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CONTEMPORARY REVIEW

Pathophysiology of Delayed Cerebral 
Ischemia After Subarachnoid Hemorrhage: 
A Review
William S. Dodd , BS; Dimitri Laurent , MD; Aaron S. Dumont, MD; David M. Hasan , MD;  
Pascal M. Jabbour , MD; Robert M. Starke, MD; Koji Hosaka, PhD; Adam J. Polifka, MD; Brian L. Hoh, MD; 
Nohra Chalouhi , MD

ABSTRACT: Delayed cerebral ischemia is a major predictor of poor outcomes in patients who suffer subarachnoid hemorrhage. 
Treatment options are limited and often ineffective despite many years of investigation and clinical trials. Modern advances in 
basic science have produced a much more complex, multifactorial framework in which delayed cerebral ischemia is better un-
derstood and novel treatments can be developed. Leveraging this knowledge to improve outcomes, however, depends on a 
holistic understanding of the disease process. We conducted a review of the literature to analyze the current state of investiga-
tion into delayed cerebral ischemia with emphasis on the major themes that have emerged over the past decades. Specifically, 
we discuss microcirculatory dysfunction, glymphatic impairment, inflammation, and neuroelectric disruption as pathological 
factors in addition to the canonical focus on cerebral vasospasm. This review intends to give clinicians and researchers a 
summary of the foundations of delayed cerebral ischemia pathophysiology while also underscoring the interactions and in-
terdependencies between pathological factors. Through this overview, we also highlight the advances in translational studies 
and potential future therapeutic opportunities.

Key Words: delayed cerebral ischemia ■ intracranial aneurysm ■ stroke ■ subarachnoid hemorrhage

Aneurysmal subarachnoid hemorrhage (aSAH) is a 
particularly devastating event; the case-fatality rate 
is ≈40% to 50% and many survivors remain depen-

dent on others for activities of daily living.1–4 The dispro-
portionate impact on people younger than 65 years old 
relative to ischemic stroke also imposes a burden on the 
healthcare system and society through increased costs 
and loss of productive life-years.5 The prognosis for pa-
tients with SAH is heavily influenced by the development 
of delayed cerebral ischemia (DCI),1,6 but adequate treat-
ments to prevent DCI remain elusive.7 Advances in critical 
care management and refinement of surgical techniques 
have helped the overall morbidity and mortality from 
aSAH decline slightly over the past few decades8; how-
ever, translationally focused scientific inquiry in this field 
remains vital to paradigm-shifting discoveries.

The conceptual framework of DCI after SAH has 
undergone vast transformations over the last century. 
Ischemic cerebral lesions were documented after aneu-
rysmal SAH as far back as the 1940s,9 around the same 
time that researchers noted relationships between 
hemorrhage, delayed infarctions, and cerebral vaso-
spasm.10,11 The associations between these phenom-
ena, especially the time course of onset, led to the belief 
that vasospasm was the singular cause of DCI (also re-
ferred to as delayed ischemic neurological deficits).3,12–14 
Widespread use of the terms “clinical vasospasm” and 
“symptomatic vasospasm” reflect the conceptualization 
of cerebral ischemia after SAH as consequent function 
of “angiographic vasospasm” rather than a distinct, mul-
tifactorial entity. This paradigm began to shift in the early 
21st century as it became increasingly apparent that the 
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ischemic areas did not necessarily correlate with the 
distribution of spastic arteries and DCI/hypoperfusion 
could occur without the presence of vasospasm.15–18 The 
CONSCIOUS (Clazosentan to Overcome Neurological 
Ischemia and Infarction Occurring After Subarachnoid 
Hemorrhage) trials19–21 were foundational in transform-
ing the understanding of DCI pathology by demonstrat-
ing that prevention of vasospasm does not necessarily 
reduce all-cause mortality or DCI. The renewed interest 
in clinical investigation also prompted a unified definition 
of DCI22:

The occurrence of focal neurological im-
pairment … or a decrease of at least 2 
points on the Glasgow Coma Scale … This 
should last for at least 1 hour, is not appar-
ent immediately after aneurysm occlusion, 
and cannot be attributed to other causes 
by means of clinical assessment, CT or MRI 
scanning of the brain, and appropriate lab-
oratory studies.

This definition is now widely used in clinical studies, fa-
cilitating efficient investigation and reliable meta-analysis. 
The SAHIT (Subarachnoid Hemorrhage International 
Trialists) Repository has also aided the development of 
well-designed, harmonized clinical trials by identifying 
critical data points.23 Since then, further study into the 
underlying pathophysiology has revealed previously elu-
sive effects on the microvasculature and inflammatory 
milieu associated with DCI that can inform future clinical 
trials and drug development.24,25

DCI is currently understood as a multifactorial pro-
cess that evolves over time. The first 24 to 48 hours 
after ictus are referred to as the early brain injury 
phase, largely characterized by the sequelae of in-
creased intracranial pressure and transient global 
ischemia during ictus. Cerebral edema, blood-brain 
barrier (BBB) disruption, sympathetic nervous system 
activation, autoregulatory failure, microthrombosis, 
spreading depolarizations (SDs), and inflammation 
have all been observed during this period.26 Over time, 
the extravasated blood begins to aggravate and mod-
ulate the same core factors, culminating in the clinical 
manifestation of delayed cerebral ischemia around 4 to 
10 days post-SAH.12,27

The purpose of this review is to both examine the 
current state of investigation into DCI as well as ana-
lyze the underlying mechanisms of the disease. In ad-
dition, we review novel therapeutic strategies as they 
relate to the novel insights into DCI pathophysiology. 
The pathological components of DCI are intimately in-
terconnected, but for the purposes of this review we 
discuss 3 overarching areas: vascular dysfunction, 
inflammation, and cortical spreading depolarizations. 

For each topic we review the foundational studies 
demonstrating a role in DCI, the most recent advances 
within the field, and therapeutic strategies gleaned 
from those developments.

