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The average background radiation exposure in the United States has nearly doubled over the previous
quarter century, with almost all the increase derived from medical imaging. Nearly 2% of all cancers in
the United States may be attributable to radiation from computerized tomography (CT) scans. Given the
nondiagnostic nature of CT scans that are used in elective knee and hip arthroplasty today, special
consideration should be given to the inherent risk of radiation exposure with routine use of this tech-
nology. Methods to decrease radiation exposure including modulating the settings of the CT machine and
using alternative non-CT-based systems can decrease patient exposure to radiation from CT scans. The
rapid evolution of CT technology in arthroplasty has allowed for expanded clinical applications, the
benefits of which remain controversial.

© 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

The use of computerized tomography (CT) scans has increased
rapidly since its introduction in the 1970s. Its ability to provide 3-
dimensional information is considered by some to be the single
most important advance in diagnostic radiology [1]. Within the
field of orthopedic surgery, CT scans may be utilized for diagnostic
evaluation, preoperative planning, intraoperative assessment, and
postoperative evaluations. Compared with other commonly used
imaging modalities, including plain radiographs and magnetic
resonance imaging (MRI), CT scans expose patients to the greatest
amount of radiation [2]. This radiation comes with a set of risks. It is
important for orthopedic surgeons to understand not only how CT
scans are frequently used in musculoskeletal care of adults but also
the potential harm that its radiation can cause and the potential
alternative options.

First, we must understand how radiation is quantified. There
are 3 primary measures to consider: the absorbed dose, the
effective dose (ED), and the CT dose index (CTDI) [1]. The
absorbed dose represents the energy absorbed per unit of mass,
measured in  milligrays (mGy). The ED represents
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nonhomogenous dose distributions, that is, the body region-
specific dose sensitivities, and is designed to be proportional to
a generic estimate of the overall harm to the patient caused by
the radiation exposure [1]. The ED, typically measured in milli-
sieverts (mSv), allows for direct comparison among different
imaging modalities and is the key metric used in quantifying
radiation exposure [2]. The ED is a rough estimate that can vary
by a factor of 10 or more depending on the type of CT exami-
nation, variations in patient size, the CT system’s operating
technique protocols between institutions, and the limitations of
dose measurement and calculation methods [3]. CTDI is useful
for quality control but is not directly related to the organ dose or
risk [4].

Risks from radiation exposure

Energy from radiation can knock electrons out of their orbits,
leading to the creation of ions, such as hydroxyl radicals, which can
interact with DNA and cause double-stranded breaks or base
damage [1]. Additionally, radiation can ionize DNA directly. While
most radiation-induced damage to a cell is rapidly repaired, mis-
repair has the potential to lead to point mutations, chromosomal
translocations, and gene fusions, each of which has the potential to
induce cancer [1].

Much of our knowledge regarding the relationship between
radiation exposure and cancer comes from studies looking at the
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effect of the atomic bombs dropped on Japan in 1945 [5]. This
large cohort provides a heterogenous population in terms of age
range and medical comorbidities with long-term follow-up.
Overall, there was an increased risk of cancer in the group sub-
jected to low-dose radiation, ranging from 5 to 150 mSv, with over
50% of the exposed individuals receiving less than 50 mSv of ra-
diation [1,6].

In a multinational retrospective review of workers in the nuclear
industry who were exposed to 5 to 150 mSv, there was an excess
relative risk [7] of 0.97 per Sv for all cancers other than leukemia. In
radiation doses of 100 mSy, the relative risk of developing solid
cancers and leukemia excluding chronic lymphocytic leukemia was
110 and 1.19, respectively [8]. The Radiation Effects Research
Foundation determined the relative risk of developing a solid
cancer after 1 Sv of cumulative radiation exposure to be 1.6 [9,10].
This equates to a person receiving 1 Sv of cumulative radiation
exposure having a 60% increase in their risk of developing solid
cancer at any age [10].

