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ABSTRACT: 

 

Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based 

constructs for a variety of applications. Although multiple bioprinting technologies have 

been developed, extrusion-based systems have become the dominant technology due 

to the diversity of substrate materials (i.e. bioinks) that can be accommodated, either 

individually or in combination. Each bioink has unique material properties and extrusion 

characteristics that limit bioprinting precision, particularly when generating identically 

shaped constructs from different bioinks. Here, we aimed to achieve high precision (i.e. 

repeatability) across samples by generating bioink-specific printing parameters using a 

systematic approach. We hypothesized that a Fuzzy system could be used as a soft 

computing method to tackle the inherent vagueness and imprecision in 3D bioprinting 

data and uncover the optimal printing parameters for a specific bioink that would result 

in high precision. Our Fuzzy model was used to approximate and quantify the precision 

and ease of printability for two common bioinks - type I collagen and Pluronic F127, with 

or without dilution in αMEM culture media. The model consisted of three inputs 

(pressure, speed, and bioink dilution percentage) and a single output (line width). Using 

this system, we introduce the Bioink Precision Index (BPI), a metric that can be used to 

quantify and compare the precision of any bioink regardless of bioprinting technique and 

environmental parameters. To validate BPI, we demonstrate a significant increase 

(+54%) in line width variation between parameter sets with high (16.6) and low (7.5) 

BPI. Finally, we estimate that printing with parameters optimized using BPI would 

increase the line width precision for collagen (+15%) and Pluronic F127(+29%) as 

compared to the manufacturer’s recommended printing parameters.  
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1. Introduction:  

 

Bioprinting is a popular technique used in a variety of research areas, such as tissue 

engineering and drug delivery, and involves depositing biological material (bioinks) in a 

layer-by-layer fashion to produce a three-dimensional (3D) cell-laden construct [1]. 

Bioprinted 3D constructs have many novel applications, including visualization of cell-

cell interactions in a biomimetic microenvironment in vitro for cancer research [2], 

production of 3D tissue for implantation [3], and in-vitro and in-vivo models for drug 

discovery [4]. Bioprinted constructs are frequently generated from computer-aided 

design (CAD) [5], and can be reproduced quickly from an expanding library of bioinks 

[6], [7]. As a result, fabrication methods that increase precision and facilitate 

reproducibility are particularly desirable [8], [9].  

   

Extrusion-based bioprinting (EBB) is the most utilized bioprinting technique due to its 

compatibility with a large spectrum of bioinks, affordability, and ease of use [10]. In this 

method, bioinks are extruded from a small nozzle in a layer-by-layer manner using 

pressure generated from either a pneumatic, screw, or piston-based system [10], [11]. 

Bioprinting parameters, such as syringe pressure, nozzle gauge, printing speed, 

material temperature, and crosslinking status, affect the final printed construct [8]. 

Those parameters must be optimized for each bioink in order to generate a final 

construct that has the desired dimensions and appropriate material properties. 

          

Type I collagen and Pluronic F-127 bioinks (also known as Poloxamer 407) are two 

widely used bioinks in biomedical research. Collagen bioink is a biocompatible, protein-

based hydrogel composed of material commonly found in the extracellular matrix in a 

variety of tissues [12]. Importantly, collagen bioink must be extruded below 4 ˚C, since it 

irreversibly gels at higher temperatures and cannot be brought back to the liquid state 

[10], [12]. In contrast, Pluronic F-127 is a synthetic hydrogel consisting of a co-polymer 

tri-block structure with hydrophilic-hydrophobic-hydrophilic sequences [13]. Pluronic F-

127 is aqueous at 4 ˚C, but gels at room temperature 20 ˚C. However, Pluronic F-127 

can be returned to a liquid state by cooling the bioprinted construct, leading to its 

common use as a sacrificial support material for forming hollow structures or delivering 

cells [12]–[15].  

