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REVIEW

Gut permeability and osteoarthritis, towards a mechanistic understanding of
the pathogenesis: a systematic review

Giorgio Guidoa, Guido Ausendab, Veronica Iasconec and Emanuele Chisarid

aDepartment of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; bFaculty of Medicine, University
of Milan, Milan, Italy; cExperimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; dRothman Orthopaedic
Institute at Thomas Jefferson University, Washington Township, NJ, USA

ABSTRACT
Osteoarthritis (OA) is the most common condition affecting human joints. Along with mechan-
ical and genetic factors, low-grade inflammation is increasingly supported as a causal factor in
the development of OA. Gut microbiota and intestinal permeability, via the disruption of tight
junction competency, are proposed to explain a gut-joint axis through the interaction with the
host immune system. Since previous studies and methods have underestimated the role of the
gut-joint axis in OA and have only focussed on the characterisation of microbiota phenotypes,
this systematic review aims to appraise the current evidence concerning the influence of gut
permeability in the pathogenesis of OA. We propose that the tight junction disruption may be
due to an increase in zonulin activity as already demonstrated for many other chronic inflamma-
tory disorders. After years of unreliable quantification, one study optimised the methodology,
showing a positive validated correlation between plasma lipopolysaccharide (LPS), obesity, joint
inflammation, and OA severity. Chemokines show a prominent role in pain development. Our
systematic review confirms preliminary evidence supporting a gut-joint axis in OA pathogenesis
and progression. Being modifiable by several factors, the gut microbiota is a promising target
for treatment. We propose a pathogenetic model in which dysbiosis is correlated to the bipartite
graph of tight junctions and bacterially-produced products, aiming to direct future studies in
the search of other bacterial products and tight junction disassembly regulators.

KEY MESSAGES

� Previous studies and methods have underestimated the impact of the gut-joint axis in osteo-
arthritis and have focussed on the characterisation of microbiota phenotypes rather than
clear molecular mediators of disease.

� Gut dysbiosis is related to higher levels of bacterial toxins that elicit cartilage and synovium
inflammatory pathways.

� Future research may benefit from focussing on both tight junctions and bacterially-pro-
duced products.
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Introduction

Osteoarthritis (OA) is the most common condition
affecting human joints and the 15th highest cause of
years lived with disability worldwide [1]. Though it
may develop in any joint, it predominantly affects dia-
rthrodial joints such as the hip and, following disease
progression, it ultimately leads to joint failure [2]. As
our understanding of the pathophysiology continues
to evolve, we have come to realise that OA is a com-
plex disease with multifactorial aetiology, where an
interplay between host and environmental factors

instigate the disease [3,4]. However, it is not known

why the progression of the disease is highly variable

in the individuals who develop this condition. Despite

traditionally considered “non-inflammatory” arthritis,

low-grade inflammation seems to have a causal role in

OA, and new studies suggest that it may be triggered

by the complex interplay between the gastrointestinal

microbiome [5], its products, and the immune system.
The gut microbiome comprises more than 3 million

genes, and each person features a unique microbiome

composition [6]. Taxonomic studies report that
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Firmicutes (including Lactobacillus, Bacillus, Clostridium,
Enterococcus, and Ruminicoccus genera) and
Bacteroidetes (including Sphingobacterium, Bacteroides,
Alistipes, Prevotella genera) are the main phyla, repre-
sentative of 90% of the total gut microbiome [7].
Many studies suggest that several intestinal [8] and
extra-intestinal diseases [9] are associated with specific
bacterial motifs and dysbiosis, that is a reduction in
microbial diversity and functional imbalance in micro-
bial communities. Notwithstanding the absence of
proof for a causal relationship between dysbiosis and
pathophysiology, for several diseases, a role in clinical
severity is demonstrated [10]. Gut permeability is an
emerging area of microbiome research since has been
shown as pivotal in non-gut disorders [11], and dis-
eases traditionally considered on a purely autoimmune
basis. In particular, evidence for a significant role of
the microbiota in the modulation of tolerogenic mech-
anisms has been reported [12,13].

