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Abstract

statistical approaches.

Background: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked
can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during
sequencing or alignment, yet not many tools exist to interpret biases due to outliers.

Results: Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to
variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various
statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation
coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/
gkumar09/iSeqQC) or web-interface (http://cancerwebpa jefferson.edu/iSeqQC). A local shiny installation can also be
obtained from github (https.//github.com/gkumar09/iSeqQQ).

Conclusion: iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various

Keywords: RNA sequencing quality control, Count based QC, Expression-based QC, RNA seq QC tool

Background

High-throughput experiments are complex and prone to
numerous biases during sample preparation, library
preparation and sequencing. Therefore, Quality Control
(QC) is critical and if overlooked, can compromise the
data. To reduce false discoveries from any quantitative
sequencing experiment such as RNA-seq, miRNA-seq
and ATAC-seq, QC can be categorized in three different
phases. In phase one, quality of raw read sequences is
analyzed to detect bad quality bases. This is mainly per-
formed on raw FASTQ files using tools including
FastQC [1], FASTX-Toolkit [2], NGS QC Toolkit [3]
and PrinSeq [4]. In phase two, mapping quality, read
count distribution, mean insert size distribution, mean
depth distribution, GC-content, base quality and capture
efficiency are observed on aligned BAM files to detect
sample biases occurring during library preparation. This
is mainly done using tools like RseQC [5], RNA-SeQC
[6], QC3 [7], QoRTs [8], and Qualimap [9]. In phase
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three, there are yet no defined rules to perform QC on
expression data. Presently, sample heterogeneity, outliers
and any cross-sample contamination are detected using
various statistical approaches such as correlations and
dimensional reductions. There are a few tools available
including EDASeq [10], NOISeq [11] and DEGreport
[12], but they require bioinformatics or programming
savviness for implementation. Hence, no simplified tool
is available to provide QC on expression data in a com-
prehensive manner for the detection of outliers in any
sequencing experiment.

Here, we present iSeqQC- a simple expression-based
quality control tool to detect outliers either produced
due to variable laboratory conditions, reagent lots,
personnel differences, different experiment times, or
merely due to dissimilarity within a phenotypic group.
Very straight-forward to use, iSeqQC uses a raw read
count matrix or normalized transcript expression data to
produce QC metrics in the form of graphical plots defin-
ing relationships of all samples.

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Implementation
iSeqQC algorithm
iSeqQC provides comprehensive information to identify
any outliers in the sequencing experiment due to any tech-
nical biases. Developed in R, it can be utilized through a
Shiny Server web interface (http://cancerwebpa.jefferson.
edu/iSeqQC), command-line or the source package can be
downloaded from https://github.com/gkumar09/iSeqQC.
iSeqQC requires two tab-delimited text files to exe-
cute: 1) a sample phenotype file with information on
sample names, phenotypes and/or any confounding fac-
tors, if available; 2) a count matrix (either raw or nor-
malized) with gene id or symbol from any read
summarization tool such as RSEM [13], HTseq [14], fea-
tureCounts [15], Kallisto [16], Salmon [17] and so on.
Using information from sample phenotype file, iSeqQC
first matches the sample names to the count matrix,
then implements the following statistical approaches to
provide comprehensive QC metrics:

1. Summary statistics and counts distribution: it uses
the expression matrix to provide basic descriptive
summary statistics and a normally distributed
expression matrix to provide counts distribution per
sample.

2. Mapped reads density: For human or mouse
organism, it uses Transcripts Per Million (TPM)
normalization on raw expression matrix using the
following formula, density of mapped reads is
estimated for each sample

TPM = £(£(4) x 10°/colSums(%)).

where c is the total number of reads mapped to a gene
and | is the length of a gene. For other organisms, it uses
DESeq?2 variance stabilized normalization.

3. Housekeeping gene expression: Expression profile
(log2 scale) of two housekeeping genes, GAPDH
and ACTB for all samples.

4. Principal Component analysis (PCA)- Normalized:
After z-transforming the expression matrix so that
each row has a mean of 0 and a variance of 1, PCA,
a dimensionality reduction algorithm is imple-
mented to linear transform the data and observe
the variance between samples. Z-score
normalization is performed using

where p is mean and o is variance.
Principal component analysis (PCA)- Un- normalized:
To observe the variance between samples without any
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standardization, PCA on raw expression matrix without
any normalization is also implemented.