 

Determining printability with universal parameters is challenging due to the variability of 

customized bioinks. Moreover, this complexity is increased in bioinks with multiple ECM 

components that affect the rheological properties and can result in non-linear 

relationships between input and output parameters. As a result, design of experiment 

(DOE) modelling is not practical in this case. Although machine learning (ML) 

techniques can be employed to identify and predict relationships in single or multiple 

component inks in an accurate way, it is important to choose the appropriate ML 



method. In this study, we investigate the use of fuzzy systems as a potential method, 

given its significant robustness in parameter modelling and noise control in data, 

specifically for unseen data points [16]. 

 

Few systematic approaches have been developed to approximate optimized bioprinting 

parameters [17], [18]. The disadvantage of using mathematical modelling approaches is 

a lack of generalization to more than a specific number of inputs. Moreover, the model 

linearization may lead to imprecision and inaccuracy in output approximation for new 

bioinks formulations [19]. To overcome these shortcomings, we hypothesized that 

bioprinting parameter optimization in precision could be robustly executed by 

implementing a Fuzzy logic system, in which rules are defined to assign the input and 

outputs continuous values, rather than discrete values [20]. Fuzzy logic is an extension 

of standard logic, in which values can only be completely false or completely true. In 

contrast, Fuzzy values have a degree of truth, generally noted as a value between 0 

and 1. As a result, this status provides a mathematical model to move from discrete to 

continuous values. Finally, a Fuzzy system implements the rules and membership 

functions necessary to translate inputs to outputs. 

 

To test this hypothesis, we developed a Fuzzy system to optimize bioprinting 

parameters to achieve a higher precision for collagen and Pluronic F-127 bioinks with or 

without dilution in αMEM culture media. Our Fuzzy system consists of inputs of nozzle 

pressure, printing speed, and dilution percentage of bioink with a single output of line 

width. The results from our study suggest that this approach is useful for optimizing 

printing parameters and will improve reproducibility across diverse bioinks as well as 

provide an objective characterization of bioprinting precision for newly formulated 

bioinks. 

 

  



2. Methods 

 

2.1. Bioprinting 

 

Pluronic F-127 and type I collagen bioinks (Allevi Collagen Lifeink® 200) were prepared 

for analysis by diluting with alpha Minimum Essential Medium (αMEM) to contain 0, 20, 

or 40% of media, to mimic potential applications in which cell suspensions are mixed 

into each bioink. Dilutions were performed by mixing between two syringes connected 

with a female-to-female Luer Lock coupler for 20 minutes at room temperature. To 

confirm the material was homogenously mixed, the Pluronic F-127 used for this study 

was dyed using 600 uL of commercially available food dye. 

 

Each bioink was used to print a 10x10 mm square shape with a line width and height of 

200 microns (Fig. 1A). For each bioink, we used a  6.33 mm straight 25 gauge nozzle. 

Our initial experimentation was performed with undiluted bioinks. For the Pluronic F-

127, we tested four extrusion pressures (60, 70, 80, 90 psi) and four printing speeds 

(12, 13, 14, 15 mm/s). For the collagen bioink, we tested three extrusion pressures (15, 

20, 25 psi) and five printing speeds (8, 10, 12, 14, 15 mm/s). 

 

Next, to determine the effect of dilution, we used a constant printing speed (15 mm/s). 

For the collagen bioink, we tested 20% and 40% diluted collagen at three extrusion 

pressures (8, 10, 12 psi). For the Pluronic F-127, we tested three extrusion pressures at 

20% dilution (40, 45, 50 psi) and 40% dilution (20, 25, 35 psi). All samples were 

performed in triplicate and an average of each experiment group is reported in each 

table output. Since collagen needs to be printed at 4˚C (39 ˚F) or below, an ice pack 

was secured to the extruder throughout the print (Fig. 1B). For all experiments, we used 

an Allevi 2 bioprinter (Allevi, USA) located inside a sterile biosafety cabinet. 

 

We choose the initial parameter set to be the manufacturer’s recommended bioprinting 

parameters. For an unknown or novel bioink, the initial parameter set should be generated 

based on similar bioink printing parameters. Alternatively, the physical limitations of the 

bioprinter can be used as the upper and lower bounds for parameterization.  