VASCULAR DYSFUNCTION
Inability of cerebral perfusion to match metabolic de-
mand is the ultimate cause of DCI; thus any patho-
logical event that decreases perfusion or increases 
metabolic demand can contribute to DCI. In this sec-
tion, we focus on the former, specifically the mecha-
nisms of inadequate vascular response that increase 
susceptibility to DCI.

Because of the lasting influence of the vasospasm-
centered approach to DCI research, many vasodilatory 
or otherwise vasoactive agents have been tested in pa-
tients with SAH (Table). Triple H therapy (hypertension, 
hypervolemia, and hemodilution) or permissive hyper-
tension alone are intended to mechanically vasodilate 
by intravascular volume expansion but are prone to 
cardiopulmonary and renal complications.28,29 A meta-
analysis of Triple H therapy found that, in addition to 
methodological issues in standardizing treatments, 
there was no effect on DCI.30 As mentioned previously, 
the CONSCIOUS trials demonstrated that inhibition of 
the vasoconstrictive endothelin-1 pathway decreases 
vasospasm but has no effect functional outcomes.19–21 
Another phase 3 clinical trial with clazosentan, a se-
lective endothelin-1 receptor anatagonist, has been an-
nounced since the end of CONSCIOUS-3, the REACT 
trial.31 Unlike the CONSCIOUS trials that used a com-
posite primary endpoint (all-cause mortality, DCI, or 
need for vasospasm rescue therapy), REACT will focus 
on the development of DCI. Additionally, the REACT 
trial will use the higher of the 2 clazosentan doses ad-
ministered in CONSCIOUS-3 because of more sup-
port for possible efficacy. The MASH-2 (Magnesium 
for Aneurysmal Subarachnoid Haemorrhage-2) trial 
showed intravenous magnesium sulfate, putatively act-
ing through inhibition of voltage-gated calcium chan-
nels,32 is also not effective for improving outcomes.33 
Oral administration of the dihydropyridine-type calcium 
channel blocker nimodipine is the only treatment with 
consistent, high-quality evidence for decreasing DCI34 
and is now standard of care in patients with aSAH, al-
though these results are principally driven by 1 large 
trial.35 Importantly, those early studies showed oral ni-
modipine reduces DCI and improves outcomes without 
affecting vasospasm,36,37 suggesting nimodipine may 
have important vessel-independent effects. A recent 
trial (NEWTON [Nimodipine Microparticles to Enhance 
Recovery While Reducing Toxicity After Subarachnoid 
Hemorrhage]) of intraventricular nimodipine administra-
tion found no improvements over standard oral admin-
istration.38 These clinical trials clearly demonstrate that 
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targeting vascular dysfunction through vasodilation 
alone is not sufficient to reduce DCI.

In this article we highlight the clinical and animal 
studies that elucidated the fundamental processes 
of vascular dysfunction after SAH and those that ex-
panded the understanding to include microvessels, ar-
terioles, paravascular spaces, and lymphatic vessels. 
We also discuss the recently discovered mechanisms 
of vascular dysfunction that can be leveraged in the 
development of novel therapies.

Inciting Factors of Vascular Dysfunction
The first physiologic insult after SAH is a transient 
global ischemia as intracranial pressure approaches 
mean arterial pressure.43,44 This ischemic episode can 
trigger vascular dysfunction even before the toxic ef-
fects of hemoglobin are realized (Figure  1). First, the 
process is initiated through an induction of the sym-
pathetic nervous system,45 often referred to as the 
“sympathetic surge” or “catecholamine surge.” Initial 
activation involves both ischemic injury to the hypo-
thalamus46 as well as compression of the brain stem.47 
Plasma catecholamines remain elevated for several 
days post-SAH45 and high concentrations predict poor 

outcomes,48,49 perhaps involving injury to extracerebral 
organs.50 A recent study by Takemoto et al demon-
strated that attenuation of the sympathetic response 
via bilateral renal denervation decreases vasospasm 
and cerebral edema in rats.51 Behavioral and neurolog-
ical responses were not affected by this intervention, 
indicating that reducing sympathetic nervous system 
activation alone is not sufficient to prevent neurological 
deficits. Separate from sympathetic nervous system 
activation, transient global ischemia causes endothe-
lial injury and BBB disruption as well. Endothelial injury 
and even apoptotic cell death have been reported to 
occur within the first 24  hours post-SAH,52,53 which 
disrupts the BBB and promotes coagulation by ex-
posing subendothelial collagen.54 BBB disruption can 
be measured indirectly in humans, via abnormal tis-
sue enhancement on contrast computed tomography 
or isotope scintigraphy studies.55 Endothelial injury, 
BBB disruption, and the resulting vasogenic edema 
are all important avenues for future investigation, as 
all are predictive of patient outcome.55,56 Yet another 
consequence of acute global ischemia is stimulation 
of the endothelin-1 pathway. Using a primate model, 
Pluta et al found that hypoxia, not oxyhemoglobin, was 

Table 1.  Summary of Major Clinical Trials and Meta-Analyses

Candidate Mechanism
No. Patients Included in Trial or 
Meta-Analysis Summary of Findings

Clazosentan19–21 (IV) Endothelin-1 receptor antagonist. CONSCIOUS-2: 1147 total (764 
treatment/383 placebo)  
CONSCIOUS-3: 571 total (188 high-
dose/194 standard dose/189 placebo)

Clazosentan treatment (5 or 
15 mg/h) does not improve 
outcomes after aSAH. 
Possible increase in pulmonary 
complications, anemia, and 
hypotension

Magnesium sulfate33 (IV) Inhibition of voltage-gated calcium 
channels, N-methyl-D-aspartate 
receptors, & glutamate release

Magnesium for Aneurysmal 
Subarachnoid Haemorrhage-2: 1201 
total (604 treatment/597 placebo)

Intravenous magnesium sulfate 
therapy does not improve outcomes 
after aSAH

Simvastatin39,40 (oral) β-Hydroxy β-methylglutaryl-CoA 
reductase inhibition, but has important 
pleiotropic effects including improved 
endothelial function and decreased 
platelet activation

Simvastatin in Aneurysmal 
Subarachnoid Haemorrhage: 809 total 
(391 treatment/412 placebo)  
High-Dose Simvastatin for Aneurysmal 
Subarachnoid Hemorrhage: 255 total 
(124 high dose/131 standard dose)

