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Replacing the defective enzymes with a recombinant 
human enzyme in lysosomal storage diseases 
(LSDs) and restoring the enzymatic activity was 

first proposed by Christian de Duve in 1964.1 The LSDs, as 
a heterogeneous group of disorders, are involved in various 
genetic defects.2 They are a group of 50-60 genetically 
inherited rare disorders, which are caused by the deficient 
activity of a specific lysosomal enzyme and the gradual 
accumulation of its non-degraded substrates, including 
sphingolipids, carbohydrates, glycogen, glycoproteins, and 
mucopolysaccharides.3 Lysosomal storage of substrates 
leads to a number of complications such as metabolic 
imbalances, widespread cellular dysfunction through cell 
signaling, communication alteration, and disruption of 
lipid rafts pathway, as well as downstream of autophagy 

processes.4 The LSDs patients during their early childhood 
suffer from multifaceted clinical symptoms that can affect 
their musculoskeletal system, lung, heart, liver, spleen, and 
eyes. In addition, most LSDs patients have mild to severe 
central nervous system (CNS) implications and they may 
even die in the early years of life owing to cardiorespiratory 
failures (Pompe disease).1

Various treatment strategies have been evaluated 
against the LSDs, including gene therapy, small molecule 
therapies, enzyme replacement therapy (ERT), lysosome 
exocytosis, and organ/cell transplantation.5 Currently, 
ERT and hematopoietic stem cell transplantation (HSCT) 
have been advanced for the clinical trials, but due to the 
complicated nature of the LSDs, none of these methods 
addresses all aspects of the disease. Considering the 
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 Summary
Despite many beneficial outcomes of the conventional 
enzyme replacement therapy (ERT), several limitations 
such as the high-cost of the treatment and various 
inadvertent side effects including the occurrence of an 
immunological response against the infused enzyme and 
development of resistance to enzymes persist. These issues 
may limit the desired therapeutic outcomes of a majority 
of the lysosomal storage diseases (LSDs). Furthermore, 
the biodistribution of the recombinant enzymes into the 
target cells within the central nervous system (CNS), 
bone, cartilage, cornea, and heart still remain unresolved. 
All these shortcomings necessitate the development of 
more effective diagnosis and treatment modalities against 
LSDs. Taken all, maximizing the therapeutic response with 
minimal undesired side effects might be attainable by the 
development of targeted enzyme delivery systems (EDSs) 
as a promising alternative to the LSDs treatments, including 
different types of mucopolysaccharidoses (MPSs) as well as 
Fabry, Krabbe, Gaucher and Pompe diseases.
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effectiveness and limitations of each method when applied 
alone, combination of ERT and any other therapy is 
proposed in various studies to overcome these limitations.6 
Up to now, several ERTs have been approved for the clinical 
applications in Gaucher, Fabry, Krabbe, and Pompe 
diseases, as well as different mucopolysaccharidoses MPSs 
(e.g., MPS I, II, and IV) as lysosomal storage disorders 
(Table 1).5 BioMarin Pharmaceutical Company is a global 
leader in developing and commercializing innovative 
biopharmaceuticals for the genetically derived rare 
diseases. Aldurazyme®, Vimzim®, and Naglazyme®, as 
recombinant human enzymes, have been produced by this 
company for the treatment of MPS I, IV, VI, respectively.

The intravenous (IV) administrations of approved 
enzymes in the LSDs generally represent significant 
clinical benefits, including improved walking ability, 
ameliorated respiration, and improved life-quality.7 The 
LSDs require continuous treatment for optimal clinical 
outcomes, therefore the cost-effectiveness and accessibility 
to ERT should be considered as an essential point in the 
treatment of these diseases. Despite the financial and 
regulatory advantages for the “orphan drug” in the U. S., 
pharmaceutical industries have priced the LSDs therapy 
products among the most expensive treatment modalities 
in the market. Unfortunately, due to the high-cost of ERT 
(usually over US$ 100 000/patient per year), they are 
not often accessible for countries with fewer fundings.8 
Besides, the major impediment to the development of 
enzymes as drugs for the LSDs is the limited clinical trials 
due to patients paucity in the population. Furthermore, 
while performing pre-clinical studies in animal models 
has been strongly recommended, in most cases, due to the 
lack of such suitable animal models studies, the clinical 
trials have been performed directly in human patients.9