Traditionally, low-vascularized tissues like articular
cartilage were considered the core of OA pathogenesis.
Thus, the joint environment seemed to be influenced
by systemic factors either indirectly through the sub-
chondral bone or in the neo-angiogenesis phase of OA
pathogenesis [14] when a multitude of blood mole-
cules, including bacteria and bacterial products, have a
gate from the blood to the cartilage [15–17]. However,
on a more accurate investigation, findings suggest that
the synovium is part of a dynamic interplay inside the
joint in OA development. Altogether, these findings
cannot be dismissed as pathological [18], bacteria and
bacterial products could affect the epigenetic land-
scape of chondrocytes [19] and prime the innate
immune response in the joint via Toll-like receptors sig-
nalling [5]. In addition, a recent study [20] suggests
that a microbiome exists inside the OA knee and hip
joints. The overall ecological interactions among these
microbial patterns are still mainly unknown.

How the gut influences OA pathogenesis is not
clear. Limited attention has been paid to the role of
intestinal permeability as a mediator of the effects of
the microbiome on the joint. Previous studies and
methods have underestimated the impact of micro-
biome products and intestinal permeability in the
pathogenesis of OA [21]. Given the lack of mechanistic
insight and the absence of a clear definition of the
molecular actors involved in the pathogenesis of OA,
in this review, we aim to appraise the direct and indir-
ect effects of gut dysbiosis on the affected joint,
focussing on clear molecular mediators emerging from
related literature, to help direct future studies.

Materials and methods

Study search strategy

This systematic review was conducted according to the
2021 guidelines of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) (Figure
2) [22]. A comprehensive search was performed using
three electronic medical databases (PubMed, EMBASE,
and Cochrane Library) by two independent authors (GA
and VI) from January 2020 to April 2020. To achieve
maximum sensitivity we combined the terms “gut
microbio� OR gut OR streptococcus OR lactobacillus OR
bifidobacterium OR clostridium OR microbiome” and
typical anatomical landmarks of disease “hip OR knee”
with some terms related to osteoarthritis and inflamma-
tion (arthritis, osteoarthritis, inflammation, synovial,
synovitis, cytokines, chemokines, molecular mediators)
as either keywords or Medical Subject Heading (MeSH)
terms. To elucidate the growing interest in the review
topic in the medical literature, we graphically summar-
ised the number of articles per year (Figure 1). The
research was then repeated in February 2021 but did
not retrieve new results.

References of all included articles, previous reviews,
and Google Scholar top results were reviewed to iden-
tify further relevant studies. Moreover, intending to
avoid overlap with other ongoing systematic reviews,
we searched PROSPERO for any similar work.

Selection criteria

Selected studies included those investigating the influ-
ence of microbiome composition on osteoarthritis, the
role of diet and dietary interventions on the inflamma-
tory state, and the molecular mediators involved. Both
clinical and preclinical studies published in English in
peer-reviewed journals were screened. We excluded
studies with missing or not accessible data. We
excluded studies for which a full-text article was not
available, as well as not well-reported studies. We
excluded duplicates and studies with a poor or
unclear methodology. Finally, we excluded reviews,
case reports, conference presentations, and articles
only containing opinions. Three authors (GA, GG and
VI) searched and evaluated the articles independently.
An experienced researcher (EC) resolved cases of
doubt. All abstracts were read and, according to inclu-
sion and exclusion criteria, relevant articles were
selected. A month later, the rereading of the same
studies ensured agreement among the investigators.
One investigator (GA) extracted data from full-texts
into Excel to analyse each study and data were dou-
ble-checked by the other two investigators (GG, VI).
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Data extraction and criteria appraisal

Data were extracted from article texts, tables, and fig-
ures using the Population, Intervention, Comparison,
Outcome framework [23]. Title, year of publication,
study design, number and characteristics of the sub-
jects involved were considered together with study
outcomes and conclusions. Three investigators (GA,
GG, and VI) independently reviewed each article.
Discrepancies were resolved by discussion.