While radiation is all around us, it typically is in such a low
amount that the cumulative exposure is not thought to be a problem.
For context, the average background dose due to natural radiation
exposure is 3 mSv/y, a round-trip flight from New York to London is
0.1 mSv [6], and a conventional chest radiograph 0.08 mSv [2]. The
U.S. Nuclear Regulation Commission has published 2 sets of recom-
mended dose limitations. The first is termed “occupational dose” and
refers to any dose received by an individual in the course of
employment. The second, “public dose,” refers to any radiation
received by a member of the public from exposure to radiation or to
radioactive material by a licensee or under control of a licensee [11].
For each license, occupational dose limits are set at 50 mSv/y for the
whole body, and dose limits for the public are set at 1 mSv/y [12].
Ultimately, in an article published in the Proceedings of the National
Academy of Sciences of the United States of America, Brenner et al.
concluded that there is good evidence that acute exposures of 10-50
mSv carry an increased risk of cancer and reasonable evidence that
there is some increased risk at doses above 5 mSv [6]. For protracted
exposures, greater than 100 mSv has good evidence for increased
risk of cancer, and greater than 50 mSv has reasonable evidence [6].
Brenner points out that the 5 mSv cutoff is largely set by the
epidemiology of the studies and does not necessarily mean that ra-
diation below this level has no risk.

The International Commission on Radiological Protection rec-
ommends limiting radiation exposure to an ED of 20 mSv/y, aver-
aged over 5 years [5]. An additional caveat states that in any given
year, the ED should not exceed 50 mSv [13]. The International
Commission on Radiological Protection has also published specific
equivalent doses of radiation that should not be exceeded in any one
particular year for specific body parts—for example, 150 mSv for the
lens of the eye, 500 mSv for the skin, and 500 mSv for the hands and
feet [13]. The American College of Radiology position statement
recognizes that low doses of CT radiation may cause harm [14], and
the U.S. Food and Drug Administration has stated that an effective CT
radiation dose of 10 mSv may be associated with the possibility of
fatal cancer in approximately 1 in 2000 patients compared with the
natural incidence of fatal cancer in the United States (=1 chance in
5)[15]. In fact, the U.S. FDA has warned that steps should be taken to
mitigate exposure to avoidable radiation [16]. A National Cancer
Institute study estimates that CT scans performed in the United
States in 2007 may cause 29,000 excess cancer cases and 14,500
excess deaths over the lifetime of those exposed [17].

Implications for orthopedic computer tomography scans

In their New England Journal of Medicine review of CT imaging,
Brenner and Hall concluded that there is enough evidence from

epidemiologic studies that the radiation delivered during a com-
mon CT study results in an increased risk of cancer, when it includes
2 or 3 scans and a cumulative organ dose of 30 to 90 mSv [1]. This is
not inconsequential given the evidence that radiation doses cor-
responding to a common CT study result in an increased risk of
cancer, likely through radiation-induced carcinogenesis. While
single scans may pose risk that can be rationalized, the radiation
burden is cumulative with additional CT scans or other sources of
radiation during the course of one’s life irrespective of time in-
tervals between scans [1]. A singular CT examination (or multiple
scans) with an ED of 10 mSv may be associated with an increase in
the possibility of fatal cancer of approximately 1 in 2000 compared
with the 1 in 5 natural incidence of fatal cancer in the U.S. popu-
lation [18]. In a study by Ponzio and Lonner, depending on which of
the 2 institutions performed preoperative CT imaging for robot-
assisted knee arthroplasty, the resultant mean CT-associated ED
were 3.0 + 0.8 mSv and 8.5 + 2.2 mSv [3]. Furthermore, in that
study, compounding matters, the average arthroplasty patient had
additional sources of radiation exposure over time, including 25%
who had additional unrelated CT scans [3]. In that study, 12% of
patients underwent bilateral arthroplasty with preoperative CT
scans at an average interval of 3.8 months with a mean ED of 9.2 +
5.1 mSv. The mean number of additional unrelated CT scans per
patient was 0.6 + 1.3, not including potential CT scans that may have
been performed at other hospitals or facilities. For purposes of
estimation, the mean ED associated with preoperative CT for knee
arthroplasty was rounded to 5.0 mSv and 9.0 mSv for unilateral and
bilateral studies, respectively. The estimated cumulative ED from CT
examinations per patient thus ranged from 6 to 103 mSv [3].

It is important to understand the radiosensitivity of different tis-
sues, as imaging of various parts of the body delivers different doses of
radiation. Biswas et al. quantified the ED of radiation associated with
CT scans of musculoskeletal structures (Table 1) [2]. Overall, the ED
decreases as more distal structures are imaged. CT scans of the torso,
spine, and proximal extremities deliver a dose of radiation associated
with measurable risk, but CT scans of the distal extremities may
expose a patient to less radiation than a posteroanterior chest
radiograph [2].

The purpose of this article is to review the use of CT scans in
elective knee and hip arthroplasty in 2 of the phases of musculoskeletal
care—preoperative and postoperative—with a focus on the amount of
radiation delivered to patients in each instance.