5. Multiple factor analysis: In a sequencing
experiment, external factors that are not of
biological interest can affect the expression of
individual samples [18]. To observe the
contribution of multiple co-variates that can con-
tribute to the active variables to define the distance
between samples multifactorial PCA was imple-
mented. It implements ‘MFA’ function from Facto-
MineR package [19] in R/Bioconductor.

6. Hierarchical relationship: Measuring the distance of
similarity between samples, agglomerative
hierarchical clustering using Euclidean distance
method is also implemented on the normally
distributed expression matrix.

7. Correlation: For correlation association, Pearson
(quantity-based) and Spearman (rank-based)
correlation using Ward’s method is implemented
on the expression matrix.

8. GC-bias: To assess if the bias is due to any error in
library preparation step, the Locally Weighted
Scatterplot Smoothing (LOWESS) fit of gene-count
for each sample is plotted against GC-content. To
obtain the obtain gene length and GC content for
both human (GRCh38) and mouse (GRCm38), ‘get-
GeneLengthAndGCContent’ algorithm from EDA-
seq [10] was used.

9. Expression plot: Expression profile of any gene of
interest.

After successfully executed, iSeqQC provides QC met-
rics in the form of a table and several graphical plots. First,
it uses expression data to provide descriptive statistics,
output in a form of a ‘summary statistics’ table. For each
sample, it provides number of detected genes, mean ex-
pression, standard deviation, median expression, mini-
mum expression, maximum expression, range of
expression, skewness (symmetry of expression distribu-
tion), kurtosis (tails of distribution), library size and num-
ber of expressed genes (genes with greater than 0 reads).
Next, the expression data is displayed as a ‘count-distribu-
tion” box-plot to provide overall distribution of the expres-
sion of each sample with minimum, maximum and
median expression. Further, the expression data is nor-
malized (TPM for human or mouse and DESeq2 variance
stabilized normalization for other organisms) and density
distribution of mapped reads is provided in a form of
‘mapped read density’ plot to observe any sample with no
or low expressing reads. Due to stable expression of
housekeeping genes, they are often used in sequencing ex-
periments to normalize mRNA levels between different
samples. iSeqQC uses GAPDH and ACTB expression data
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to detect whether samples show high expression of these
two genes. All this information is used as a first sign to de-
tect any outlier and could be further investigated for any
possible biasness.

After implementing basic statistics algorithms, iSeqQC
implements various dimensionality reduction approaches
to extract any technical bias in the sequencing experiment.
Here, it first z-score normalizes the expression data and im-
plements PCA unsupervised clustering method to identify
the principal directions or variations called as components.
The first two principal components which mainly are the
highest source of variance are then displayed as a plot. This
plot further segregates the samples based on their pheno-
type (data obtained from sample phenotype sheet). In some
cases, normalizing the data can mask systematic bias,
hence, iSeqQC also implements PCA on un-normalized
data. To test the effect of external factors that are not of
biological interest, but are possible sources of systematic
bias, iSeqQC implements multifactor PCA. Here, multiple
variables are weighted and assigned a weight equal to the
inverse of the first eigenvalue of the analysis. Further, hier-
archical clustering is implemented to provide the distance
of similarity between replicates in a specific phenotypic
group. Using the agglomerative method, it assigns each
sample to its own cluster and then computes distance be-
tween each cluster and joins the two most similar clusters
together. Next, iSeqQC utilizes correlation coefficients to
detect the strength and direction of the relationship be-
tween the samples. It uses Pearson correlation, which eval-
uates the linear relationship between the samples and
Spearman correlation, which is a rank-based method that
can range from - 1 to + 1. The direction of the relationship
is indicated by the value of the coefficient; samples with a
close relationship tend to be in the positive range and vice
versa. Next, relationship of read counts and GC-content for
each sample is plotted to illustrate any bias in sequencing li-
braries. Output in the form of a plot, all this comprehensive
information cumulatively provides sufficient indication of
any outlier sample or cross-sample contamination.

Additionally, iSeqQC provides an option to plot ex-
pression levels of any gene of interest for all samples in
a sequencing experiment.