Simvastatin (40 or 80 mg/d) does 
not improve short- or long-term 
outcomes after aSAH

Tirilazad41 (IV) Free radical scavenging and cell 
membrane stabilization

Meta-Analysis: 3821 total across 5 
double-blind, placebo-controlled trials

Tirilazad does not reduce mortality 
or improve outcomes after aSAH

Cilostazol42 (oral) Phosphodiesterase enzyme3 inhibition, 
leading to increased PKA activity. 
PKA relaxes vascular smooth muscle 
and inhibits platelet activation through 
multiple pathways

Meta-Analysis: 543 total across 5 
studies

Cilostazol reduced “symptomatic 
vasospasm” and improved 
outcomes after aSAH; however, 
the component studies included in 
the meta-analysis were small and 
mostly not placebo controlled. A 
larger randomized controlled trial is 
needed

Calcium-channel 
blockers34,35 (including 
oral nimodipine)

Inhibition of L-type calcium channels Meta-Analysis: 3361 total across 
16 trials; 6 trials specifically for oral 
nimodipine (969 patients total)

Oral nimodipine reduces incidence 
of poor outcomes and delayed 
cerebral ischemia. Importantly, the 
results are driven primarily by a large 
single-center study

aSAH indicates aneurysmal subarachnoid hemorrhage; CONSCIOUS, Clazosentan to Overcome Neurological Ischemia and Infarction Occurring After 
Subarachnoid Hemorrhage; and PKA, protein kinase A.
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responsible for the SAH-induced increase in endothe-
lin-1 expression.57 Some early clinical studies into this 
pathway found that plasma endothelin-1 concentra-
tions correlated with DCI58 and endothelin-1 inhibition 
reversed SAH-associated reductions in cerebral blood 
flow.59 So, although endothelin-1 antagonism alone 
does not prevent DCI, it is still important to consider 
the acute phase sequelae of increased intracranial 
pressure that occur independently of hemoglobin-
mediated vascular dysfunction.
Management of elevated intracranial pressure and hy-
drocephalus is also significant to outcomes after SAH. 
Aggressive clearance of cerebrospinal fluid (CSF) 
through continuous external ventricular drainage is a 
conceptually tempting approach to lower intracranial 
pressure and accelerate clearance of spasmogenic 
blood products; however, this strategy does not lead 
to decreased DCI.60 Further, intermittent CSF drain-
age and rapid external ventricular drainage weans are 
associated with fewer complications and shorter in-
tensive care unit length of stay.60–62 Lumbar drainage 
has emerged as an alternative to external ventricular 
drainage that has the potential to provide the benefits 

of CSF drainage, including reduced vasospasm, with 
a lower rate of complications.63,64 There is an ongoing 
trial assessing neurapheresis using a lumbar drainage 
filtration system as an intervention to reduce DCI.65 
These approaches demonstrate the ability of refined 
techniques to not only prevent complications but ac-
tively suppress DCI pathology as well.

Hemoglobin and other blood products remain se-
questered until the erythrocytic membranes become 
unstable and lyse, releasing oxyhemoglobin and 
other vasoactive blood products. Oxyhemoglobin and 
deoxyhemoglobin concentrations in the CSF peak 
around day 7 post-SAH in primates,66 roughly cor-
responding to the onset of secondary brain injury. 
Even before the precise mechanisms were clarified, 
the hypothesis that hemoglobin must be the primary 
spasmogen was supported by reports that hematoma 
evacuation prevents vasospasm in primates.67,68 A few 
years later, purified oxyhemoglobin alone was shown 
to induce a contractile response in canine cerebral ar-
teries69 and later studies demonstrated this occurred 
through the Rho/ROCK (Rho/Rho-associated pro-
tein kinase) and PKC (protein kinase C) pathways.70 

Figure 1.  Vascular dysfunction after subarachnoid hemorrhage.
Transient global ischemia and free hemoglobin toxicity are the ultimate sources of vascular dysfunction leading to microthrombosis 
and vasospasm. Perturbation of the NO pathway is a pivotal mechanism connecting vascular dysfunction to inflammation and cortical 
spreading ischemia. The glymphatic system and meningeal lymphatic vessels are also emerging as a possible mediator of delayed 
cerebral ischemia. CBF indicates cerebral blood flow; CSF, cerebrospinal fluid; ICP, intracranial pressure; ROS, reactive oxygen 
species; SAH, subarachnoid hemorrhage; and SDs, spreading depolarizations.
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Fasudil, an inhibitor of the Rho/ROCK pathway, has 
been shown to reduce smooth muscle cell contraction, 
reduce vasospasm, and improve clinical outcomes 
after aSAH,71–73 but it is not approved for use by the 
Food and Drug Administration or European Medicines 
Agency. Cilostazol, a phosphodiesterase enzyme3 in-
hibitor that relaxes vascular smooth muscle and inhib-
its platelet activation,74 has also been shown to reduce 
vasospasm and improve clinical outcomes in several 
trials.42,75 Oxyhemoglobin is also a potent scavenger 
of NO and reduces the availability of NO in the sur-
rounding cerebral vasculature.76,77 Production of NO 
is unable to compensate for this loss owing to a rise 
in asymmetric dimethylarginine,78,79 an endogenous 
nitric oxide synthase (NOS) inhibitor, and decreased 
expression of endothelial- and neuronal-specific NOS 
isoforms.80,81 The remaining NOS enzymes are also 
damaged through oxidation of essential enzymatic co-
factors by reactive oxygen species from hemoglobin 
metabolism and local inflammation. This results in the 
“NOS uncoupling” phenomenon whereby consump-
tion of substrates L-arginine and O2 is “uncoupled” 
from NO production and instead results in superoxide 
(O ⋅ −