Preoperative imaging and planning

Preoperative CT images are generally ordered to better charac-
terize the underlying bony anatomy in unusual cases, for planning
for computer navigation or robotic surgery, or for the development
of patient-specific cutting guides or implants.

Robotic surgery and computer-assisted orthopedic surgery

One of the largest increases in CT scan use has been in the
evolution of computer-assisted orthopedic surgery (CAOS), partic-
ularly with robotics. One statewide analysis reported a 500% in-
crease in the utilization of robotic assistance in all knee
replacements performed between 2009 and 2013, jumping from
0.2% in 2009 to 1.2% in 2013 [20]. A recent survey of the member-
ship of the American Association of Hip and Knee Surgeons taken
between November 2019 and January 2020 found that 33% are
using robot assistance for total knee arthroplasty (TKA) many of
which incorporate preoperative CT scanning [21].

Proponents of CAOS and robotics cite increased accuracy of
component alignment and positioning, quantified soft-tissue bal-
ance, and reduced leg length inequalities as reasons for the
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Table 1
Effective doses of computerized tomographic examinations and the number of
equivalent conventional chest radiographs.

Scan No. of Effective dose® No. of
scans (mSv) conventional
chest radiographs
needed for
equivalent dose”
Chest, abdomen, and pelvis
Chest 20 527 +1.68 65.88
Abdomen 20 495 + 1.40 61.88
Pelvis 20 4.85 + 1.74 60.63
Upper extremity
Shoulder 20 2.06 + 1.52 25.75
Elbow (arm only) 20 0.14 + 0.22 1.75
Elbow (body) 20 8.35+5.88 104.38
Wrist and hand 20 0.03 + 0.03 0.38
Lower extremity
Hip 20 3.09 + 1.37 38
Knee 20 0.16 £ 0.12 2.00
Ankle and foot 20 0.07 + 0.05 0.88
(unilateral)
Spine
Cervical 20 4.36 + 2.03 54.50
Thoracic 20 17.99 + 6.12 224.88
Lumbar 20 19.15 + 5.63 239.38

2 The values are given as the mean and the standard deviation.

b The effective dose of a conventional chest radiograph has been reported to be
approximately 0.08 mSv [19].
Reused with permission from Biswas D, et al. Radiation exposure from musculo-
skeletal computerized tomographic scans. ] Bone Joint Surg Am. Aug
2009;91(8):1882-9. https://doi.org/10.2106/jbjs.H.01,199.

technology’s use [22,23]. A substantial distinction between the
different available CAOS and robotic systems has to do with
whether they require CT scans for preoperative planning, landmark
determinations, and measurements or whether the surgeries can
be performed without preoperative CT scans [24,25].

While ROBODOC (now TSOlution One; THINK Surgical, Fremont,
CA), first released in the mid-1990s, and Mako (Stryker Corpora-
tion, Mahwabh, NJ), first released in the mid-2000s, both require a
preoperative CT scan to delineate bony landmarks and assist in the
planning algorithms, newer image-free systems are also now
broadly used—Omnibotic (Corin, Gloucestershire, UK), Navio/CORI
(Smith and Nephew, Memphis, TN), ROSA Knee (Zimmer Biomet,
Warsaw, IN), and VELYS (DePuy Synthes, Warsaw, IN)—do not
require preoperative CT scans, with comparable outcomes in terms
of component positioning [19,26—30] (Tables 2 and 3).

Patient-specific instrumentation

The goal of patient-specific instrumentation (PSI) is similar in
many ways to that of CAOS—use detailed patient information to
more accurately make bone cuts and position the arthroplasty
components. The patient-specific guides are created from preop-
erative CT or MRI scans that include various combinations of the
knee, hip, and ankle (Table 4). Similar to robotic and computer

Table 2
Current FDA-approved robotic arthroplasty platforms.

navigation strategies, the intended benefits in knee arthroplasty
include reduced instrumentation, avoidance of violating the
femoral intramedullary canal, and improved component alighment
and thus stress distribution across the implant [30].

A novel strategy and extension of PSI has been the custom-
ization of implants to better fit the surfaces of the knee, rather than
relying on off-the-shelf implants, which are designed based on
average bone sizes and shapes [33,34]. In the case of knee arthro-
plasty, building these custom implants typically relies on CT or MRI
scans of the hip and ankle in addition to the knee [35].