Immune response and the IgG antibodies (Abs) 
generation against the foreign infused enzymes is another 
considerable issue of the ERT, which plays a pivotal role 
in the patients' safety as well as efficacy and success of the 

treatment. In fact, the neutralizing Abs can reduce the 
efficacy of ERTs via direct interfering with the enzyme 
activity (Figure 1). They can interact with the active site 
of the enzyme and/or ligands involved in the binding 
to a receptor on the target cells (mannose-6-phosphate 
receptors for most LSDs, mannose and lysosomal integral 
membrane protein 2 (Limp2) receptors for Gaucher 
disease) that lead to blocking the cellular uptake and 
lysosomal targeting of the enzyme.10 In addition, immune 
reactions intensity appears to be dependent on the 
presence or absence of residual mutant enzymes. Cross-
reactive immunologic materials (CRIM) status may be 
predicted by genotyping for GAA gene in Pompe diseases, 
and initial/early immunomodulation may induce 
tolerance and result in an optimized therapy.7

Despite the therapeutic features of systemically-
administered ERTs against LSDs, the biodistribution 
of the enzymes into the difficult sites of pathology 
(especially into CNS, bone, cartilage, cornea, and heart) 
still remains as a striking challenge. Further, in the MPS, 
the accumulation of glycosaminoglycans (GAGs) in the 
cells and tissues all over the body result in devastating 
widespread dysfunctions in different tissues and organs. 
For instance, MPS manifestations in the eye include 
both the anterior segments (cornea, conjunctiva) and 
the posterior segments (retina, sclera, optic nerve).11 A 
clear evidence demonstrates that approximately 75% of 
LSDs patients with the neurological dysfunctions might 
not be treated with the available ERTs.12 The blood-
brain barrier (BBB), as one of the main obstacles in the 
confrontation with the enzyme biodistribution, presents 
an impenetrable barrier between the bloodstream and the 
CNS, by which controls the inward and outward traverse 
of mostly hydrophilic enzymes utilized for the treatment 
of the LSDs selectively (Figure 1).13,14 Further, as a result, 
ERT often fails to provide the desired clinical outcomes, 
in large part due to its non-specific biodistribution, low 
bioavailability, and high degradation rate. Therefore, 

Table 1. Approved enzyme replacement therapies available for the lysosomal storage disorders

LSDs Deficient enzyme Inheritance FDA approved ERT and Brand name

MPS I (Hurler syn.) 
MPS II (Hunter syn.)
MPS IV A (Morquio A syn.)
MPS VI (Marateaux-Lamy syn.)

α-L-iduronidase 
Iduronate sulfatase 
N-acetylgalactosamine 6-sulfatase 
N-acetylgalactosamine 4-sulfatase 

Autosomal 
X-linked 
Autosomal 
Autosomal 

Laronidase (Aldurazyme™)/ 2003-FDA, EMA
Idursulfase (Elaprase™)/ 2006-FDA; 2007-EMA
Elosulfase Alfa (Vimzim™)/ 2014-FDA
Galsulfase (Naglazyme™)/ 2005-FDA; 2006-EMA

Fabry disease α-galactosidase X-linked Agalsidase α (Fabrazyme™)/ 2001-EMA
Agalsidase β (Replagal™)/ 2003-FDA, EMA

Pompe diseas α-glucosidase Autosomal Aglucosidase (Myozyme™)/ 2006-FDA, EMA 
Aglucosidase (Lumizyme™)/ 2010-FDA 

Gaucher disease β -glucocerebrosidase Autosomal Aglucerase (Ceredase™)/ 1991-FDA
Imiglucerase (Cerezyme™)/ 1994-FDA; 1997-EMA 
Velaglucerase (VPRIV™)/ 2010-FDA, EMA
Taliglucerase (Elelyso™)/ 2012-FDA

Lysosomal acid lipase deficiency Lysosomal acid lipase Autosomal Sebelipase α (Kanuma™)/ 2015-FDA,EMA

MPS: mucopolysaccharidosis; FDA: U.S. Food and Drug Administration; EMA: European Medical Agency.1,5,7
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enhancing the therapeutic response by the development of 
safe and efficient targeted enzyme delivery systems (EDSs) 
may provide a promising alternative to the currently used 
treatments in LSDs.15,16

Different methods have been developed to overcome the 
limited access of enzymes into the difficult pathological 
sites. Based on the receptor-mediated lysosomal enzyme 
delivery system, it has been shown that increasing the 
presence of M6P residues on the recombinant enzyme 
or enhancing the expression rate of the M6PRs on the 
target cells can improve the cellular uptake of the enzyme 
through active targeting mechanism.17,18 