Sample collection

The blood samples from Depuytrens affected patients
and controls were collected and stored in RNAlater
(ThermoFischer Scientific, MA, USA, catalogue no.-
AM7020) at -80°C. The samples were collected under
the Institutional Review Board (IRB) approval #17D.510
of Thomas Jefferson University Hospital and informed
consent was obtained from each participant. Under ster-
ile conditions, total RNA was extracted using the Qiagen
miRNeasy mini-kit (Qiagen, MD, USA, catalogue no.-
217,004).
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RNA extraction, library preparation and sequencing

4 ng of total RNA was used to prepare libraries using the
Takara Bio SMARTer Stranded Total RNA-Seq Kit (Takara
Bio, CA, USA, catalogue no.- 634,837) following manufac-
turer’s protocol. The final libraries were sequenced on
NextSeq 500 using 75 bp paired-end chemistry.

Alignment

Raw FASTQ sequencing reads were mapped against the
reference genome of Homo sapiens Ensembl version
GRCh38 utilizing further information from the gene
transfer format (.gtf) annotation from GENCODE version
GRCh38.p12 using STAR aligner [20] utilized through
RSEM [13]. Total read counts, and normalized Transcripts
Per Million (TPM) were obtained using RSEM’s calculate-
expression function.

Sequencing and library QC

Sequencing QC to obtain any read errors, poor quality
reads and primer or adapter contamination was ob-
served using FastQC [1]. Inconsistencies in sample and
library preparation was observed using QC3 [7], QoRTs
[8], and RSeqQC [5].

Differential expression analysis

Differential gene expression was performed using dis-
eased and control samples using the DESeq2 [21] pack-
age in R/Bioconductor. Genes were considered
differentially expressed (DE) if they had adjusted p value
<0.05 and absolute fold change >2. All plots were con-
structed using R/Bioconductor.

Publicly available datasets

To demonstrate the utility of iSeqQC, we also used pre-
viously studied datasets. We obtained sequence read
archive FASTQ files of the Bottomly et al. [22] mouse
RNA-seq dataset (accession number [SRP004777]) from
two different strains mice (B6 and D2). Reads were
aligned to Mus musculus (GRCm38) using STAR aligner
implemented through RSEM. Total read counts were ob-
tained using RSEM. This dataset was also used by Love
et al. [21] to test DESeq2 performance. Similarly, raw
FASTQ reads for yeast dataset (accession number
[SRA048710]) by Risso et al. [10], were aligned to Sac-
charomyces cerevisiae (R64—1-1) to obtain raw expres-
sion matrix. Additionally, raw count matrix of ENCODE
dataset of human B-cells [23] used by Tarazona et al.
[11] was obtained from the NOISeq web-page (http://
bioinfo.cipf.es/noiseq/doku.php).

Results

To demonstrate the importance of expression QC and per-
formance of iSeqQC, we first utilized RNA-seq samples se-
quenced in our laboratory to study Dupuytren’s disease.
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Fig. 1 Quality control metrics using existing tools. a Per base sequencing quality averaged for all diseased and control samples; b) Mapping
statistics showing percentage of mapped versus unmapped reads in diseased and control samples; ¢) Percentage of reads mapped uniquely to
human genome demonstrating no contamination in the libraries; d) Average mapping quality showing no outlier; €) Coverage uniformity over

gene body for all samples showing no outlier

Following our laboratory standard protocols, all sam-
ples were tested to access RNA Integrity Number (RIN)
and were within range of the requirements of the library
preparation kit (>2). The disease samples had a RIN
score between 4 and 5 and control samples were be-
tween 2 and 3.

Samples were sequenced and resultant FASTQ files
were examined for sequencing errors using FastQC in
phase one of QC. Here, for all samples, per base sequence
quality for all bases at each position was observed to be >
30, demonstrating a base call accuracy >99.9% (Fig. 1a).
Additional metrics such as per base sequence and GC
content also were observed to be good quality.

In phase two, QC was observed on the aligned BAM
files using QC3 and RSeqQC. QC3 was used to observe
mapping statistics, where all diseased samples had >70%
reads mapped to the reference genome showing high
quality RNA samples. However, control samples had an
overall low mapping percentage (controll, 2, 3: ~40%
and control4: ~20%) as shown in Fig. 1b. With the sus-
picion of DNA or any other contamination, we used
FastQ Screen to further investigate the low mapping of
control samples. A high proportion of mapped reads
were mapping to only the human genome (Fig. 1c).
Next, RSeqQC was used to observe average mapping
quality, where diseased2 and control4 were observed to
have a low but acceptable quality as shown in Fig. 1d.
Additionally, the coverage over gene body analysis also
showed an acceptable coverage uniformity over gene
body in all samples (Fig. 1e). These existing sequencing
and library QC tools were inconclusive to detect any
outliers in the study.