Radiation associated with preoperative imaging

The radiation associated with a preoperative pelvis CT scan is an
added risk and has been calculated to deliver 3 times the radiation
of a standard plain hip radiograph series [36]. Huppertz et al.
determined that the mean ED of a CT for preoperative total hip
arthroplasty planning (including CT pelvis [12.7 seconds], CT knee
[6.8 seconds], and CT ankle [6.4 seconds]) was 4.0 mSv (SD 0.9 mSv)
[37] compared with the ED of an anteroposterior pelvis radiograph
which has been reported to be between 0.7 and 1.0 mSv [37].
Furthermore, the presence of a contralateral hip endoprosthesis
may lead to a small but insignificant increase in the ED. The 4.0-
mSv ED is on the lower end to what other groups have found,
with the average dose for a pelvic CT scan alone reported to range
from 4.0 mSv to 20.0 mSv [38—40]. Ponzio and Lonner found that
the ED delivered by preoperative CT scans for unicompartmental
knee arthroplasty (UKA) ranged from 3.0 mSv to 8.5 mSv with the
only variable being the hospital location at which the scan was
performed [3]. Similarly, Huppertz el al. found that the ED for
preoperative total hip arthroplasty planning ranged from 1.2 to 7.8
mSv [41].

Given that acute exposure over 10 mSv is associated with an
increased risk of cancer [6], routine use of these preoperative CT
scans should be carefully weighed, especially in patients under-
going elective surgery. As imaging is moved from the pelvis to distal
extremities, the radiation dose delivered to the body decreases. The
ED for a CT of the knee is estimated to be 0.16 mSv, and ED for a foot
and ankle to be 0.07 mSv [2]. In the upper extremity, a CT shoulder
exposes the patient on average to 2.06 mSv [2].

Costs associated with preoperative CT planning

In a review of CT scans performed for primary robot-assisted
TKA, Abdelfadeel et al. found that the mean total payment for a
preoperative scan was $446, but there was wide variation based on
location, negotiated contracts, and other geographical variations
[42]. Another cost that should not be overlooked is the potential
unnecessary costs accrued to investigate incidental, and typically
unimportant, findings found on CT scans [42]. Furthermore, the
cost of radiation-induced illness is not well considered at this time.

Robotic system Corporation

Arthroplasty Preoperative planning

TSolution One (Robodoc) Think Surgical, Fremont/CA/USA

OMNIBotics Corin, Gloucestershire/UK

MAKO Stryker Corporation, Mahwah/NJ/USA
Navio/CORI Smith and Nephew, Memphis/TN/USA
ROSA Knee Zimmer Biomet, Warsaw/IN/USA
Velys DePuy Synthes, Warsaw/IN/USA

TKA, THA (femur) CT scan

TKA None

UKA, PFA, TKA, THA CT scan

UKA, PFA, TKA None

UKA, TKA, THA None or x-ray
TKA X-rays

THA, total hip arthroplasty; TKA, total knee arthroplasty; UKA, unicompartmental knee arthoplasty; PFA, patellofemoral arthroplasty.
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Table 3

Final implant alignment compared with planned implant alignment for robotic devices reported in relative error in degrees (standard deviation in parenthesis).

Study Robot Parameters relative to plan

Femur Tibia

Coronal Sagittal Coronal Sagittal
Parratte et al [19] ROSA 0.03 (0.51) —0.95(0.88) —0.06 (0.69) 0.2 (0.84)
Casper et al [28] Navio —0.1(0.9) -2(22) —-0.2 (0.9) -0.2(1.3)
Li et al [31] MAKO 0.57 (NR) NR 0.48 (NR) 0.54 (NR)
Cosendey et al [32] TSolution One —0.03 (0.19) 0.14 (0.69) —0.50 (0.36) 0.25 (0.48)

NR, not reported.

Other uses of CT including postoperative period

Postoperative CT scans generally are ordered when patients
continue to experience pain or decreased function after TJA to
evaluate for subtle loosening, osteolysis, patellar maltracking, or
component malposition. There is not a standard role for CT scans
after elective orthopedic surgery although there is academic in-
terest in determining component position when comparing
different techniques or surgical technologies. Given the above risks,
patients undergoing postoperative CT scans as part of a research
study should be fully advised regarding the possible risks associ-
ated with radiation exposure.