2
) generation.82 The presence of superoxide further 

reduces NO bioavailability by reacting with the remain-
ing NO to form peroxynitrite, a potent oxidizing agent.82 
This perfect storm of vasoconstrictive, NO-depleting, 
and reactive oxygen species-generating events after 
SAH is central to the resulting vascular dysfunction 
(Figure  1). This has been demonstrated experimen-
tally by administration of NO-donors, which improved 
cerebral hemodynamics in humans and non-humans 
primates after SAH83,84; however, NO donors have little 
translational potential owing to their adverse effects.83 
Nonspecific antioxidant therapies are also ineffective 
after SAH, demonstrated most clearly by the failure 
of tirilazad to improve outcomes in a meta-analysis of 
3821 patients.41 Interestingly, the clinical importance 
and relative pathological contribution of the “NOS un-
coupling” phenomenon is still not completely resolved, 
as some studies report genetic knockout of endothelial 
NOS in mice reduces vascular dysfunction after SAH 
whereas others show phenotypes similar to wild-type 
mice.85,86 In any case, future therapeutic application 
must account for the complexities of the NOS pathway 
and the context-dependent relationship between NOS 
activation and NO bioavailability.

Microthrombosis and 
Thromboinflammation
The NO-cyclic guanosine monophosphate pathway 
is central to preserving vascular homeostasis through 
inhibition of platelet aggregation, leukocyte adhesion, 
and smooth muscle cell proliferation in addition to 
maintaining vasodilatory tone.87–90 The procoagulant 

effects of platelet aggregation and spasm within in-
traparenchymal arterioles, known as microthrombo-
sis, has been an emerging area of intense research 
because the incidence of microclots was shown 
to correlate with DCI and clinical outcome.15,91–94 
The endothelial protease ADAMTS13 normally re-
presses platelet adhesion and thrombosis-induced 
inflammatory change through downregulation of von 
Willebrand factor and P-selectin,95 making microvas-
cular endothelial injury and ADAMTS13 dysregula-
tion a potential link between microthrombosis and 
pathological inflammation. Interestingly, decreased 
ADAMTS13 activity and increased von Willebrand fac-
tor and P-selectin levels all predict the development 
of DCI in patients with SAH,96–99 indicating thrombo-
inflammation could be a clinically relevant therapeutic 
target. Preclinical animal models have demonstrated 
increased P-selectin expression in the microvascular 
endothelium after SAH corresponding to areas of mi-
crothrombosis and neuronal cell death.100 Moreover, 
treatment with a monoclonal anti-P-selectin anti-
body can reduce platelet-endothelial and leukocyte-
endothelial interations,101 suggesting P-selectin may be 
a particularly suitable translational candidate to target 
thromboinflammatory pathways. In addition to inciting 
inflammation, activated platelets release glutamate,102 
high concentrations of which can be neurotoxic.103 In 
rats, glutamate levels in the CSF increase after SAH104 
and there is an association between the location of 
microthrombi and regional markers of excitotoxicity,105 
indicating that the platelets within microthrombi could 
be the source of toxic glutamate. Moreover, glutamate 
and glutamate receptor activity are important regula-
tors of the incidence and propagation of spreading 
depolarizations (see “Spreading Depolarizations”). A 
small, exploratory study in humans found extracellu-
lar glutamate concentrations rise after SAH, vary from 
region to region, and may predict clinical outcome.106 
Although more study is needed to confirm and expand 
upon these findings, regional variation in glutamate lev-
els could be explained by the presence of microthrombi 
in areas that progress to delayed ischemia. Taken to-
gether, the available evidence strongly suggests micro-
circulatory dysfunction is central to DCI pathology and 
an important area for more intense investigation.

There have been several trials aiming to reduce DCI 
through inhibiting coagulation or platelet aggregation. 
An important point to consider in the interpretation 
of these studies is that the effects of anticoagulative 
therapies on primary hematoma dissolution and pre-
vention of secondary microthrombi cannot be read-
ily discerned from one another. The design of these 
protocols has to be done carefully as rebleeding of a 
previously secured aneurysm and other hemorrhagic 
complications are of primary concern with these 
treatment modalities. Systemic anticoagulation with 
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enoxaparin was shown to reduce DCI when given to 
Hunt-Hess grade I–III patients,107 but this effect was 
lost when the patient population was expanded to in-
clude more severe hemorrhage.108 Three retrospective 
studies have also found that treatment with low-dose 
intravenous heparin reduces DCI and improves func-
tional outcomes.109–111 A rat model suggests that hep-
arin may work through reducing the neuroinflammatory 
response to SAH.112 Antiplatelet therapy has also been 
tested through trials of aspirin, ozagrel hydrochloride, 
dipyridamole, and ticlopidine. A meta-analysis (1385 
patients total) of trials with these agents to date showed 
a modest trend for better outcomes but also a possi-
ble increase in hemorrhagic complications.113 A recent 
retrospective study found dual therapy of aspirin and 
clopidogrel was associated with reduced incidence of 
DCI and no increased risk of hemorrhagic complica-
tions,114 suggesting antiplatelet therapy could be use-
ful with refined protocols. We are currently evaluating 
the glycoprotein IIb/IIIa inhibitor tirofiban as one such 
therapeutic. Compared with aspirin and clopidogrel, 
tirofiban has a narrow therapeutic window, making it 
an ideal antiplatelet agent for aSAH that may require 
further neurosurgical interventions.115 After carefully 
establishing safety and efficacy profiles in patients with 
aSAH,116,117 a small trial showed promising reductions 
in DCI without increase hemorrhagic complications.118 
Larger clinical trials will be instrumental in definitive 
evaluation of tirofiban and other antiplatelet therapies 
as a treatment to prevent DCI.