Next, in phase three, QC was observed on expression
data using iSeqQC, which generates a summary table and
10 different plots to infer QC. Upon investigating the
Principal Component Analysis (PCA) clustering (z-scored
normalized) (Fig. 2a) and hierarchical clustering (Fig. 2b)
from iSeqQC output, we observed tight clustering and
correlation of each sample in its phenotypic group, hence
no biases. However, the PCA clustering on un-normalized
data (Fig. 2c) and Pearson correlation (Fig. 2d) showed
control4 dissimilar from rest of the samples. Furthermore,
the ‘housekeeping gene’ plot showed an overall low ex-
pression of ACTB and GAPDH in control4 sample when
compared to other samples tested (Fig. 2e). Similarly, the
‘summary statistics’ table also showed low expression of
all detected genes in control4 (Table 1). These QC results
by iSeqQC indicated that due to its low-expression profile

control4 sample could be considered as an outlier. Fur-
ther, examining the ‘GC-bias’ plot (Fig. 2f) showed con-
trol4 sample’s GC-content profile to be lower when
compared to other samples, inferring library-preparation
could be the source of this bias. Since, there was no con-
founding factor in our dataset, iSeqQC did not compute
the multifactor PCA. Remaining output plots from
iSeqQC are provided as supplement data (Additional file 1
iSeqQC_outputs). A comparison of existing QC tools and
iSeqQC is provided in Table 2 indicating its importance in
overall QC in expression-based sequencing experiments.

Even though, iSeqQC flagged control4 to be an outlier,
we decided to include it in further analysis for demon-
stration purposes. We performed differential expression
analysis to obtain genes that are modulated in disease
(absolute fold change>2 and adjusted p value<0.05)
when compared to control. Here, we obtained 10,203
differentially expressed genes (DEGs), where 1278 were
significantly up-regulated and 8925 were significantly
down-regulated (Fig. 3a). To access the impact of the
outlier, we removed control4 sample (by changing sam-
ple phenotype file as shown in the workflow in Add-
itional file 2- iSeqQCworkflow) from the differential
expression analysis and observed only 5311 DEGs, where
856 genes were significantly up-regulated and 4455 were
significantly down-regulated (Fig. 3b). To observe the
impact of outliers on biological interpretation, we exam-
ined a change in the expression of any gene with or
without removing control4. Here, we found no drastic
change in the expression of differentially expressed
genes (common between DEGs with or without con-
trol4) if control4d was kept. This shows that in this par-
ticular case, when included in the differential expression
analysis, an outlier did not change the level of gene ex-
pression but only increased the noise in the data.

Next, we tested the performance of iSeqQC on previ-
ously published datasets. In mouse dataset by Bottomly
et al. [22], we observed variation among biological repli-
cates of B6 and D2 strains mice. We also found many
samples to be low-expressed (Additional file 3- Public-
DatasetResults Fig. A). As reported originally, iSeqQC
also didn’t detect any bias in the GC-content metrics
(Additional file 3- PublicDatasetResults-Fig. B). These
results by iSeqQC are in accordance with previous find-
ings by Bottomly et al. [22]. In the Yeast dataset by Risso
et al. [10], there were 11 samples of Saccharomyces cere-
visiae grown in 3 different growth conditions: standard
YP Glucose (YPD), Delft Glucose (Delft) and YP
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Fig. 2 Quality control metrics produced by iSeqQC. a) Unsupervised PCA clustering (z-scored normalized) showing tight cluster of samples within
the phenotype; b) Hierarchical relationship assigning each sample to its own phenotypic cluster; €¢) Unsupervised PCA clustering (un-normalized)
showing control4 to be phenotypically different; d) Pearson correlation showing relationships between samples among biological replicates; e)
Normalized expression of housekeeping genes (GAPDH and beta-actin) among different samples showing low expression of control4 sample; f)
GC bias plot showing control4 with lower gene-counts relative to GC content