The as low as reasonably achievable principle

In light of these radiation exposure risks, CT examination pro-
tocols and techniques should be optimized and standardized across
sites to limit the radiation associated with individual scans. This
would include reducing multiple series within each examination,
implementing dose-reduction strategies, and encouraging partici-
pation in accreditation programs [43]. A study by Ponzio and Lon-
ner highlights the wide range of CT examinations that a typical
arthroplasty patient undergoes for a variety of medical concerns
over time, including potential imaging for preoperative arthro-
plasty planning, with cumulative radiation exposure of up to 103
mSv (the equivalent of 1030 chest radiographs) [3]. In worse case
scenarios, albeit relatively uncommon, if a caregiver and patient are
committed to using technologies that require preoperative CT im-
aging, radiation exposure may be inadvertently compounded if
upon review of the scan the quality is deemed inadequate for
mapping, planning, or instrument fabrication, due to motion arti-
fact or breach in standard scanning protocols. These numbers will
continue to increase as increasingly more patients are undergoing
technology-based surgery, including with robotics, that require CT
imaging preoperatively.

When reviewing how CT scans are used in orthopedic surgery,
there are 2 general ways to decrease the radiation exposure; (1)

Table 4
PSI systems in hip and knee arthroplasty.

decrease the number of scans and (2) operate under the “as low as
reasonably achievable” principle [44]. Rather than directly trying to
decrease the radiation dose, which may limit the quality of infor-
mation provided, the goal should be to optimize radiation such that
the image quality maintains a diagnostic standard with the lowest
amount of radiation possible delivered to the patient [45].

The use of low-dose CT reconstruction algorithms has been
shown to lower the median CTDI without negatively impacting the
diagnostic value [46]. This method may be highly appropriate for
preoperative planning for elective joint arthroplasty. The dose of
radiation for a given CT scan is also affected by the scan itself. As
technology continues to improve, different types of CT scans will be
available and deliver a lower dose of radiation. For example, a study
by Dubreuil et al. compared image quality and radiation dose be-
tween cone-beam CT and multislice CT [47]. They found that cone-
beam CT delivered significantly less radiation to the patient
(average CTDI 2.8 mGy vs 13.1 mGy) than multislice CT while
providing high-enough-quality images for fracture classification
[47]. Much like how CT scans have historically been used in addition
to radiographs when more detail is needed or unseen injury is
suspected, low-dose CT scans will likely be the first line of evalu-
ation and multislice CTs which deliver a higher dose of radiation
only ordered if additional information is needed.

The settings of the CT machine itself can be changed to lower the
dose of radiation delivered to the patient. Many variables including
the number of scans, the pitch, the tube current, tube voltage,
scanning time, the size of the patient, the axial scan range,
shielding, and the specific design of the scanner being used impact
the radiation dose received by the patient [1,45,48]. The tradeoff in
aiming for low doses of radiation is an increase in background noise
which decreases the quality of the image [49]. Because these set-
tings are variable, there is variability between hospitals in the ra-
diation dose to which patients are exposed for the same type of
scan. In a review of radiation doses associated with common CT
scans, Smith-Bindman et al. concluded that the radiation doses
experienced by patients were higher and more variable than those
generally quoted [43]. Specifically, the average dose for a CT

PSI system Corporation Arthroplasty Preoperative planning

ConforMIS Conformis, Billerica/MA/USA TKA, THA, UKA, BiKA CT

MyKnee system Medacta-International, Castel San Pietro/Ticino/CH TKA MRI or CT

PSI Knee Zimmer Biomet, Warsaw/IN/USA TKA MRI or CT

TruMatch system DePuy Orthopedics, Warsaw/IN/USA TKA CT

Visionaire system Smith and Nephew, Memphis/TN/USA TKA MRI and full-length
AP radiograph

Signature system Zimmer Biomet, Warsaw/IN/USA TKA, THA (acetabular only) MRI or CT

Hip Plan Symbios, Yverdon-les-Bains/Vaud/CH THA (acetabular only) CT

aMace Materialise, Leuven/Belgium THA (acetabular only) CT

MyHip Medacta-International, Castel San Pietro/Ticino/CH THA (acetabular and femoral) CT or MRI

OPS Corin, Gloucestershire/UK THA (acetabular and femoral) CT

AP, anteroposterior; THA, total hip arthroplasty; TKA, total knee arthroplasty; BiKA, bilateral knee arthroplasty; UKA, unicompartmental knee arthoplasty.
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abdomen-pelvis without contrast ranged from 2.9 mSv to 43 mSy,
which is well above the quoted threshold of 10 mSv leading to
increased risk for cancer [43]. In that study, there was a 13-fold
(range, 6- to 22-fold) variation between the highest and lowest
dose scans for a variety of comparable CT studies across 4 in-
stitutions. As noted above, CT scans performed for preoperative
robotic arthroplasty mapping and planning had a 2.5- to 3-fold
difference in radiation exposure depending on where the scans
were done [3]. As CT scans have improved in quality, there is an
increased risk of unnecessary radiation exposure to patients. A
helical scan relies on scanning parameters with extra rotations
outside of the planned length for image reconstruction. While an x-
ray tech can carefully select scanning parameters to minimize this
excess exposure, it is an area where patients are exposed to
increasing radiation [50,51]. Reducing the tube voltage of the ma-
chine is another way that patients are not exposed to unnecessary
radiation [37].

