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Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with pathological
features including death of dopaminergic neurons in the substantia nigra and intraneuronal
accumulations of Lewy bodies. As the main component of Lewy bodies, a-synuclein is impli-
cated in PD pathogenesis by aggregation into insoluble filaments. However, the detailed
mechanisms underlying a-synuclein induced neurotoxicity in PD are still elusive. Micro-
RNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional
level. A plethora of miRNAs have been found to be dysregulated in the brain and blood cells
of PD patients. Nevertheless, the detailed mechanisms and their in vivo functions in PD still
need further investigation. By using Drosophila PD model expressing a-synuclein A30P, we
examined brain miRNA expression with high-throughput small RNA sequencing technol-
ogy. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p,
dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b,
miR-133, miR-137 are brain enriched and highly conserved from Drosophila to humans.
KEGG pathway analysis using DIANA miR-Path demonstrated that neuroactive-ligand
receptor interaction pathway was most likely affected by these miRNAs. Interestingly,
miR-137 was predicted to regulate most of the identified targets in this pathway, including
dopamine receptor (DopR, D2R), y-aminobutyric acid (GABA) receptor (GABA-B-R1,
GABA-B-R3) and N-methyl-D-aspartate (NMDA) receptor (Nmdar2). The validation experi-
ments showed that the expression of miR-137 and its targets was negatively correlated in
PD flies. Further experiments using luciferase reporter assay confirmed that miR-137 could
act on specific sites in 3 UTR region of D2R, Nmdar2 and GABA-B-R3, which downregu-
lated significantly in PD flies. Collectively, our findings indicate that a-synuclein could induce
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the dysregulation of miRNAs, which target neuroactive ligand-receptor interaction pathway
in vivo. We believe it will help us further understand the contribution of miRNAs to a-synu-
clein neurotoxicity and provide new insights into the pathogenesis driving PD.

Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder affecting the
elderly population [1]. Its predominant pathological features are death of dopaminergic (DA)
neurons in the substantia nigra pars compacta and intraneuronal accumulations of Lewy bod-
ies [2]. As the main component of Lewy bodies, a-synuclein contributes to PD by aggregation
into insoluble filaments. Multiplication of o-synuclein or mutations such as A53T, A30P and
E46K were found in familial forms PD patients [3-5].However, the detailed mechanisms
underlying o-synuclein induced neurotoxicity in PD still need further investigation.

PD animal models have been established by ectopic expression of human a-synuclein in
yeast, Caenorhabditis elegans, Drosophila melanogaster, rat, mouse, and non-human primates
[6-11]. Drosophila models have been widely used to study neurodegenerative diseases includ-
ing Alzheimer’s disease (AD), Huntington’s disease (HD) and PD [8, 12, 13]. In addition to the
advantages of short lifespan and convenience for genetic manipulation, Drosophila conceives
complicated central and peripheral nervous systems which are analogous to those of human.
Panneuronal expression of human wild type and mutant a-synuclein (A53T and A30P) dem-
onstrate adult onset PD pathological features including DA neuronal loss, decreased dopamine
level, impaired locomotive ability and shortened lifespan [8, 14, 15]. Drosophila models provide
efficient tools for screening genes participate in PD and potential drugs against PD.

MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttran-
scriptional level [16]. They usually bind to 3’UTR of target mRNA and lead to translational
inhibition or target degradation. It is estimated that more than half of human genes are regu-
lated by miRNAs and the regulatory mechanisms are highly conserved among invertebrates
and vertebrates. Since the discovery in 1990s, miRNAs have been found to exert essential roles
in development, homeostasis and diseases. A plethora of miRNAs have been found to be dysre-
gulated in the brain and blood of PD patients [17-20]. However, the underlying mechanisms
and their functions in PD are still elusive.

In the present study, we examined the expression of miRNAs in a PD Drosophila model
expressing a-synuclein by high throughput small RNA sequencing technology. We found
that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p,
dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b, miR-133, miR-

137 are brain enriched and highly conserved from Drosophila to Homo sapiens. Validation
experiment using QRT-PCR confirmed that these miRNAs were elevated in PD flies. KEGG
pathway analysis indicated that neuroactive-ligand receptor interaction pathway was most
likely affected by these miRNAs. Further studies showed miR-137 targeted multiple molecules
in this pathway as predicted, including dopamine receptor (DopR, D2R), GABA receptor
(GABA-B-R1, GABA-B-R3) and NMDA receptor (Nmdar2). The mRNA levels of these mole-
cules were significantly decreased in PD flies. Our findings indicated that o.-synuclein could
induce the dysregulation of miRNAs, which target neuroactive ligand receptor interaction
pathway in vivo.
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Materials and Methods
Fly stocks and maintenance