Risk of bias assessment

The risk of bias of 4 non-randomized clinical studies
was assessed according to the ROBINS risk of bias tool
[24]. This tool used “low,” “moderate,” and “high” to
describe the risk of bias. The assessment was per-
formed by two authors (GA and VI) independently,
with an inter-rater agreement of 90%. Any discrepancy
was solved by consensus. 3 studies had a moderate
risk of bias, and 2 studies had a low risk of bias. One
article was excluded because of a serious risk of bias.
The risk of bias assessment for pre-clinical studies was
instead performed using the SYRCLE’s tool [25]. A
score ranging from 0 (lowest) to 10 (highest) was
used. Two investigators evaluated the studies inde-
pendently (GA and VI) with 95% agreement. The risk
of bias for the included studies was low to moderate

(mean SYRCLE score 4.4, range 3–6) and no studies
were excluded following this assessment.

Certainty assessment

The certainty of clinical studies was assessed using
GRADE [26]. According to this method, each study was
classified as “very low”, “low”, “moderate” or “high”.
With the exception of one study that featured low
confidence of evidence, all the studies ranked either
“high” (3 studies) or “moderate” (2 studies).

The Collaborative Approach to Meta-Analysis and
Review of Animal Data from Experimental Studies
(CAMARADES) checklist [27,28] was used to assess the
certainty of the pre-clinical studies (n¼ 13). The assess-
ment was performed independently by two authors
(GA, VI) with 94% agreement. Each study was assessed
and scored on a scale from 0 (lowest) to 10 (highest)
points. The overall certainty was moderate among the
included studies (mean CAMARADES score 4.3,
range 3–6).

Results

Study characteristics

We included results from 18 studies. 13 were per-
formed on animal models [18,29–40] and 5 were
human observational studies [5,21,41–43]. The models

Figure 1. A number of publications about microbiome and osteoarthritis selected per year.
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investigated were adult mice [21,29,30,32,33,36,38] and
adult rats [18,34,37]. In the clinical studies included, the
population was aged between 50 and 65 years.

Most of the considered studies analysed the rela-
tionship between OA and the microbial populations’
variations in the gastrointestinal tract or investigated
cytokines with a mostly documented role in OA patho-
genesis [30–33,39–43]. Metabolic alterations of the
microbiome and their correlation to gut permeability
were investigated through the serum concentration of
LPS [18,21,34,35,38]. Diet and obesity were analysed
concomitantly to the microbiome in mice [18,34,35].
Some studies analysed the role in OA severity of phys-
ical exercise [34] and other dietary aspects: the admin-
istration of nutritional supplementation [37] and/or
prebiotics in rodents [34–37] and humans.

Dysbiosis-related gut permeability

When gut dysbiosis was induced by a high-fat diet
(HFD), high-sugar diet, faecal transplant or sex steroid
deficiency, higher levels of bacterial toxins and gut
bacterial translocation to the blood were retrieved
[34,35]. One study transplanted the faecal microbiota
of patients with metabolic syndrome in mice, and

assessed gut permeability, detecting lower mRNA lev-
els of tight junction proteins (TJs), zonulin-1 (ZO-1)
and occludin, and higher LPS plasma levels. Bacterial
translocation via the intestinal endothelium was also
confirmed using FISH methodology [29].

It was hypothesised that oligofructose could prevent
gut dysbiosis and potentially reduce the OA of the obes-
ity retrieved in previous animal studies [35]. While oligo-
fructose supplementation in mice did not prevent the
onset of obesity, it was shown that the gut had
improved epithelial function, and bacterial products lev-
els, such as LPS serum levels, were found to be lower
[35]. This was then found to be associated with lower
cartilage degeneration in the interventional group [35].
These effects seem to be mediated by the ability of oli-
gofructose to partially alter the gut microbiome relative
abundance avoiding the total loss of Bifidobacterium,
which is commonly observed in mice obesity models
[18,34,35]. Similar results were replicated by other pre-
and probiotics [34,36,37]. Moreover, oligofructose admin-
istration was found to upregulate Cdx2, a transcription
factor regulating cell adhesion, and increase Grp (a
stimulator of epithelial proliferation in the intestine) and
Aqp4 (involved in water reabsorption), all related to the
maintenance of normal intestinal permeability [35].