 

2.2. Imaging and Analysis 

 

Each bioprinted sample was imaged using brightfield microscopy (Nikon E800) at 4x 

objective size (Fig. 1C). Images were analyzed in FIJI [21] to determine actual 

bioprinted line width by quantifying the width of the line at the midpoint of each side of 

the square. The values from four independent trials were averaged to obtain the final 



value for each sample. These measurements were then utilized as the outputs for the 

inference engine in the Fuzzy system (Fig. 1D). 

 

 

 
 

 

 

  

 

2.3. Implementing Fuzzy System 

 

We implemented a Fuzzy system to utilize our experimental data to optimize bioprinting 

parameters for each bioink, as previously described [22]. Briefly, we defined our crisp 

input values to be pressure, speed, and dilution percentage with line width as a single 

output value. This study used 44 data point in three independent experiments (total of 

132 data points). The process of converting these crisp inputs to Fuzzy values is known 

as fuzzification. Here, we used Gaussian membership functions due to their 

smoothness, concise notation, and similarity to a variety of biological processes [23]. 

The standard deviation (SD) of Gaussian membership functions for each input and 

output are reported in Tables 1-4. Next, mapping from a given Fuzzy input to a Fuzzy 

output was performed using a Mamdani Fuzzy inference system (Fuzzy Logic Toolbox, 

Matlab R2020a). In this process, we imported a series of If-Then rules (experimental 

Figure 1. General workflow of the proposed study. (A) is the first step that the 3D model is 
designed and with three different input parameters the sample is printed by an extrusion 
based bioprinter (B). In step (C) data is measured, processed and fed into the Fuzzy system 
rules, then the final 3D surface is generated to calculate the BP for the preferred points (D). 



results) to the inference engine (Tables 1-4). Finally, a single value for the output (line 

width) is generated as the aggregate of the Fuzzy values in a process known as 

defuzzification. A schematic of our Fuzzy system approach is illustrated in Figure 2. 

Note that this Fuzzy  

 

 
 

 

  

 

system is based on the following assumptions: (i) the output material is incompressible, 

(ii) the pressure drop during extrusion is negligible, (iii) the flow is steady and laminar. 

 

 2.4 Measuring Bioprinting Precision Index  

 

Our Fuzzy system approach to bioprinting parameter optimization enables us to 

introduce the Bioink Precision Index (BPI), a new metric for evaluating bioink precision 

that is defined as the gradient of the Fuzzy 3D surfaces. The standard calculation for a 

gradient of a 3D surface is: 

 

𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥0, 𝑦0) + (∇𝑓)𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) +  (∇𝑓)𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) 

  

Thus, BPI is calculated from the sum of the squared error of the above equation: 

 

𝐵𝑃𝐼 =  √(∇𝑓)𝑥(𝑥0, 𝑦0)2 + (∇𝑓)𝑦(𝑥0, 𝑦0)2  

 

Where 𝑥0 𝑎𝑛𝑑 𝑦0 are the inputs in our system with two inputs (speed-pressure, or 

dilution-pressure). 

 

 

Figure 2. Type-1 Fuzzy Logic Algorithm and Study Design. General overview and different 
features of the Type-1 Fuzzy system including fuzzification, rules, inference engine, and 
defuzzification. It includes three inputs (speed, pressure, and Suspension Media Dilution Factor) 
and one output (line width). 



 

3. Results 

 

3.1. Imprecision in undiluted bioink is primarily associated with extrusion pressure 

 

First, we utilized our Fuzzy system to visualize the line width (output) as a function of 

the inputs, which were printing speed (mm/s) and nozzle pressure (psi) in collagen 

bioink and Pluronic F-127 that were not diluted (Fig. 3). As expected, we observe that 

increasing the extrusion pressure generally increased the line width for any given 

printing speed for both materials. In contrast, the output line width does not significantly 

change when altering the printing speed for either Pluronic F-127 (Fig. 3a) or collagen 

bioink in the range of recommended printing speed (Fig. 3b).  

