive sEVs (Figure 2c,d), suggesting that β6
mRNA is neither transferred nor induced in endothe-
lial cells. This finding also excludes the possibility that
cytokines or growth factors in αvβ6-positive sEVs
could be responsible for the induction of β6 integrin
in endothelial cells.

Tumour angiogenesis involves multiple cellular pro-
cesses, including endothelial cell proliferation, migra-
tion, extracellular matrix reorganisation and tube
formation [43]. It is known that inactivation of the
gene encoding for the β6 integrin subunit results in
reduced keratinocyte migration [52]. The αvβ6 integrin
transferred by sEVs could be crucial for the adhesion
and migration of PrCa cells [17]. Similar to these pre-
vious studies, results from our motility assays suggest
that αvβ6 and/or αvβ6-regulated cargo in αvβ6-positive
sEVs drives migration of microvascular endothelial
cells. Here, using in vitro tube formation assays that

Figure 8. Expression of αvβ6 integrin, vWF and CD31 in blood vessels of human prostate cancer tissues.
Serial sections of human PrCa tissues were analysed for IgG (isotype control), αvβ6 integrin, vWF or CD31 expression by immunohistochemistry
(IHC). Representative images of IgG (first panel), αvβ6 integrin (second panel), vWF (third panel) and CD31 (fourth panel) expression from one
(CD31) or two different PrCa cases (a, b) are shown. Green arrowheads highlight the cancer cells that show expression of αvβ6 integrin, yellow
arrowheads highlight the endothelial cells that show expression of αvβ6 integrin and red arrows highlight the endothelial cells that show
expression of vWF or CD31 in blood vessels in serial sections. Scale bar, 100 μm (a); 200 μm (b).
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mimic angiogenesis [53], we present strong evidence
that sEVs, derived from PrCa cells with down-regu-
lated β6 integrin subunit, cause a highly significant
reduction of capillary-like tube formation by endothe-
lial cells (Figs. 4 & 5). In contrast, incubation of
endothelial cells with sEVs from PC3 cells transfected
with shRNA to another αv-binding subunit, β5, only
slightly reduces tube formation, possibly by using the
αvβ6 integrin that remains expressed in PC3-shβ5
sEVs.

We have demonstrated that siRNA-mediated down-
regulation of β6 integrin subunit in PrCa cells results in
increased STAT1 protein levels both in cells and sEVs
derived from them [19]. STAT1 may act as a tumour
suppressor in PrCa [19,54] and has been shown to be a
negative regulator of angiogenesis [44,45]. We observe
that uptake of αvβ6-positive sEVs led to down-regula-
tion of pSTAT1(Y701) levels in microvascular endothe-
lial cells (Figs. 6d & 7a). However, the total STAT1
levels remain unchanged in microvascular endothelial
cells; we, therefore, propose a novel pathway that dif-
fered from the pathway identified in PrCa cells and
their sEVs via our proteomic data [19]. The findings
from this study are suggestive of different αvβ6-
mediated regulatory mechanisms of STAT1 signalling
in cancer cells versus microvascular endothelial cells.
With respect to these STAT1 findings, the αvβ6 integ-
rin is also known to be a major activator of TGF-β1
[24,55–57]. Also, the αvβ6 integrin interacts with TGFβ
receptor II (TβRII) through the β6 cytoplasmic domain
[39]. TGF-β1 plays a critical role in tumour angiogen-
esis [58–60] and the antagonistic effect of TGF-β1 on
STAT1 signalling has previously been shown [61].
Therefore, we speculate that upon transfer from PrCa
cell-derived sEVs to microvascular endothelial cells,
αvβ6 integrin activates TGF-β1 leading to inhibition
of STAT1 signalling and thus increased angiogenesis.

We have previously demonstrated that expression of
αvβ6 integrin in C4-2B and LNCaP PrCa cells results
in an androgen receptor-mediated increased expression
of survivin [34]. We found that survivin is expressed in
PC3 sEVs and its levels are significantly reduced in
PC3-shβ6 sEVs; however, survivin levels are unaltered
in PC3-shβ6 cells compared to PC3-shCtrl cells. This
discrepancy of αvβ6 integrin not regulating survivin in
PC3 cells might be attributed to the absence of andro-
gen receptor in these cells. Survivin has been detected
in sEVs derived from plasma of PrCa patients [62] and
is known to be a critical mediator of angiogenesis [46–
48]. This led us to hypothesise that the uptake of αvβ6-
positive sEVs by microvascular endothelial cells may
increase survivin levels in endothelial cells. We observe
that mRNA levels of survivin are unaltered in

microvascular endothelial cells upon incubation with
αvβ6-positive sEVs, whereas survivin protein levels are
increased. We conclude that survivin protein is trans-
ferred via αvβ6-positive sEVs to microvascular
endothelial cells. We speculate that the lack of αvβ6
integrin in PC3 cells may inhibit the sorting of survivin
in sEVs; this may result in a reduced transfer of survi-
vin via PC3-shβ6 sEVs to microvascular endothelial
cells. Furthermore, the antagonistic effect between
STAT1 and survivin shown in gastric cancer cells and
tissues [63] supports our evidence of an angiogenic
signalling pathway mediated by the uptake of αvβ6-
positive sEVs in microvascular endothelial cells.

In summary, our study demonstrates that by trans-
ferring αvβ6 integrin and/or potential angiogenic car-
goes via sEVs from αvβ6-positive PrCa cells to
recipient endothelial cells, angiogenic programmes are
potently modulated in the recipient cells.
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