Figure 2. PRISMA flow diagram of study selection.
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Bacterial products contribute to low grade
inflammation in the joint

Germ-free mice with destabilised medial meniscus
showed a reduction in lipopolysaccharide-binding
protein (LBP) but not LPS due to difficulty in blood
LPS quantification [38]. When optimised method-
ology to assess LPS was performed, a positive asso-
ciation of synovial LPS with inflammation and
disease severity was reported [21]. Articular chondro-
cytes mount an LPS-induced stress response via Toll-
like receptors (TLRs) (especially TLR4) and secrete
matrix metalloproteinases as well as innate immune
mediators [46]. Fibroblast-like synoviocytes from OA
patients upregulate their expression of the inflamma-
some receptors NLRP1/3 upon in vitro stimulation
with LPS [47].

Firmicutes/Bacteroides (F/B) phyla ratio increase in
gut dysbiosis models has shown to be mostly lead by
a decrease in Bacteroidetes phylum population,
whereas the absolute Firmicutes abundance resulted
almost unchanged, but showed significant qualitative
changes, particularly a decrease in Lactobacillus spp.
and an increase in Clostridiales order [18]. In addition,
Streptococcus spp., have shown to represent 20% of
total Firmicutes in OA patients of a large population
cohort study [5] and resulted positively correlated
with higher OA pain scores and lower functionality [5].
Bacterial toxins may therefore connect the increased
gut permeability to low-grade inflammation in OA.

Molecular mediators of inflammation and
joint pain

Obese mice displayed a 5-fold increase in the number
of infiltrating macrophages [35] and increased analy-
tes: CXC-family chemokines (KC, MIG), adiponectin,
leptin, IL-1Ra [44], IP-10, MCP-1, MIP-2 and MIP-1alfa
[18]. A role for IL-18 [39] and IL-12 [40] was identified.
From several studies balance between pro- and anti-
inflammatory mediators emerges as key [36,37,39,40].

The innate immune pro-inflammatory cytokine
IL-1beta was shown to up-regulate aquaporins AQP1
and AQP3 in an OA model. These molecules explain
the joint swelling in early OA, and the subsequent loss
of proteoglycans and chondrocytes apoptosis that
accelerate the progression of the disease [30].

Among all the molecular mediators, chemokines
have been shown to have a prominent role in the
establishment of pain. While many chemokines show
a mixed role in pain, chemoattraction and disease
progression [31,41–43], the CCL2/CCR2 axis plays a
predominant role in the development of pain, as con-
firmed by many studies [32,33,45].

Discussion

Gut permeability as a foundational element of the
gut-joint axis

Gut microbiome changes are acute and precede obes-
ity in mouse models. Indeed, obesity is associated
with impairment of gut mucosa and microbiome

Figure 3. Graphical summary of microbiome-mediated osteoarthritis pathogenesis.
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translocation [46]. Interestingly, partaking in exercise,
together with weight loss, is among the strong recom-
mendations based on sound evidence for OA control
[47]. Both happen to be associated with reduced pain
and disease progression [48,49], and along with nutra-
ceutical use [36,50], these interventions have been
shown effective in reverting the acute microbiome
compositional changes associated with OA.

However, when gut dysbiosis occurs either for
chronic disease (e.g. inflammatory bowel disease,
immunosuppression), chronic antibiotic treatment, or
lifestyle modification (e.g. obesity and metabolic dis-
ease), gut permeability is significantly affected [51–56].
HFD modulates tight junctions, their expression and
distribution, directly through dietary fats or indirectly
via the increase in cytokines release [57]. HFD not only
reduces TJ molecules but also depletes eosinophils
associated with correct gut permeability [58], reduces
mucus and antimicrobial peptides production [59].
Moreover, microbes are spatially redistributed in the
intestine, mainly occupying intervillous/cryptal
spaces [60].