 
 

 

 

 

 

3.2 Diluted bioinks are more precise for bioprinting 

 

Next, we simulated the use of each bioink when laden with cells by diluting each bioink 

to 20% or 40% with αMEM culture media. To overcome the technical difficulty of 

implementing a Fuzzy system with three inputs (pressure, speed, and dilution 

percentage), we utilized our observation that printing speed for both the collagen bioink 

and Pluronic F-127 had essentially the maximum correlation between inputs at high 

speed (Fig. 4). Correlation analysis shows that the pressure and line width are highly 

correlated (r>0.99) and statistically significant (p<0.001)  at speed 15 mm/s. In 

particular, an analysis of the undiluted Fuzzy output indicates maximum linearity with a 

Figure 3. Fuzzy system output for undiluted Pluronic F-127 and collagen bioink. The general 
shape of the 3D graphs of Collagen (a) and Pluronic (b) shows that increasing the pressure will 
increase the output line width. However, at the same pressure level on the 3D graphs of Pluronic 
and Collagen, the output line width does not change significantly by expanding the bioprinting 
speed ratio. 



printing speed of 15 mm/s for both collagen bioink (Fig. 4a) and Pluronic F-127 (Fig. 

4b). 

 

 

 
 

 

 

As a result, we constructed a Fuzzy system by maintaining a constant printing speed at 

15 mm/s and visualized the Fuzzy system output for the diluted bioink experiments. 

 

In contrast to the undiluted bioinks, the Fuzzy output for collagen bioink diluted with 

αMEM reveals two potential parameter sets that yield a desired line width of 200 μm 

(Fig 5a, illustrated by arrows). The first solution required a high dilution of 40% and a 

low extrusion pressure of 8 psi. In contrast, the lower dilution of 20% required a slightly 

higher extrusion pressure of 10 psi to obtain a 200 μm line width (Fig. 5a).  In general, 

we observed that the line width increases with increased dilution percentage and 

extrusion pressure.  

 

We observed that the printing precision of diluted collagen bioink was less sensitive to 

changes in extrusion pressure, in opposition to the undiluted bioink. In fact, the increase 

in extrusion pressure from 15 psi to 25 psi increases line width by 37 percent in the 

undiluted collagen bioink as compared to 9 percent in the diluted collagen bioink (Fig. 

5c). In total, these results indicate that diluted bioinks are more precise for bioprinting, 

yielding greater reproducibility. The surface irregularities in Fig. 5c are a result of the 

experimental data (Table 4), and not due to the approximation modeling by our fuzzy 

system. 

Figure 4. The Pressure linearity at speed 15 mm/s in Collagen and Pluronic. The 2D section of 
Collagen (a) and Pluronic (b) at speed 15 mm/s show that it has the minimum impact on the output 
line width because of the linear relationship between pressure and line width. 



 

 

 

 

 
 

 

 

 

 

 

 

3.3. Bioink Precision Index for novel bionks  

 

BPI is a metric for evaluating bioink precision that is defined as the gradient of the 

Fuzzy 3D surfaces (Fig. 5a and c). Thus, a smaller numerical value of BPI indicates a  

more precise parameter set for that bioink. In Fig. 5b and d, BPI is indicated by arrow 

length at each position. The manufacturer’s suggested printing parameters for the 

Figure 5. The general shape of the 3D graphs of diluted Collagen and Pluronic with 
aMEM. The general shape of the 3D graphs of diluted Collagen (a) and diluted Pluronic (c) 
shows that increasing the pressure will increase the output line width. (b) and (d) show the 
gradient based on the explained equation. The smaller arrow is in length, the bioink has higher 
printing precision. The flat surface in (c), which is the area between two orange lines (d), 
indicates a high precision and robust input parameters to print.  



collagen bioink (6 mm/s and 15 psi) results in a BPI of 42.4, but our optimized 

parameter set (11 m/s and 15 psi) decreases the BPI to 36, resulting in an 

approximately 15% increase in BPI. The line width accuracy is also increased by 36% 

(from 350 um to 240 um). Similarly, the BPI for undiluted Pluronic F127 using the 

manufacturer’s suggested printing parameters (12 mm/s and 80 psi) is 14.2, much 

greater than the BPI of 4.5 obtained using our optimized parameter set (15 mm/s and 

60 psi), improving BPI by 68 percent. As a result, the line width precision is improved by 

29% (from 260um to 190um). Finally, we note that the optimized BPI for collagen is 

significantly higher than the optimized BPI for pluronic, indicating that collagen is a more 

challenging bioink to use for high precision bioprinting. 