Glymphatic and Meningeal Lymphatic 
System
Lack of a lymphatic system was long believed to be 
a unique characteristic of the central nervous system 
until Louveau et al discovered lymphatic vessels within 
the lining of the dural sinuses that interface with the 
deep cervical lymph nodes.119 This discovery led to the 
hypothesis that alterations in this novel meningeal lym-
phatic system and the central nervous system (CNS) 
paravascular glymphatics contribute to the develop-
ment of DCI. Even before the discovery of meningeal 
lymphatics, it was demonstrated that cervical lymph 
node blockage intensified oxidative stress after SAH.120 
More recently, the meningeal lymphatic system was 
found to be important for clearing the extravasated 
erythrocytes from SAH and disruption of the lymphatic 
vessels exacerbated the neuroinflammatory response, 
especially microglial activation.121

Upstream from the meningeal lymphatics, paravas-
cular glymphatic pathways lie next to penetrating arter-
ies and constitute the direct interface between CSF and 
parenchymal interstitial fluid.122 This pathway provides a 
route for blood products from SAH to quickly penetrate 
brain parenchyma and stimulate neuroinflammation.123 

Liu et al demonstrated that knockout of AQP4 (aqua-
porin 4), which is expressed in astrocytes at the in-
terface of the paravascular pathways,124 worsens 
outcome after SAH in rats.125 Their study indicates that 
AQP4 may be involved in the impaired glymphatic flow 
observed after SAH. Further, microthrombi formed in 
the paravascular spaces after SAH can obstruct CSF 
flow through the glymphatic system and contribute to 
increased intracranial pressure.126 Administration of tis-
sue plasminogen activator can clear the thrombi from 
the paravascular space, increase cerebral blood flow 
in the early brain injury phase, and improve neurologi-
cal function in the delayed phase.123,126

Investigation into the paravascular space and men-
ingeal lymphatics as a therapeutic target for DCI is 
still in its infancy; however, the foundational studies 
demonstrate an exciting avenue for future research. 
The exposure of brain parenchyma to the toxic effects 
of hemoglobin, hemoglobin metabolites, and other 
blood products is clearly regulated by the paravascular 
pathways. Strategies to limit the dissemination of toxic 
metabolites into healthy tissue while permitting their 
clearance through the lymphatic system may prove 
valuable. Earlier research on fibrinolytic therapies pre-
sumed the therapeutic mechanism was clearing the 
primary hematoma or microthrombi within penetrat-
ing arterioles and capillaries. Reinterpretation of these 
studies with respect to the influence of paravascular 
microthrombi could prove worthwhile.

Autoregulatory Failure
Cerebrovascular autoregulation is the process by 
which cerebral blood flow is held constant over a 
spectrum of perfusion pressures and blood gas partial 
pressures.127,128 There are myogenic, neurogenic, met-
abolic, and endothelial factors contributing to cerebral 
autoregulation129,130; thus, autoregulatory failure after 
SAH is best conceptualized as a summative process 
rather than an independent pathological mechanism. 
Yundt et al found that patients with SAH, regardless 
of the presence of vasospasm, have decreased cer-
ebral blood volume compared to age-matched healthy 
volunteers, whereas healthy volunteers subjected to 
carotid compression display an increase in cerebral 
blood volume.131 This study was important in that it 
showed not just a diminished autoregulatory capacity 
but a complete inversion of normal function. Another 
similar study found diminished autoregulatory capac-
ity, as measured by the transient hyperemic response, 
predicted the development of DCI.132 This phenome-
non has been replicated in recent years in a variety of 
settings and using different imaging133,134 and vascular 
reactivity stimuli,135 reaffirming the association between 
diminished autoregulatory capacity and development 
of DCI after SAH.
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The nature of autoregulation as an integrative pro-
cess makes its relationship with DCI difficult to de-
lineate through interventional studies. A phase II trial 
found that pravastatin treatment reduced the duration 
of impaired autoregulation and improved outcomes 
compared to placebo.136 Overall, the current literature 
supports autoregulation as a useful biomarker in clini-
cal studies, but more research is required to determine 
if autoregulatory disturbance is required for the devel-
opment of DCI.

INFLAMMATION
Systemic Inflammation After SAH
Inflammation is an extremely broad category of physi-
ological and pathophysiological host responses to 
infection and tissue injury.137 The severity of the inflam-
matory response after SAH predicts DCI and poor 
outcomes. Retrospective studies find that lactate con-
centration, CRP (C-reactive protein) levels, erythrocyte 
sedimentation rate, leukocyte count, negative nitrogen 
balance, neutrophil-lymphocyte ratio, and systemic in-
flammatory response syndrome burden, all nonspecific 
markers of inflammation, predict outcome following 
SAH.138–145 Accordingly, systemic immunosuppression 
with corticosteroids was one of the first experimental 
treatments to prevent DCI.146,147 These and more recent 
studies148 analyzing steroid treatment have shown no 
effect on DCI and only a modest benefit toward func-
tional outcome. The mixed effects of these small trials 
are not sufficient to prove benefit or overcome the mul-
titude of adverse side effects; thus, glucocorticoids are 
not currently indicated in patients with SAH. Additional 
clinical trials are also unlikely after a large randomized 
controlled trial showed corticosteroid treatment in-
creased mortality in the pathophysiologically related 
setting of traumatic brain injury.149 Cyclosporine (dis-
cussed further in the next section) and nonsteroidal 
anti-inflammatory drugs have also been used as gen-
eral anti-inflammatories after SAH. A prospective ob-
servational study of 138 patients found that cumulative 
nonsteroidal anti-inflammatory drug usage correlated 
with better outcome (Glasgow Outcome Scale score 
>3) and fewer cerebral infarctions.150 Another study of 
178 patients found nonsteroidal anti-inflammatory drug 
use led to lower mortality and shorter intensive care 
unit stay, but the effects on DCI and functional out-
come were nonsignificant.151 Aspirin alone has shown 
no benefit to DCI or outcome.152,153 Overall, nonspecific 
anti-inflammatory therapies have proven disappointing 
for prevention of DCI and poor outcomes.

Clear delineation of the complex inflammatory cas-
cades induced after SAH is necessary in order to de-
velop targeted anti-inflammatory therapies. Clinical 
studies have demonstrated that CSF concentrations 

of the classical pro-inflammatory cytokines interleu-
kin-6, interleukin-8, interleukin-1β, tumor necrosis 
factor-alpha, and MCP-1 (monocyte chemoattractant 
protein-1) correlate with DCI and poor outcomes.154–157 
Unfortunately, many early mechanistic studies in an-
imal models have focused primarily on vasospasm 
instead of neuronal cell death or behavioral outcome, 
obscuring their relevance to translational application. 
Within the last 15 years, this paradigm has begun to 
shift, and the cellular and molecular mechanisms of 
SAH-induced inflammation are emerging from animal 
studies. We present these advances in the context of 
the inflammatory cells, resident microglia, and periph-
eral leukocytes, which mediate host response to SAH 
and react to inflammatory change within the CNS.