If such changes do occur, progressively, innate
immune receptors in the gut get activated by micro-
bial products and stimulate pro-inflammatory media-
tors production. Pro-inflammatory cytokines, in turn,
dysregulate TJs formation creating a vicious cycle.
TNFa, for instance, is known to be involved in occlu-
din internalisation, while IFNc reduces both ZO-1 and
occludin expression. Myosin light chain kinase (MLCK)
seems to be important in the cytokine-mediated regu-
lation of TJ complexes [61]. As a general view, TJ dys-
regulation may be induced by cytokines, by immune
cells, by NSAIDs, or alcohol chronic use, as well as
by pathogens in the context of a dysbiotic micro-
biome [62].

It is indeed a well-known fact that many enteric
pathogens produce toxins that affect the host’s tight
junctions [63]. In particular, given that TJ competency
was found to be affected via a decrease in ZO-1 and
occludin mRNA levels in the analysed studies, we pro-
pose that this tight junction disruption may be in part
due to an increase in zonulin activity, already demon-
strated for many chronic inflammatory and auto-
immune disorders [64]. Zonulin is a physiologic
regulator of intestinal permeability but is known to be
pathologically triggered by gliadin and by bacteria in
the gut. Zonulin release seems to be dependent on
MyD-88 [65]. Inappropriate zonulin activity has been
shown for diseases as varied as coeliac disease, anky-
losing spondylitis, anxiety and depression (in a dysbio-
sis-mediated manner) and multiple sclerosis, in which

zonulin may explain increased permeability to both
the gut and the blood-brain barrier [66–68]. Similarly,
we propose that zonulin may be involved in the gut-
joint axis of osteoarthritis. TJ disruption provides a
framework to unify several inflammatory diseases
under the common denominator of permeability, then
interact with the patient genetic background [69].

Dysbiosis perturbates the delicate balance
between pro- and anti-inflammatory mediators

Our main findings support an increase in Firmicutes/
Bacteroidetes (F/B) phyla ratio [18,34,35]. Given the
decrease in Bacteroidetes and their ability to produce
high levels of short-chain fatty acids, which regulate
the differentiation of Treg cells [70], and the role of
butyrate, which has been shown to be able to regu-
late zonulin [71,72], this particular enteric phenotype
may further influence intestinal permeability, summing
to the above mechanisms.

Another key feature of the OA dysbiotic enterotype
is Streptococcus spp. the abundance which seems to
be critical to prime both local and systemic inflamma-
tion through LPS-induced macrophage activation [5]
via the NFkB or MAPK pathways [73], or by forming
complexes with LBP and CD14 [21]. Mechanistic evi-
dence was reported with increased CD14 levels in the
synovium of OA patients compared to healthy controls
[74]. Macrophages can be detected not only in the
synovium but also in the synovial fluid and in the per-
ipheral blood [75]. CX3CR1-expressing macrophages
have been found to form a highly dynamic barrier
(expressing epithelial genes and tight junctions) in the
lining layer of the synovium, adjacent to fibroblasts
[76]. This barrier undergoes remodelling in arthritis
models, thus single-cell studies of macrophage popu-
lations are warranted in OA-specific models. Moreover,
the M1/M2 macrophages ratio determines the severity
of the disease. While the former induces chondrocyte
apoptosis and decreases the synthesis of extracellular
matrix components, the latter, through TGFb expres-
sion, stimulates chondrogenesis and collagen II/proteo-
glycan formation [77].

Thus, an increase in F/B ratio and Streptococcus spp.
prevalence are both able to ultimately dysregulate the
delicate balance between pro-inflammatory markers
(IL-1beta, IL-6, TNFa, IL-12, IL-18) at the expense of
anti-inflammatory molecules (IL-4, IL-10, TGFb) [37].
Moreover, the role of the key pro-inflammatory cyto-
kine IL-1beta in the local deterioration of the joint via
aquaporins [78] may suggest a further probable mech-
anism, mediated by other inflammatory mediators.