Glycerol (YP-Gly) with different library preparation
methods and protocols. All the samples were sequenced
on different flow cells. Z-score normalized PCA from
iSeqQC showed Delft group to be tightly clustered, 2
out of 3 samples from YP-GLY were properly clustered.
However, the majority of samples from YPD were dis-
similar (Additional file 3- PublicDatasetResults- Fig.
C). Upon observing the multifactor PCA, this variation
could be due to significant technical variation during the
experiment and library protocol/preparation. Here,
iSeqQC showed library protocol method to be the major
source of variation, following the use of different flow
cells and library preparation (Additional file 3- Public-
DatasetResults- Fig. D). These results are in accordance
with findings by Risso et al. [10]. Finally, in the EN-
CODE dataset used by Tarazona et al. [11], two different
RNA extracting protocols (PolyA+ extraction (Pap) and
PolyA- extraction (Pam) method) were used to sequence
human B-cells (CD20-) and monocytes (CD14+). Here,
we observed technical variability (different RNA extract-
ing protocols) heavily impacting the biological variability.
Although, we observed all samples to be at sufficient se-
quencing depth, we found phenotypically different sam-
ples treated with same RNA extraction methods to be
clustering well (Additional file 3- PublicDatasetResults-
Fig. E), pointing technical bias in the dataset (Add-
itional file 3- PublicDatasetResults- Fig. F). The results
achieved by iSeqQC are in accordance with findings by
Tarazona et al. [11].

Discussion

Due to the complexity of high-throughput sequencing
experiments, several phases of QC are required to iden-
tify any bias in the data. iSeqQC was designed to obtain

comprehensive information on sample heterogeneity to
detect outliers or cross-sample contamination in an
expression-based sequencing experiment by implement-
ing various statistical approaches including descriptive
and dimensional reduction algorithms.

In our dataset, iSeqQC was successful in identifying an
outlier that was missed by existing sequencing and library
QC tools. It indicated control4 to be an outlier due to its
lower expression as indicated by summary statistics,
housekeeping gene expression and PCA on unnormalized
metrics. Upon assessing the GC-content metrics, we be-
lieved the bias could be due to library preparation step in
control4 sample. We would like to note here that upon
initial look at the PCA-normalized plot, one could flag dis-
eased3 to be an outlier. However, when metrics for this
sample are evaluated as a whole, they are representative of
the phenotypic group and placement on the PCA plot can
be attributed to biological variation.

Data generated in our laboratory was sufficient to as-
sess the utility of iSeqQC, but we also benchmark our
tool using 3 different publicly available datasets that
were tested by others previously. The well-characterized
technical variance in these datasets offered high value in
demonstrating the consistent performance of iSeqQC in
a variety of scenarios. As expected, the results provided
by iSeqQC were in accordance with the results previ-
ously reported for these datasets.

At present, there are no defined rules to perform QC on
expression matrices for the detection of outliers in any se-
quencing experiment. As shown in the results, existing
tools and algorithms may not be sufficient. iSeqQC uses en-
semble of various statistical methods to provide a detailed
QC metrics in the form of a table and several graphical
plots to identify any outliers. Additionally, at present while

Table 1 Summary statistics of control and diseased samples showing overall low expression of control 4 sample (iSeqQC output)

Samples names  Detected Genes Mean  SD Median  Min  Max Range Skew  Kurtosis  Library Size  Expressed Genes
Cc1 31,963 57.21 527.06 1334 0 47,932 47,932 5642 295 1,550,389 30,495
c2 31,963 4851 40442 1631 0 46,324 46,324 8198 226 2,779,530 29,821
C3 31,963 86.96 805.74 14.83 0 87,803 87,803 7367 451 336,318 28,946
C4 31,963 10.52 1542 741 0 829 829 11.57 0.09 11,606,701 25414
D1 31,963 363.13 534891 2224 0 633897 633897 8132 2992 9,982,421 24,625
D2 31,963 31231 811842 19.27 0 1,223,093 1223093 11776 4541 6,433,195 27,140
D3 31,963 201.27 243388 2076 0 289,596 289,596 7174 1361 14,027,954 24,074
D4 31,963 43888 584056 28.17 0 685534 685534 7872 3267 1,550,389 30,495
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Table 2 Features and capabilities of iSeqQC compared with other tools