Cellular Mediators—Glia
Glial involvement in SAH pathology had been sus-
pected since the establishment of free heme as a 
toll-like receptor 4 (TLR4) activator.158 TLR4, a pattern 
recognition receptor central to innate immune function, 
is expressed in all myeloid-origin cells159; however, the 
function of microglia as resident TLR4-expressing cells 
makes them well positioned to respond first to TLR4-
heme interactions in the CNS. TLR4 expression was 
shown to increase after SAH,160 but the evidence for 
microglial participation in SAH pathology remained 
speculative until a landmark paper from Hanafy dem-
onstrated microglia-depleted mice have reduced va-
sospasm and neuronal apoptosis.161 The same study 
showed neuronal apoptosis and vasospasm are dimin-
ished in TLR4 knockout mice early after SAH but evolve 
to be driven by TLR4-independent mechanisms in the 
delayed phase. The contribution of microglia to neu-
ronal cell death after SAH was reaffirmed by Schneider 
et al through selective depletion of microglia using a 
ganciclovir-sensitive “suicide gene.”162 This study left 
peripheral macrophages intact to differentiate between 
resident and peripheral myeloid cell involvement. They 
found that microglia-depleted mice had decreased 
neuronal cell death as far out as 9  days post-SAH. 
Together, these studies clearly establish microglia as 
critical mediators of neuroinflammation and neuronal 
injury after SAH (Figure 2).

The precise molecular mechanisms of microglia ac-
tion in the DCI phase remain elusive; the Hanafy study 
demonstrated neuronal cell death is TLR4-dependent 
only in the early brain injury phase. There are several 
other proposed pathways that contribute to microglia-
mediated neuroinflammation after hemorrhagic stroke. 
In cultured microglia cells, the inflammatory reaction 
to thrombin exposure (ie, interleukin-6, tumor necro-
sis factor-alpha, CCL2/MCP1 [chemokine ligand 2/ 
monocyte chemoattractant protein 1] production) is 
muted by TGFβ1 (transforming growth factor beta 1) 
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treatment.163 Further, the same study showed reactive 
microglia express lower levels of TGFβ1, and human 
patients with increased TGFβ1 after intracerebral hem-
orrhage had better outcomes at 90 days; These find-
ings have yet to be replicated in humans after SAH, but 
simvastatin therapy was found to induce lymphocytic 
TGFβ1 expression in a rat model,164 suggesting there 
could be similarities in TGFβ1’s actions. HMGB1 (high 
mobility group box 1 protein is a nuclear protein that 
regulates chromatin remodeling and gene transcrip-
tion; however, it is also secreted as an inflammatory cy-
tokine by myeloid lineage cells, including microglia.165 
Neutralization of HMGB1 with a monoclonal antibody 
attenuates microglial reactivity and improves neurolog-
ical function after SAH.166 In humans, higher HMGB1 
CSF concentrations are correlated with unfavorable 
outcomes.156 Unfortunately, these studies are unable 
to differentiate between microglia-derived and macro-
phage/monocyte-derived HMGB1, complicating their 

interpretation. Future investigation should evaluate the 
mechanisms of microglial involvement in the delayed 
phase after SAH.

Cellular Mediators—Peripheral 
Leukocytes
An association between peripheral immune response 
and outcome after SAH has been observed for many 
years,167 including recently when outcome measures 
were updated to match the current consensus defini-
tion of DCI.143 Markers of both myeloid and lymphoid 
lineage cells have also been directly observed in the 
CSF and tissue near the subarachnoid space, implying 
these cells could be directly involved with SAH pathol-
ogy.154,168,169 Other correlational studies support this 
notion by showing the degree of peripheral immune 
reaction predicts outcome.140,141,170 One hypothesis to 
explain this phenomenon is that peripheral immune 
cells respond when the resident CNS macrophages 

Figure 2.  Mechanisms of inflammatory response after subarachnoid hemorrhage.
Subarachnoid hemorrhage elicits an inflammatory response from resident CNS glia directly through TLR4 
and CD163 receptor signaling. Reactive microglia then contribute to inflammatory cytokine production, 
vasospasm, and neuronal apoptosis. The endothelium of the cerebrovasculature also contributes to 
inflammation by recruiting circulating leukocytes. Neutrophils, monocytes, and lymphocytes all enter the 
CNS after SAH and promote vasospasm and inflammatory cytokine release. CD163 indicates cluster of 
differentiation 163; CNS, central nervous system; SAH, subarachnoid hemorrhage; and TLR4, toll-like 
receptor 4.
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(microglia) are overwhelmed by massive hemolysis fol-
lowing SAH. The baseline capacity of the CNS CD163 
(cluster of differentiation 163)-haptoglobin scavenger 
system is much lower than in the periphery and is eas-
ily saturated after SAH.171 Administration of haptoglobin 
into the subarachnoid space has been shown to re-
duce vasospasm.172 Haptoglobin genotype also affects 
hemoglobin affinity and outcome after SAH indicating 
that the response after CD163-haptoglobin saturation 
could be responsible for some of the detrimental ef-
fects.173,174 Cyclosporine A, an immunosuppressant 
that acts primarily through T cells but also inhibits my-
eloid cell function,175 was used to target this immune 
reaction but has resulted in mixed effects in underpow-
ered trials and animal studies.176–179 Animals studies 
have shown generally positive results from peripheral 
myeloid cell depletion. Monoclonal antibody-mediated 
neutralization of CD11b/CD18-positive cells resulted in 
decreased vasospasm in rabbits and nonhuman pri-
mates.180,181 The limitation of these studies is the em-
phasis on vasospasm as an outcome measure rather 
than DCI. The expression of CD11b/CD18 on multiple 
cell types also limits their interpretation. A similar study 
from Provencio et al improved on previous studies by 
demonstrating improved functional outcome in addi-
tion to decreased vasospasm in mice after treatment 
with anti-lymphocyte antigen 6 complex antibody.182 
Lymphocyte antigen 6 complex is primarily expressed 
on neutrophils but certain monocyte, macrophages, 
and lymphocyte subpopulations also express this 
marker.183 Taken together, these data show a strong 
scientific premise for peripheral myeloid and lymphoid 
cell involvement in the SAH pathology (Figure 2). More 
studies with emphasis on DCI and functional outcome 
are needed before translational therapies can be tri-
aled in human patients.