ANNALS OF MEDICINE 2385



It is important to notice that studies regarding the
microbiota in various diseases have shown a poor con-
cordance of findings, mainly due to the dynamic
nature of bacterial presence in the gut [79]. More than
50% of the characterised bacterial species in a recent
study [80] were never described before, and this raises
concerns about the possibility of spurious associations,
limiting our capacity to extrapolate solid causal rela-
tionships. Therefore, we suggest focussing on small
molecules, such as bacterially produced products and
immune mediators, rather than singular bacterial spe-
cies in order to gain useful mechanistic insight.

Endotoxemia

An evidence-based gut-joint axis clearly stems from
many of the studies. Both inflammatory mediators and
bacterial toxins are translocated into the circulation
[81] which raises concerns in patients that have joint
prosthetic implants or artificial valves at high risk of
infection [82,83]. The increased leucocytes and macro-
phage presence [35,84] may possibly let them act as a
“Trojan Horse” [85–87] from the gut to the joint. The
articular cartilage does not receive nutrition from
blood vessels, instead, support is provided on one
side by the synovial fluid and on the other by the sub-
chondral bone marrow. Systemic bacterial toxins,
inflammatory mediators and blood microbiota [88] can
thus influence the joint in two ways: via large cracks
of the articular cartilage [89] or via vascular channels
arising from neoangiogenesis occurring at the osteo-
chondral junction [90]. Moreover, given the aforemen-
tioned potent effects of HFD, meals might trigger
pulsatile increases in LPS or other bacterial products
in the blood, contributing to chronic low-grade inflam-
mation. Experimental support or confutation to this
idea is warranted. The circadian response to endotoxe-
mia should also be assessed in the context of OA
given the interesting outcome of some preliminary
animal studies [91]. This may inform lifestyle modifica-
tions in these patients. Another level of complexity is
added by the finding that LPS elicits distinct immune
responses based on the bacterial species of origin
[92]. An analysis of LPS subtypes, rather than the mere
quantification of them, may provide further insight.

Pain symptomatology and chemokines

Studies show that the microbiome also relates to
pain-associated symptoms and molecules [93]. The
main actors are cartilage degradation products (follow-
ing mechanical and inflammatory stress on the joint)

and other damage-associated molecular patterns
through direct neuronal activation of dorsal root gan-
glia or by indirect neuro-immune signalling acting on
immune cells receptors that in turn stimulate neurons
amplifying the mechanism. Even if cytokines and LPS
partially explain the onset of pain, chemokines are
reported as critical players of chronic pain [84].
Consistent with this interpretation, in our results, che-
mokines were regularly increased among all the con-
sidered analytes [35].

Conclusions

Future research directions

In order to be able to translate these findings,
research priorities need to be identified. The patho-
genetic model herein discussed correlates dysbiosis to
the bipartite graph of tight junctions and bacterially
produced products (Figure 3). Putting the accent on
these two key features we aim to direct future studies
in the search of bacterial toxins/products other than
LPS and tight junction complexes disassembly regula-
tors. However, we recommend caution since quantifi-
cation assays commonly encounter reliability and
reproducibility issues.

Future therapeutical perspectives

Current treatments for OA alleviate pain but do not
target the pathogenesis of the disease [94]. Being
modifiable by several factors (dietary intervention, fae-
cal transplant, and future microbiome-targeted thera-
peutics), the gut microbiome is a promising target.
The first line of action is exercise, diet control and if
the proposed role for zonulin is confirmed, gluten-
poor food. Targets such as zonulin and aquaporins as
well as the pyroptosis pathways (gasdermin blockers),
might be further investigated pharmacologically
in OA.

Limitations

Current studies, despite the overall moderate to a
high quality of evidence, still show some limitations.
Most studies were conducted on animal models, not
fully mimicking the complexity of the human micro-
biome. Notwithstanding the need for more human
studies, all pieces of evidence here analysed have
shown concordance of findings and show the same
results of some clinical studies [5]. The heterogeneity
of methods used to induce obesity and of the animal
models is another limitation of the studies taken into
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account. However, all the validated models of obesity
show the same results, and the same holds true for all
the different animals used for in vivo studies. Our
review is hoped to help direct future studies.
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