Metrics iSeqQC QoRTs Qa3 RSeqQC RNA-SeQC EDASeq NOISeq
Summary expression Yes No No No No Yes No
Dimensional reduction Yes No No No No No Yes
Correlations Yes Yes Yes Yes Yes No No
Housekeeping genes expression Yes No No No No No No
Generate Plots Yes Yes No No No No No

performing QC using stand-alone tools researchers have to
re-run several lines of codes to re-evaluate the QC after re-
moving the outliers. With iSeqQGC, it is effortless as sample
can be removed from the QC analysis by simply doing a
minor change in sample phenotype sheet. Also, researchers
spend hours generating publishable quality QC figures such
as PCA and correlations plot, however iSeqQC by-default
provides high-quality publication-ready figures. We would
like to note here that for count matrix with gene id as in-
put, iSeqQC requires only Ensembl annotations. If other
annotations are used, all the metrics should work except
‘housekeeping’ and ‘GC bias’. However, in that case, ‘ex-
pression plot’ can be used to obtain the expression of
housekeeping genes. Also, TPM normalization in ‘mapped
read density’ plot is only compatible with human and
mouse data, if any other organism is used, iSeqQC uses and
DESeq?2 variance stabilized normalization.

While there exist several tools for assessing QC of sequen-
cing experiments, each is limited to observe either

sequencing and/or library quality. A few tools including
QC3, QoRTs, RSeQC, and RNA-SeQC provide some infor-
mation on outliers and cross-sample contamination but are
not sufficient to provide in-depth sample qualities. QoRT's
detects sample heterogeneity by analyzing read mapping, in-
sert size distribution, cigar profile, and alignment clipping
profile. RSeQC and RNA-SeQC uses Spearman and Pearson
correlations to detect any outliers. QC3 is mainly focused to
perform phase three QC only on Whole Exome Sequencing
(WES) or Whole Genome Sequencing (WGS) data and does
not include any quantitative sequencing technology such as
RNA-seq. While EDASeq, NOISeq and DEGreport can
utilize expression matrix as an input, they are mainly re-
stricted to GC content, feature biotype and PCA at a basic
level to explore the bias. Additionally, all these tools either
require high-end computational resources or computational
savviness to operate. As shown in the results, iSeqQC is sim-
ple, light-weight and accessible, yet powerful, approach to
perform QC on expression-based sequencing technology,
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We acknowledge that due to the complexity of wet-lab
protocols in sequencing technology, there are certain bi-
asness that can evade any standardized QC approach.
Implementing statistical approaches gives only an idea of
overall sample heterogeneity and is not sufficient to re-
move the samples from study. Use of additional methods
such as Real time- Polymerase Chain Reaction (RT-PCR)
is recommended to validate the findings.

Conclusions

iSeqQC is a simple, fast, light-weight, expression-based QC
tool that detects outliers by implementing various statistical
approaches. Implemented through web-interface and
command-line interface, it generates high-quality publication-
ready QC metrics for cross-comparison of samples.

Availability and requirements
Project name: iSeqQC.

Project home page: http://cancerwebpa.jefferson.edu/
iSeqQC

https://github.com/gkumar09/iSeqQC

Operating system(s): Not Applicable.

Programming language: R.

Other requirements: Web browsers equal or higher
Safari v-12.1, Chrome v-79.0, Firefox v-72.2.

License: MIT.

Any restrictions to use by non-academics: None.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-020-3399-8.

Additional file 1. iSeqQC outputs. Remaining iSeqQC outputs (not
included in Fig. 2). A) Counts distribution profile; B) Mapped read density
profile; C) Spearman correlation showing relationships between samples
among biological replicates.

Additional file 2. iSeqQCworkflow. Workflow describing the steps to be
followed to perform QC using iSeqQC.

Additional file 3. Public Dataset Results. Quality control metrics
produced by iSeqQC from other datasets. A) Counts distribution plot
showing several low-expressed samples on Bottomly dataset; B) GC-bias
plot showing no GC-content bias in any samples on Bottomly dataset; C)
Unsupervised PCA clustering (un-normalized) showing variation in several
samples in Risso dataset; D) Multifactor PCA showing library protocol
method and different flow cell to be the major source of the variation; E)
Unsupervised PCA clustering (un-normalized) showing samples clustered
based on RNA extraction method in Tarazona dataset; F) Multifactor PCA
showing RNA-extraction method to be the major source of variation.
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DE: Differentially expressed; DEG: Differentially Expressed Genes; GTF: Gene
Transfer Format; IRB: Institutional Review Board; Pam: PolyA- extraction;
Pap: PolyA+ extraction; PCA: Principal Component Analysis; QC: Quality
Control; RIN: RNA Integrity Number; RT-PCR: Real time- Polymerase Chain
Reaction; TPM: Transcripts Per Million; WES: Whole Exome Sequencing;
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