By responding to inflammatory change on endo-
thelial surfaces, circulating immune cells serve as 
the link between vascular dysfunction, vascular in-
flammation, and systemic immune response. Cell 
adhesion molecules (CAMs) are a family of proteins 
that facilitate immune cell—endothelium interaction 
after vascular injury.184 Increased CAM expression 
after SAH is well-established, having been demon-
strated in the serum and CSF of humans as well as 
directly in the vascular and cerebral tissues of ani-
mal studies.185–187 A study by Polin et al showed sev-
eral CAMs (intercellular adhesion module-1 [ICAM-1], 
VCAM-1, and E-selectin) are upregulated in CSF after 
SAH and E-selectin levels correlate with poor out-
comes.188 Another study similarly showed P-selectin 
but not ICAM-1, vascular CAM-1, or platelet endothe-
lial CAM was increased in patients with low-grade 
SAH and DCI.98 These studies suggest that the se-
lectin subtype of CAMs may be more important in 
the development of DCI than the immunoglobulin 

superfamily subtype (ICAM-1, vascular CAM-1, etc); 
however, no interventional studies have proven a di-
rect role. One study has shown E-selectin inhibition 
decreases vasospasm in rodents.189 Treatments neu-
tralizing ICAM-1 via antibody treatment have shown 
decreased leukocyte infiltration, demonstrating the 
putative mechanism of CAMs in DCI pathology.190–192 
One of these studies coadministered an anti-CD18 
(ICAM-1 ligand) antibody and found that vasospasm 
was decreased more than with anti-ICAM-1 treat-
ment alone, suggesting that inflammatory cells con-
tribute to vasospasm in a partially CAM-independent 
fashion.192 The use of vasospasm as outcome rather 
than neurobehavioral function is a major limitation of 
these studies; nonetheless, the entirety of the current 
literature supports the hypothesis that peripheral im-
mune cells respond to inflammatory changes in the 
endothelium after SAH. More investigation into these 
pathways with a focus on functional outcome is nec-
essary to determine their utility as therapeutic targets.

Statins have been tested extensively owing to their 
anti-inflammatory effects independent of hepatic β-
Hydroxy β-methylglutaryl-CoA reductase inhibition.193 
Some early single-center randomized controlled trials 
with simvastatin194 and pravastatin136 showed reduc-
tions in vasospasm and DCI, encouraging more inves-
tigation into statin therapy. The largest trials to date 
(STASH [Simvastatin in Aneurysmal Subarachnoid 
Haemorrhage] and HDS-SAH [High-Dose Simvastatin 
for Aneurysmal Subarachnoid Hemorrhage]), however, 
demonstrated simvastatin does not improve outcomes 
or reduce DCI.39,40

SPREADING DEPOLARIZATIONS
Physiology of Spreading Depolarizations
Spreading depolarizations, as the term implies, are 
slowly propagating waves of almost complete mem-
brane depolarizations in both neuronal and glial cells. 
Usage of the terms “spreading depolarization” and 
“spreading depression” often varies between authors 
and disciplines; for the purposes of this review, we 
consider “spreading depolarization” to best describe 
the underlying biophysical phenomenon, “spreading 
depression” to be its manifestation as decreased neu-
roelectric activity, and use the initialism “SD” to refer in 
general to both spreading depolarizations and depres-
sions. Spreading depressions were first discovered by 
Leão in 1944 while studying epilepsy and he noted its 
hyperemic effect on pial vasculature soon after.195,196 In 
healthy brain tissue, SDs can be elicited by increasing 
extracellular K+ concentrations to a point where pas-
sive ion channels open and overload the capacity for 
ATP-dependent Na+, K+, and Ca2+ pumps to maintain 
ion homeostasis.197 SDs are initiated by similar mecha-
nisms in metabolically compromised brain tissue but 
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can be more severe and longer lasting.198 Mechanisms 
of SD propagation are still under intense investigation, 
but it is generally accepted that passive diffusion of 
extracellular K+ and glutamate provoke depolarization 
in surrounding grey matter.198,199 A positive feedback 
loop mediated by N-methyl-D-aspartate receptor- 
and Ca2+ channel-dependent glutamate release and 
other voltage-gated channels also seems crucial to 
the self-sustaining nature of SDs.198 Because of their 
uniqueness and powerful suppression of normal brain 
activity, SDs have been studied extensively in the con-
text of many neurological disorders and diseases in-
cluding stroke.199

Spreading Depolarizations After SAH
SDs evoke a hyperemic response in healthy tissues 
as a result of the increased metabolic demand dur-
ing disrupted ion homeostasis.200 Injured or otherwise 
compromised brain tissues are more prone to neuro-
vascular uncoupling and often show hypoperfusion 
after SDs (Figure 3).200 These depolarizations are also 
sometimes referred to as “peri-ischemic depolariza-
tions” or “cortical spreading ischemia,” although they 
are functionally indistinguishable from SDs when they 
spread into healthy tissue.201,202 Early investigation 
into neuroelectric sequelae of cerebrovascular dis-
ease revealed that ischemic stroke induces multiple 

