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Summary 

 The origin of protein backbone threading through a topological knot remains elusive. 

To understand the evolutionary origin of protein knots, Ko et al (Structure, 2019) used 

circular permutation to untie a knotted protein. They showed that a domain-swapped 

dimer releases the knot and the associated high-energy state for substrate binding.  

 



Preview 

 Proteins with a topological knot represent a subset of complex structures that play important 

roles in biology, such as promoting efficient catalysis of certain enzyme reactions. Despite the 

increasing number of knotted protein structures being deposited to databases, the evolutionary 

origin of these protein knots is unclear. One mechanism suggested by an earlier bioinformatics 

analysis was circular permutation (Tkaczuk et al., 2007), in which an ancestor protein without a 

topological knot was circularly changed in the order of amino acids to create new termini with 

rearranged connectivity and spatial orientation of secondary structural elements to form a 

knotted progeny. While natural proteins related by circular permutations are known as a result of 

gene duplication (Goldenberg and Creighton, 1983; Lo et al., 2012), there has been no example 

of a knotted protein derived from an unknotted protein by circular permutation through the 

process of evolution or protein engineering. Hsu and colleagues now report a successful design 

of circular permutation (Ko et al., 2019), which converted a knotted protein to an unknotted 

protein by closing the original N and C termini and introducing a circular permutation site that 

opens the knotting loop (Figure 1A). In the new structure (Figure 1B), the original topological 

knot has been untied and the mechanical constraint associated with the knot has been 

released, resulting in a relaxed configuration that no longer binds the substrate. This work 

suggests the intriguing possibility that a protein knot was developed in evolution to address a 

specific structure-function demand for substrate binding.  

 Hsu and colleagues studied E. coli YbeA as an example (Ko et al., 2019), which is a dimeric 

enzyme belonging to the SPOUT methyl transferase family that uses a conserved trefoil-knot to 

bind the methyl donor S-adenosyl methionine (AdoMet) and to synthesize the methylated m3 

in 23S rRNA (Purta et al., 2008). In the trefoil-knot fold of YbeA, the polypeptide chain makes 

three crossings in and out of a knotting loop as part of the catalytic site (Mallam et al., 2010). 

Based on suggestions provided by the circular permutation design server CPred (Lo et al., 



2012), a total of 9 variants of YbeA were made, each with a new opening site near the trefoil-

knot. Only the variant CP74, which contains the new opening site at position Ile74 located in the 

knotting loop (Figure 1C), was soluble upon expression in E. coli, indicating its ability to fold into 

a well-defined structure. Subsequent crystal structural analysis of CP74 by Ko et al. (2019) 

revealed a dimer that has rearranged specific domains within the original dimer of the native 

YbeA enzyme. In the CP74 dimer, the C-terminal  strand of one monomer is inserted into the 

cleft between two N-terminal  strands of the other monomer to stabilize a dimer interface that is 

substantially expanded relative to the native structure (Figure 1D). In this domain-swapped 

dimer of CP74, the AdoMet-binding pocket has undergone a major conformational 

rearrangement, resulting in the loss of the structural complementarity that is necessary to form 

an appropriate hydrogen-bonding network to accommodate the methyl donor. Indeed, CP74 has 

no detectable binding affinity to a derivative of the methyl donor, whereas the native enzyme 

binds the derivative with a low Kd in the M range, typical of a SPOUT methyl transferase 

(Christian et al., 2010). Thus, while the resulting domain-swapped variant CP74 possesses a 

well-defined structure, albeit distinct from the native enzyme, due to the introduction of the 

circular permutation site to the knotting loop, it has lost the topological knot and no longer binds 

the methyl donor.  

 The topological trefoil-knot of YbeA is similar to that in E. coli TrmD, a related SPOUT 

methyl transferase that catalyzes biosynthesis of the methylated m1G37 in tRNA. In TrmD, the 

trefoil-knot is required to position AdoMet in the catalytically active form (Christian et al., 2016). 