Patient positioning can also dramatically affect the dose of ra-
diation received by the patient. A traditional CT of the elbow, with
the patient’s arm positioned at their side, gives an average dose of
8.35 mSv as the intraabdominal cavity and chest are included.
When the arm is positioned above the head, the average dose of a
CT elbow drops to 0.14 mSvAs®. One in 10 Americans undergoes a
CT scan every year; eliminating or limiting the dose of each scan can
make a big difference in cumulative radiation exposure [3].

Alternatives to conventional CT imaging

While the risk of radiation-induced cancer is much smaller than
the natural risk of cancer for any individual, the small increase in
radiation-associated cancer risk for an individual can become a
public health concern if large numbers of the population undergo
increasing numbers of CT examinations of uncertain benefit. This is
particularly important because the threshold for using CT has
declined, and CT is increasingly being used among healthy in-
dividuals, in whom the risk of potential carcinogenesis from CT
could outweigh its diagnostic value [52]. Currently in the United
States, if just 20% of the roughly 1 million knee arthroplasty pro-
cedures in the United States are being performed with robotic
technology that requires preoperative CT scanning, representing
approximately 200,000 cases with additional radiation exposures
per year, it is not unreasonable to sound an alarm about a potential
health concern. In consideration of efforts to decrease radiation
exposure, nondiagnostic CT examinations, as used for robot-
assisted knee arthroplasty or for customization of cutting guides,
are not an ideal application of this technology and may be best
substituted by navigation systems or cutting guide customization
methods that are not dependent upon CT imaging if accuracy and
safety are not compromised. Indeed, published data demonstrate
equivalent precision of alignment with CT-based and image-free
robot-assisted TKA and UKA systems, as well as safety, raising the
question of whether the use of CT is justified in light of its increased
cost and risk [53—55].

Besides decreasing radiation exposure, it is important to
consider other imaging modalities that can provide similar infor-
mation to CT scans. Historically, bone models based on MRI are
more prone to artifact, and measurements taken from this imaging
are less predictable than those from CT scans [56]. Additionally,
plain radiographs may replace CT scans for preoperative planning
and have been shown to create highly accurate 3-dimensional
models both for PSI and robotic assistance [57,58]. Alternatives to
CT scans for preoperative planning in robotics/computer naviga-
tion, custom guide or implant development may thus be reasonable
alternatives when available and practical.

Conclusions

CT scans provide valuable information regarding bony detail,
aiding in surgical planning and facilitating advanced technologies.
However, with more than 85 million CT scans performed annually
in the United States [59], its routine use for preoperative
planning in elective orthopedic cases for elective surgery must be
considered in the context of its inherent risks in terms of radiation
exposure for the patient. Modulating the settings of the CT machine
or using alternative non-CT-based systems can decrease patient
exposure to radiation from CT scans. The risk estimates on CT use
and its role in contributing to cancer are not insignificant. In fact, as
many as 2% of all cancers in the United States may be attributable to
the radiation from CT scans [60]. The National Council on Radiation
Protection and Measurement has indicated that the average annual
background radiation exposure in the United States has almost
doubled over the previous quarter century, with almost all the in-
cremental increase derived from medical imaging, particularly CT
examinations [61]. Therefore, while the rapid evolution of CT
technology has allowed for expanded clinical applications—such as
its use in developing PSI for joint arthroplasty, computer-assisted
surgery, and robotics, physicians and patients must consider the
radiation risk vs medical benefit of these scans, particularly when
there are alternative methods of assessment [62—65]. Preoperative
CT for knee and hip arthroplasty requires special consideration
given the nondiagnostic nature of the study, particularly with the
availability of alternatives, such as conventional techniques, MRI-
based methods for cutting guide customization, portable hand-
held accelerometer-based navigation, or image-free robotic tech-
nologies [66—70].
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