occurrences of SDs through the cortex.203 Just a few 
years later, Dreier et al demonstrated that topical ap-
plication of K+ and hemoglobin could induce SDs/
cortical spreading ischemia in rats.204 K+ cations and 
free hemoglobin in the subarachnoid space are char-
acteristic of hemolyzed red blood cells after SAH, lead-
ing to the hypothesis that SDs induced in this manner 
might play a pathologic role in the poor outcomes are 
SAH. Consistent with this notion, Dreier et al again 
showed that “products of hemolysis” (K+ and hemo-
globin added to artificial CSF) cause SDs and cortical 
spreading ischemia in the cortex as well as massive 
neuronal cell death and reactive gliosis (Figure  3).205 
A landmark paper from the same group found that 
SDs occur after SAH in humans and predict the de-
velopment of DCI.206 Later studies also revealed that 
clusters of SDs magnify the duration of tissue hypoxia 
and that clustered SDs may be more important to DCI 
pathology than isolated depolarizations.207,208 Further, 
the correlation between SDs and DCI remains even 
after the successful treatment of angiographic vasos-
pasm.209 The totality of these studies, driven in large 
part by the COSBID (Co-Operative Studies on Brain 
Injury Depolarizations) Study Group, have revolution-
ized the conceptualization of DCI pathology. SDs and 
related factors are now rightly at the forefront of inves-
tigation into improving SAH outcomes.

Figure 3.  Spreading depolarizations after subarachnoid hemorrhage and potential therapeutic targets.
Spreading depolarizations cause cerebral ischemia by increasing metabolic demand in injured tissue unable to compensate with 
increased perfusion. SAH itself also promotes the development of spreading depolarizations by the release of K+ and glutamate from 
extravasated erythrocytes and platelets. A couple of promising therapeutic agents to prevent spreading depolarizations/cortical 
spreading ischemia are ketamine and cilostazol. Ketamine works through inhibiting NMDA receptors and the propagation of spreading 
depolarizations. Cilostazol reduces ischemia by improving neurovascular response to depolarization. DCI indicates delayed cerebral 
ischemia; NMDA, N-methyl-D-aspartate; and SAH, subarachnoid hemorrhage.
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Spreading Depolarizations as a 
Therapeutic Target
Inquiry into treatments that target SDs/peri-ischemic 
depolarizations to prevent DCI is still in its early 
stages; nonetheless, several promising avenues of 
investigation have been identified. Vasoactive drugs 
can modulate the neurovascular response to SD and 
prevent pathological hypoperfusion. The earliest work 
was based on the finding from Dreier et al that inhi-
bition of NOS produced similar SD effects as topical 
hemoglobin application, implying that NO scavenging 
and vasoconstriction by hemoglobin could be criti-
cal to transforming the hyperemic SD response into 
a cortical spreading ischemia response.204 Treatment 
with NO-donors and NO-independent vasodilators 
reduced the ischemia/hypoperfusion after K+-induced 
SDs.210 The same group of researchers also showed 
nimodipine treatment reduces SD-induced ischemia 
in rats.211 Years later, the phosphodiesterase enzyme3 
inhibitor cilostazol was shown to reduce spreading is-
chemia after mimicked SAH-induced SDs (Figure 3).212 
The same study tested cilostazol in a relatively small 
number of human patients with aSAH and observed 
a nonsignificant trend for decreased DCI, indicating a 
larger clinical trial may be worthwhile. These studies 
exemplify the interdependency between pathological 
factors after SAH. Given the discrepancy in perfusion 
response between healthy and injured tissues, SDs/
peri-ischemic depolarizations reveal vulnerabilities in 
the cerebrovasculature that might not have otherwise 
progressed far enough to cause DCI. The second 
area of investigation into therapeutics is direct inhi-
bition of SD propagation. N-methyl-D-aspartate re-
ceptors have long been known to play a pivotal role 
in SD propagation in otherwise healthy tissue213–215; 
thus, N-methyl-D-aspartate receptor antagonism was 
a logical place to explore post-SAH therapies. A 2012 
study analyzing various classes of sedatives and an-
algesics found that the N-methyl-D-aspartate recep-
tor antagonist ketamine decreased the incidence of 
SDs in patients with traumatic brain injury and SAH, 
whereas midazolam increased SDs and propofol, 
fentanyl, and morphine had no effect.216 More recent 
studies have found that ketamine reduces SDs in a 
dose-dependent fashion and can inhibit SD incidence 
when started in patients with SAH who have already 
had multiple SDs (Figure 3).217,218 Larger clinical trials 
are needed to fully evaluate the efficacy of ketamine 
in this context. The anticonvulsant valproate has also 
been investigated based on its SD-inhibiting proper-
ties in healthy tissue.219,220 Valproate treatment was 
found to reduce cerebral lesion growth after SAH 
with and without added SD induction (topical potas-
sium chloride application).221 To our knowledge, these 
findings have yet to be replicated in human patients 

with SAH but still contribute to the mounting evidence 
that blocking SD propagation could yield favorable 
outcomes. Additionally, older treatments need to 
be reassessed with respect to their effects of SDs. 
As previously discussed, nimodipine reduces SD-
induced ischemia and it is tempting to assume this 
occurs through inhibition of L-type calcium channels 
in the smooth muscle of the cerebrovasculature; how-
ever, nimodipine can work in a vessel-independent 
fashion to directly alter the ion flux/electrical response 
to stress in neurons.222 This finding could help explain 
why nimodipine reduces secondary ischemia after 
SAH without reducing vasospasm.34,36,37 The scien-
tific rationale for targeting SDs to reduce DCI is strong; 
now the objective of the field is to conduct powerful 
clinical trials in order to demonstrate a clear benefit in 
patients.

CONCLUSIONS
Rigorous investigation into the pathophysiology of de-
layed cerebral ischemia is imperative to improve out-
comes following SAH. The efficacy of current standard 
of care is suboptimal and large trials of new therapeu-
tics have failed to demonstrate benefit. We believe a 
deeper understanding of DCI will lead to novel thera-
peutic strategies and improve the lives of those who 
suffer from this devastating disease. The goal of this re-
view was to assist in this endeavor by providing an up-
to-date examination of the literature in regard to 3 main 
areas of DCI pathology: vascular dysfunction, inflam-
mation, and spreading depolarizations. Moreover, we 
pay special attention to the relationships between these 
areas in order to gain an integrative perspective of DCI 
and properly interpret study results. This analysis also 
serves to accentuate the recent discoveries that are the 
most promising candidates for clinical investigation.
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