 

3.4. Fuzzy systems identify robust and precise printing parameters sets 

 

This Fuzzy system approach can identify printing parameter sets that are insensitive to 

the small perturbations routinely encountered during bioprinting, such as inconsistent 

experimental dilutions or fluctuations in extrusion pressure during printing. One such 

parameter set can be visualized by the flat surface in Fig. 5c (arrow), which results in 

the same 250 μm line width for any dilution between 40% and 50% and extrusion 

pressure between 20 psi and 40 psi.  

 

To illustrate these areas of Fig. 3a, we separately analyzed sections illustrating the 

speed-width relationship for a given a pressure (Fig. 6a) and pressure-width relationship 

for a given speed (Fig. 6b). Since BPI can be reduced to one dimension (one input-

output system) or higher dimensions (multiple input/output parameters), we calculated 

the BPI for a one dimension model (pressure-width). The figures are color-coded with 

green, yellow, or red, where the green zone has the most precision and least sensitivity 

to fluctuations, resulting in the most precise outputs (BPI < 10). In contrast, the yellow 

(10 < BPI < 20) and red (BPI > 20) zones are progressively more challenging to achieve 

a high level of precision over time. Similar regions have been identified for undiluted 

Pluronic F-127 (Fig. 6c,d), diluted collagen bioink (Fig. 6e, f), and diluted Pluronic F-127 

(Fig. 6g, h). 

 

  



 
  Figure 6. The 2D slices of Collagen, Pluronic, diluted Collagen, and Pluronic with 

aMEM. This figure indicates the 2D slices in x and y direction at specified value written as 
the label for the Collagen (a and b), Pluronic (c and d), diluted Collagen with aMEM (e and f), 
and diluted Pluronic with aMEM (g and h).  
 



3.5. BPI Validation and Fuzzy system Error 

 

To validate the BPI metric, we printed Pluronic F127 at speed 12.5 mm/s (Fig. 6D) using 

two extrusion pressures - 73 psi (BPI: 7.5) and 87 psi (BPI: 16.63). Consistent with our 

hypothesis, we observed that using a parameter set with a lower BPI results in higher 

precision (Fig. 7). Specifically, the standard deviation of line width for 73 psi (58 um) 

was significantly different than the standard deviation of line width for 87 psi (111 um) 

by F-test (p = 0.0487). We note that the mean was not statistically different between 

groups (p > 0.05), although line width accuracy was improved by an average of 30 um 

by printing at 73 psi. 

 
 

 
 

 

 

 

We reported the Root Mean Squared Error (RMSE) in Tables 5-6 for the four 

experiments (Collagen, Pluronic, Diluted Collagen, and Pluronic with aMEM). The 

RMSE shows the quality of the Fuzzy system approximator with the given dataset. 

However, in this paper, we aimed to measure the precision (BPI value), but the overall 

accuracy for the Fuzzy system predictor is acceptable based on the bioprinter 

sensitivity. It is shown that Pluronic performed more accurately in approximation than 

collagen.  

Figure 7.  BPI Validation. Pluronic F-127 was printed at 12.5 mm/s speed with extrusion 
pressure of either 73 psi (BPI: 7.5) or 87 psi (BPI: 16.6). The variance in line width is significantly 
different between groups (p < 0.05). 



4. Discussion 

 

To our knowledge, no published methods exist to evaluate precision in extrusion 

bioprinting. Here, we show that Fuzzy systems can be used to identify optimized 

printing parameter sets that improve the printing precision of existing or newly 

formulated bioinks. Specifically, we observed that Fuzzy optimization improved 

precision in collagen bioink by 15% and Pluronic F127 by 68%, as compared to the 

manufacturer’s recommended printing parameters. Furthermore, we have introduced 

and validated a new standardized metric (BPI) that can be used as a tool comparing 

repeatability between bioinks. Here, we used BPI to illustrate that the collagen bioink is 

more challenging for precision printing than pluronic bioink and that diluted bioinks are 

more precise than non-diluted bioinks. 