Mutations that interfere with the folding of the knot prevent AdoMet from stable binding to the 

active site and severely compromise the methyl transferase activity. The catalytically active form 

of AdoMet in TrmD is an unusual “bent” conformation (Christian et al., 2016), in which the 

adenosine and methionine chemical moieties of the methyl donor fold back to face each other, 

in contrast to the “open” conformation commonly observed with non-SPOUT methyl 



transferases, where the two moieties are splayed out from each other. It is in this bent 

conformation that AdoMet binding to TrmD facilitates tRNA binding and then helps to assemble 

the active site for methyl transfer (Christian et al., 2016). Thus, the trefoil-knot fold is a pre-

requisite for AdoMet binding in the bent form, which in turn is a pre-requisite for supporting 

methyl transfer. This catalytic pathway, starting from AdoMet binding in the bent form to the 

TrmD trefoil-knot to mediating methyl transfer, is likely shared in common with YbeA (Koh et al., 

2017). Free energy calculations indicate that the bent form of AdoMet in TrmD is in a high-

energy state compared to the open form (Lahoud et al., 2011), indicating that the trefoil-knot is 

dynamically constrained. In crystal structures of SPOUT methyl transferases in complex with 

AdoMet or derivatives, including that of YbeA (Koh et al., 2017), the methyl donor is consistently 

bound in the high-energy bent form, indicating a paradigm uniquely associated with the trefoil-

knot that is required for substrate binding.  

 By untying the knot, Ko et al. showed that CP74 not only loses the AdoMet binding capacity, 

but also loses the conformational constraint associated with the knot and becomes more 

relaxed and more flexible at local dynamics relative to the trefoil-knot-containing native enzyme. 

Upon thermal denaturation, CP74 unfolds at a lower temperature and proceeds with more 

intermediates than observed for the native enzyme, indicating a reduced cooperativity. Upon 

urea denaturation, CP74 requires higher concentrations of the denaturant, consistent with the 

reduced cooperativity, and it unfolds with much slower kinetics during the phase that needs to 

unravel the extensive dimer interface as a result of domain-swapping. Once CP74 unfolds from 

the domain-swapped dimer to a monomeric intermediate, its folding and unfolding into the 

denatured state is as robust as the knotted native enzyme. The implication from these analyses 

that CP74 has a reduced cooperativity in folding and unfolding is interesting. The evolution of 

cooperativity in protein folding transitions is closely linked to the evolution of function as well as 

the propensity of protein aggregation. A large activation energy barrier in a fully cooperative 

transition can provide the kinetic control necessary to prevent accumulation of partially unfolded 



intermediates, which may promote aggregation. This consideration emphasizes another 

functional importance of the knot in facilitating the coordinated folding and unfolding of protein.  

 The successful untying of the knot in YbeA by Ko et al. using circular permutation raises the 

question of whether the same strategy can be taken to re-create the knot from the unknotted 

form. This would be a direct test of the previous bioinformatics prediction that the formation of a 

protein knot arose from an unknotted protein in evolution by circular permutation (Tkaczuk et al., 

2007). It would also facilitate protein engineering to create “designer” knotted proteins. Using 

CP74 as a model, the circular permutation design server CPred has identified potential sites 

that can be introduced to close off the opening site at position 74 and to re-open the structure in 

a way different than that of the native enzyme. One of these new sites is at position Gly126 

(Figure 1D), which is located in a C-terminal loop of CP74 far away from the knotting loop 

between 2 and 3, and is at a position not predicted to disrupt the folding of the original knot 

structure. It will be of great interest to determine whether the opening of position 126, or one of 

the other predicted sites in the Ile74-sealed CP74, will generate a knot that restores the 

AdoMet-binding site of YbeA. Possibly, iterative cycles of circular permutation, experimental 

investigation, and structural analysis and interpretation, are necessary to achieve this goal. 

Nonetheless, if successfully achieved, the impact is high. It will provide not only a framework to 

understand how the protein knot is formed, but also an invitation to protein design to integrate 

the knot structure for novel utility in biotechnology.    
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Figure legend 

Figure 1. Knotting and unknotting of a protein by circular permutation. (A and B) Cartoon 

representation of introducing a circular permutation site to the knotting loop of a trefoil-knot to 

untie the knot. (C) The native knotted structure of YbeA (PDB:INS5), showing position Ile74 to 

which a circular permutation opening was created to generate the unknotted CP74. (D) The 

structure of CP74 (PDB:5ZY0), showing position Gly126 for a new round of circular permutation 

that may restore the knot. In (C) and (D), the carbon atoms of Ile74 in YbeA and Gly126 in 

CP74 are highlighted in red.  
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