The elav-C155 and UAS- a-synuclein flies were obtained from Bloomington Stock Center
(Indiana University, USA). Flies were raised in standard yeast agar food at 25°C with a 12/12
hours light/dark cycle. After backcrossing with w''® flies for 6 generations, elav-C155 virgin
"8 or UAS- a-synuclein A30P males. The F1 generation offspring
expressed o-synuclein in panneuronal manner and were used for further experiments.

flies were crossed with w

Lifespan analyses

Two days after the eclosion, mated males and females were discriminated and transferred to
different vials. Each vial contained 10 flies and at least 100 in total for each group. The vials
were changed 3 times a week and deaths were recorded. Data was presented as survival curves
and analysis was performed using log-rank tests to compare between groups.

Climbing assay

In order to characterize behavior defects in PD flies, climbing assay was performed as described
previously [8]. Briefly, twenty male flies were transferred into an empty plastic vial and gently
tapped to the bottom. The numbers of flies that could climb to the top (above 8cm) or
remained at bottom in 18 seconds were recorded. The climbing assay was performed at least

3 times for every vial at each time point.

High throughput sequencing for miRNAs

Total RNA of each sample (three biological repeats for PD and control fly heads) was used to
prepare the miRNA sequencing library through following steps: 1) 3'-adapter ligation with T4
RNA ligase; 2) 5'-adapter ligation with T4 RNA ligase; 3) cDNA synthesis with RT primer; 4)
PCR amplification; 5) extraction and purification of ~125-145 bp PCR amplified fragments
(correspond to ~15-35 nt small RNAs) from the PAGE gel. After the completed libraries were
quantified with Agilent 2100 Bioanalyzer, the DNA fragments in the libraries were denatured
with 0.1M NaOH to generate single-stranded DNA molecules, captured on Illumina flow cells,
amplified in situ and finally sequenced for 36 cycles on Illumina HiSeq2000 according to the
manufacturer’s instruction. Raw sequences were generated as clean reads from Illumina HiSeq
by real-time base calling and quality filtering. Subsequently, the 3’ adapter sequence was
trimmed from the clean reads and the reads with lengths shorter than 15 nt were discarded. As
the 5’-adaptor was also used as the sequencing primer site, the 5’-adaptor sequence is not pres-
ent in the sequencing reads. The trimmed reads (length > 15 nt) were aligned to the fly pre-
miRNA in miRBase 21, using novoalign software. The miRNA expression levels were measured
and normalized as transcripts per million of total aligned miRNA reads (TPM). When compar-
ing profile differences two groups of samples (PD and Control), the “fold change” (i.e. the ratio
of the group averages) and p-value were caculated. miRNAs having fold changes > 1.2, P-value
<0.05 or fold change > 2.0 were selected as the differentially expressed miRNAs.

gRT-PCR for miRNA

Quantitative real-time PCR (qQRT-PCR) analysis was performed to validate the differently
expressed mRNA in PD flies. Fist strand cDNA was sysnthesized using M-MLV reverse tran-
scriptase (Epicentre) according to manufacture’s instructions. The sequences of RT primers
are: 5-GATTTTGCGTGTCATCCTTG-3’ (U6); 5-GTCGTATCCAGTGCGTGTCGTGGA
GTCGGCAATTGCACTGGATACGACACAGCTG-3’ (dme-miR-133-3p); 5-GTCGTATC
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CAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACCTACGT-3’ (dme-miR-
137-3p); 5-GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGA
CACTCGT-3’(dme-miR-13b-3p). qPCR reaction was performed with 2xSYBR Green PCR
Master Mix (Arraystar) and ViiA 7 Real-time PCR System (Applied Biosystems) with the pro-
gram: 95°C for 10 min to denature DNA templates, followed by 40 cycles of 95°C for 15 s, 60°C
for 60s.PCR primers for miRNAs and U6 were listed in S1 Table.

miRNA Targets Prediction and Pathway Enrichment Analysis

The target genes of differentially expressed miRNAs were predicted by miRanda-mirSVR algo-
rithm and then subjected to GO analysis using Database for Annotation, Visualization and
Integrated Discovery (DAVID) (count cutoff 10, EASE 0.01). The significantly affected GO
terms (p<0.05) in biological process, cellular component and molecular function were
identified.