 

BPI is a dimensionless factor to measure precision. In this study, we used a simple 

output of line thickness to analyze bioprinting precision, but this technique can be 

applied towards any 2D or 3D shape parameter. For example, the inputs or outputs in 

this system could include a 3D shape factor, the volume of the extruded material, a 

rheology parameter, or other desired design parameters. 

 

Scientists utilize ML algorithms in additive manufacturing to optimize the material or 

predict the outputs [24]–[26]. ML and Fuzzy systems are two independent subsets of 

soft computing. Fuzzy logic, which is inherently based on a fuzzy set, improves system 

robustness to respond to unpredictable changes in parameters. The rule-based process 

helps the user to modify the system easier than ML methods, such as Neural Networks 

(NN). Moreover, the fuzzy system is explicitly defined as compared to the Neural 

Network algorithm, which is based on the learning from the dataset. The Fuzzy System 

assists with pattern recognition, which is essential in additive manufacturing to increase 

system precision. On the other hand, NN help to perform pattern predictions. 

 

Another advantage of a Fuzzy system is that system knowledge can be extracted from 

the inference engine. In Neural Networks, it is challenging to extract information from 

the system inference engine with transparency. Nonetheless, a disadvantage of a fuzzy 

system is that it is not based on learning as a stand-alone system. However, hybrid 

methods as Neuro-fuzzy systems can be utilized to add these features to a fuzzy 

system. 

 

Additionally, another potential ML method is Decision Tree modeling, which utilizes a 

set of if-then rules. The Decision Tree is based on crisp input and generates crisp 

output data. For an unknown parameter (not in the training dataset), decision tree is 

less robust in approximating the final output. The fuzzy system uses crisp data that is 



converted to a fuzzy set with the fuzzification method (see Supplemental methods). This 

procedure increases the robustness for unknown or out-of-range data approximation. 

Moreover, since the inference engine uses Gaussian membership functions, the 

approximation may continue outside the input range data. However, a hybrid model of 

decision tree modeling based on a fuzzy system could be investigated in future work 

[27]. 

 

The Fuzzy system developed in our study identified one or multiple sets of optimized 

printing parameters for each bioink. We note that the target line width for our model was 

200 μm. As illustrated in Fig. 3a (arrow), collagen bioink would meet this requirement at 

the low pressure of 15 psi and speed of 10 or 15 mm/s. In contrast, printing undiluted 

Pluronic F-127 at 200 μm line width is possible with two different parameter sets, as 

illustrated in Fig. 3b (arrows). Here, we observed that it is possible to meet this 

requirement with either high pressure (80 psi) and low speed (12 mm/s) or low pressure 

(60 psi) and high speed (15 mm/s). Generally low pressure is preferred due to 

increased cell viability [28], so this observation could significantly improve printing time 

and experimental outputs when using Pluronic F-127. Investigators are likely to make 

similar observations if this approach was applied during novel bioink development. 

 

Previous attempts to improve bioprinting precision have focused on developing novel 

bioprinting techniques, such as the miniaturized progressive cavity pump method to 

replace the extrusion-based method [29]. However, utilizing our soft computing Fuzzy 

system technique increases bioprinting precision without hardware changes. This 

method helps to maintain a robust quality control in bioprinting process which is a multi-

parameter nonlinear environment. Moreover, the Fuzzy surface may be useful for 

understanding tradeoffs between precision and other biological constraints (e.g. cell 

viability). Nonetheless, our model consisted of three inputs (pressure, speed, and 

dilution) and one output (line width) that are directly related to the extrusion bioprinting 

method. 

 

One of the limitations in this study, is the lack of experiments on multiple nozzle gauges. 

In this study, we only used a 25 g nozzle, which is directly related to flow rate and 

output pressure. Furthermore, we did not assess temperature, which directly affects 

bioink viscosity. Since the BPI is specifically a measure of the output precision, utilizing 

a parameter set with optimal BPI may not result in high accuracy. This limitation may 

result in a necessary tradeoff between accuracy and precision in choosing a parameter 

set for bioprinting. 

 

Future work may extend this approach to other parameters that affect bioprinting or its 

experimental outcomes, such as cell viability or biocompatibility. Nonetheless, we note 



that BPI is independent from input dimensions/units and will remain a useful metric for 

comparison between bioinks as bioprinting technology evolves. 