In recent years, unprecedented attention has been 
paid to the development of enzyme-loaded nanosystems 
(ENSs) using advanced nanobiomaterials to enhance 
the efficacy of ERT while minimizing the side effects.15 
Different nanocarriers can be utilized for engineering of 
nanoscaled EDSs, including biodegradable nanomicelles, 
nanoliposomes, and polymer- and lipid-based 
nanoparticles (Figure 1).19 Enzyme encapsulation can veil 
the enzyme and its physicochemical characteristics, which 
can eradicate some of the key limitations of ERT, including 
undesired immunologic reactions and biodegradation. It 
can also protect the recombinant enzymes from unwanted 
biological impacts, non-selective biodistribution, and 
improve the pharmacological response by increasing the 
drug absorption, controlled-release of enzyme supply, 
pharmacokinetics (PK), and pharmacodynamics (PD) 
properties.20,21 

Besides, targeted NSs such as polymeric/lipidic 
nanoparticles, decorated with homing agents (e.g., 
aptamers or antibodies), can also be used in crossing the 
biological barriers such as BBB and blood-ocular-barrier 
(BOB). Thus, they are being considered as innovative and 
effective approaches for the treatment of brain disorders.12 

In addition, encapsulated-cell therapy (ECT) along with 
another treatment strategy, has been considered as an 
interesting combined therapy method for the treatment 
of LSDs.22,23 One of the most pivotal advantages of ECT 
is to cover engineered cells by biocompatible devices 
that can be surgically implanted into different sites in 
the host body, especially in difficult-to-access sites such 
as the brain and eye to deliver constant amounts of the 
enzyme for prolonged periods of time.13 In the case of the 
eye, because of the efficient blockades provided by both 
epithelial and endothelial cells,24,25 the targeted delivery 
of drugs using advanced technologies and devices might 
provide great clinical outcomes.19 For example, thermos-
responsive sol-gel injectable hydrogels offer great 
prospective applications in drug delivery, cell therapy and 
tissue engineering.26 It should be noted that some of these 
systems have mostly been used in the preclinical stages 
and the clinical researches are essential for the approval of 
their long-term safety and therapeutic outcomes. 

Based on these findings, it is envisioned that the 
currently used ERT modalities are not completely effective 
for all types of LSDs. We envision that the ultimate therapy 
of LSDs in the future would be based on the gene and/or 
cell therapy. For example, in the case of Krabbe disease, 
AAVrh10 gene therapy has been shown to ameliorates the 
central and peripheral nervous system’s pathologies in 
murine and canine models of this disease.27 At this point, 
perhaps the main challenge in the treatment of LSDs is 
to deliver therapeutic agents to the diseased cells/tissue 
potentially using nanoscaled EDSs. Various multimodal 
nanomedicines have previously been developed against 
different types of diseases.28-42 Further, we know that 
the size and morphology of NSs can influence the 
pharmacokinetics and final fate of cargo drug molecules.43 
Depending on the desired biological targets and impacts 

Fig. 1. Schematic representation for the remaining challenges in the enzyme replacement therapy.
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of the ERTs, the use of passive and active targeting 
mechanisms should be rationalized and fully addressed 
in the EDSs. Nevertheless, development of targeted NSs 
for enzyme delivery to CNS and other hard-to-reach 
tissue is considered as the main challenge. Vesicular 
trafficking mechanisms (e.g., clathrin-coated pits and 
membranous caveolae) in the LSDs should also be fully 
addressed. Lysosomal compartments, as acidic vesicular 
machineries of the cells, encompass over 60 different 
types of hydrolases and 50 membrane proteins and other 
biological machineries are involved in degradation of 
biological entities. We still need to understand the holistic 
roles of the lysosomal membrane transporters involved in 
the lysosomal trafficking.44 Interdigitating of lysosomal 
compartments with other cellular organelles seems to 
be largely dependent on the function of lysosomal ion 
channels and transporters, dysregulation of which might 
attribute to the pathogenesis of LSDs. We still need to 
know the roles of cell membrane vesicular entities such as 
lipid rafts and cytoplasmic macromolecules such as coat 
proteins in the vesicular trafficking of the cells. Likewise, 
to treat the LSDs, a number of issues in relevance to the 
genetics and/or epigenetics of the lysosomal compartments 
need to be understood. Taken all together, perhaps, it is the 
time to change our research perspective from a restricted 
outlook towards a holistic approach. To this end, we 
need to understand the hallmarks of the LSDs and their 
biochemical and clinical aspects to be able to improve 
patients’ well-being with more effective treatments. In this 
line, development of nanoscaled personalized medicines 
against LSDs appears to be an inevitable endeavor.
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