DIANA-miRPath is an efficient tool for analyzing the combinatorial effect of microRNAs
on target pathways. We uploaded the dysregulated miRNAs and predicted potential target
pathways using DIANA-microT-CDS algorithm. The significantly influenced pathways
(p<0.05) were identified.

Validation of target mRNA Expression

In order to validate the expression of predicted targets for dysregulated miRNAs, qRT-PCR
was performed according to previously reported methods as mentioned before. PCR primers
for mRNAs were listed in S2 Table.

Luciferase Reporter Assay

The 3’UTR fragments flanking miR-137 targeting sites of Nmdar2, D2R and GABA-B-R3 were
cloned from Drosophila cDNA library and inserted into pGL3-promoter vectors respectively.
Each of these vectors was co-transfected with Renilla plasmid pRL-TK and dme-miR-137-3p
mimics (Genepharma, Shanghai) into HEK 293 cells in 12-well plates using Lipofactamine
2000 (Invitrogen). 24 hours post-transfection, luciferase activity was measured with Dual-Glo
(Promega) according to the manufacturer's instructions. PCR primers for amplification were
listed in S3 Table. Mutant constructs were made by site-directed mutagenesis to replace seed
sequence with BglII cleavage site.

Statistics

Log-rank tests were performed to compare lifespan between groups. For other experiments,
the significance of the difference was analyzed with Student’s ¢ test using GraphPad Prism soft-
ware, and p <0.05 were considered statistically significant.

Results
Characterization of PD Drosophila models

We establised PD fly models according to literatures [8, 14, 15]. Briefly, elav-Gal4 flies were
crossedwith UAS-a synuclein (A30P) to ectopically express human o synuclein in nervous sys-
tems. As reported previously, we found that PD flies exhibited shorter lifespan (Fig 1A) and
impaired locomotive ability (Fig 1B) compared with control flies. These results indicated that
Drosophila models successfully developed adult-onset PD like phenotype in age dependent
manner. Climbing ability of PD Drosophila was comparable with control flies at day 10 post
eclosion (Fig 1B), which was consistent with the results from Feany et al [8]. At this time point,
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Fig 1. a-synuclein-induced locomotion defects and shortened lifespan. (A) Expression of A30P a-synuclein specifically in the nervous system
shortened lifespan. Survival curves were compared using the log-rank test (P<0.01 between elav>w'"'® and elav>a-synuclein A30P flies). (B) There is no
difference for climbing ability for flies expressing A30P a-synuclein and control genotype at day 10. In contrast, PD flies showed significant age dependent
locomotive impairments at days 30 and 40 (*P<0.05). Control flies: elav>w'"'®; PD flies: elav>a-synuclein (A30P).

doi:10.1371/journal.pone.0137432.g001

loss of dopaminergic cells in PD Drosophila was also detected. Therefore, we chose day 10 flies
post eclosion as early PD stage to investigate miRNA expression profiles.

Deep sequencing data analysis and verification

The miRNA samples from heads of control and PD flies were sequenced using Illumina
HiSeq2000 platform. The total numbers of the reads at the sequencing data processing stages
are listed for each sample (3 biological repeats for control and PD flies) in Table 1. The majority
of small RNAs were 20-22nt which were the typical length for miRNAs (Figs 2 and S1). The
reads can be divided into several groups (miRNAs, tRNAs, rRNAs, sSRNAs, snRNAs, other
ncRNAs). As shown with pie charts in Figs 3 and S2, the majority was miRNAs (86.1%-90.8%).

The high-throughput sequencing results showed that 154 miRNAs (83.7% of total) were
coexpressed in both control and PD flies (Fig 4). In contrast, 18 (9.8%) and 12 (6.5%) were
preferentially expressed in the control or experimental groups (Fig 4B). Among 154 coex-
pressed miRNAs, five mature miRNAs (dme-miR-1008-5p, dme-miR-133-3p, dme-miR-137-
3p, dme-miR-13b-3p, dme-miR-932-5p) were differentially expressed between PD and control
groups (p<0.05) (Table 2 and S5 Table). Interestingly, all these miRNAs were upregulated in
PD flies. Among them, dme-miR-133-3p, dme-miR-137-3p and dme-miR-13b-3p (the mature
sequence both for dme-mir-13b-1 and dme-mir-13b-2) were highly conserved from flies to
humans and enriched in nervous system. We choose them for validation using qRT-PCR. The
results were consistent with miRNA sequencing data (Fig 5).