 

 

 

 

  



5. Conclusion 

 

Obtaining high precision in bioprinting is a necessary step towards mass production of 

bioprinted constructs for use in research and medicine. Here, we have demonstrated 

that a Fuzzy system approach can be used to approximate line width given a set of 

bioprinting parameters, including printing speed, extrusion pressure, and media dilution 

percentage, as well as determine bioprinting parameter sets that maximize precision. 

Furthermore, we have defined the Bioink Precision Index (BPI) that can be used to 

quickly compare the ease of reproducibility across the wide variety of bioinks currently 

available. 
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Tables:  

Table 1. Type-1 Fuzzy system rules for Pluronic experiment 

Rule 
Pressure (psi) 

MF SD: 4.24 

Speed (mm/s) 

MF SD: 0.42 

Output line width (micrometer) 

MF SD:16.99 

1 60 12 172 

2 60 13 223 

3 60 14 187 

4 60 15 177 

5 70 12 316 

6 70 13 286 

7 70 14 262 

8 70 15 224 

9 80 12 296 

10 80 13 309 

11 80 14 337 

12 80 15 295 

13 90 12 429 

14 90 13 371 

15 90 14 342 

16 90 15 362 



Table 2. Type-1 Fuzzy system rules for Collagen experiment 

Rule 
Pressure (psi) 

MF SD: 2.12 

Speed (mm/s) 

MF SD: 0.74 

Output line width (micrometer) 

MF SD:42.4 

1 15 8 368 

2 15 10 264 

3 15 12 237 

4 15 14 356 

5 15 15 267 

6 20 8 868 

7 20 10 697 

8 20 12 671 

9 20 14 541 

10 20 15 562 

11 25 8 1041 

12 25 10 1009 

13 25 12 959 

14 25 14 910 

15 25 15 879 

 

 

  



 

Table 3. Type-1 Fuzzy system rules for Diluted Collagen with aMEM experiment 

Rule 
Dilution Percentage 

MF SD:8.43 

Pressure (psi) 

MF SD: 0.84 

Output line width (micrometer) 

MF SD: 21.24 

1 20 8 251 

2 20 10 204 

3 20 12 336 

4 40 8 210 

5 40 10 350 

6 40 12 498 

 

  



Table 4. Type-1 Fuzzy system rules for the Diluted Pluronic with aMEM experiment 

Rule 
Dilution Percentage 

MF SD: 8.49 

Pressure (psi) 

MF SD: 2.54 

Output line width (micrometer) 

MF SD: 28.3 

1 20 40 302 

2 20 45 330 

3 20 50 303 

4 40 20 169 

5 40 25 244 

6 40 30 360 

 

  



Table 5. Type-1 Fuzzy system output vs Measured value for Pluronic and Collagen experiments 

Pluronic Collagen 

 Measured output line 

width (micrometer) 

Approximated output 

line width (micrometer) 

with Fuzzy System 

Measured output line 

width (micrometer) 

Approximated output 

line width (micrometer) 

with Fuzzy System 

201 196 368 418 
223 222 264 323 
187 189 307 323 
177 189 356 333 
316 287 267 290 
286 259 868 751 
262 259 697 619 
224 228 671 601 
296 272 636 544 
309 300 562 545 
353. 301 1149 860 
295 274 1009 862 
429 372 959 823 

371 334 895 804 

342 332 879 813 

362 330 - - 

RMSE = 26.98 RMSE = 108.84 

 

  



Table 6. Type-1 Fuzzy system output vs Measured value for diluted Pluronic and Collagen with 

aMEM experiments 

Diluted Pluronic with aMEM Diluted Collagenwith aMEM 

 Measured output line 

width (micrometer) 

Approximated output 

line width (micrometer) 

with Fuzzy System 

Measured output line 

width (micrometer) 

Approximated output 

line width (micrometer) 

with Fuzzy System 

302 283 251 260 
330 303 243 243 
303 282 336 300 
169 181 236 243 
244 216 340 339 
360 284 569 356 

RMSE = 37.37 RMSE = 88.66 
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