Functional annotations for targets of differentially expressed miRNAs

As four of the dysregulated miRNAs in PD flies including dme-miR-133-3p, dme-miR-137-3p,
dme-miR-13b-3p and dme-miR-932-5p were brain enriched, we predicted targets of them and
then submit to DAVID for Gene Ontology analysis (Fig 6 and S7 Table). GO enrichment anal-
ysis revealed that the target genes were functionally enriched in neuron related biological pro-
cess (neurodifferentiation, neuron development, neuron projection development, neuron
projection morphogenesis). In addition, cell component analysis showed that these targets
were enriched in the membrane proteins.

DIANA miRPath is a powerful tool to analyze the combinational effects of miRNA on sig-
naling pathways [21]. Using this method, we found dysregulated miRNAs significantly affect
four pathways, of which neuroacitve-ligand receptor interaction was most significant (Fig 7
and Table 3). Four of the total dysregulated miRNA could target 8 genes of this pathway. As

Table 1. The total numbers of the reads at the sequencing data processing stages.

Sample Name Clean Reads Adapter-trimmed Reads (length > = 15nt) Reads aligned to known fly pre-miRNA in miRBase 21
Control1 5,129,041 1,946,868 1,464,900
PD1 5,099,213 1,770,633 1,275,736
Control2 6,504,988 1,898,757 1,272,772
PD2 5,008,812 2,222,004 1,654,116
Control3 5,249,650 1,548,423 1,021,194
PD3 4,508,826 1,644,140 1,161,098

doi:10.1371/journal.pone.0137432.1001
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Fig 2. Length distribution of total small RNAs in PD and control flies. The distribution of small RNAs in
control (A) and PD flies (B) was randomly selected from the data of 3 biological repeats for each group. The
horizontal axis means the total read counts and vertical means the read lengths for the complete adapter-
trimmed read set.

doi:10.1371/journal.pone.0137432.9002

shown in S3 Fig and Table 4, miR-137-3p potentially targeted Nmdar2 (receptor for
N-Acetylaspartyl glutamate and Glutamate, L-asparate, L-cysteic acid, L-homocysteic acid),

A

rRNA

tRNA

sRNA
miRNA
snRNA

other ncRNA

m 'RNA

m tRNA

= SRNA

m MiRNA

m snRNA

m other ncRNA

Fig 3. Frequency of different classes of RNA in small RNA libraries. The pie-charts represent an
overview of small RNA expression in control (A) and PD flies (B). Data were random selected from 3
biological repeats for each group. Small RNAs belonging to the miRNA constitute the majority as in control
(89.5%) (top) and PD (88%) (bottom) samples.

doi:10.1371/journal.pone.0137432.g003
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Table 2. Differentially expressed miRNAs.

MATURE-ID PRE-ID

dme-miR-932-  dme-mir-932

5p

dme-miR-13b- dme-mir-
3p 13b-2

dme-miR-13b- dme-mir-
3p 13b-1

dme-miR-137-  dme-mir-137
3p

dme-miR-133-  dme-mir-133
3p

dme-miR-1008- dme-mir-
5p 1008

doi:10.1371/journal.pone.0137432.t002

PRE-ACC

MI0005820

MI0000135

MI0000134

MI0005849

MI0000362

MI0005869

Fig 4. Differential expression analysis of miRNA. (A) The differentially expressed miRNAs are graphed on
thescatter plot to visualize variations in miRNA expression between control and PD flies (3 biological repeats
for each genotype). The values on the X-axis and Y-axis of the scatter plot are the normalized values for
control and PD flies (log, scaled). The green lines are fold-change lines (default fold-change value: 1.2). (B)
The Venn diagram shows the distribution of 184 unique miRNAs between PD (left, red) and control flies (right,
green) libraries. The overlapping section represents 154 miRNAs coexpressed in both genotypes. The
dashed circles indicated 6 miRNAs that were significantly differentially expressed (dme-mir-13b-1 and dme-
mir-13b-2 shares the same mature sequence dme-miR-13b-3p).

doi:10.1371/journal.pone.0137432.9004

GABA-B-R1/GABA-B-R3 (GABA receptor) and D2R/DopR (Dopamine receptor). Lgr3
(Relaxin receptor) and AR2 (Galanin receptor) were predicted to be targeted by miR133-3p
and miR-13b-3p respectively. In addition, miR-932-5p was proposed to act on AlstR (Galanin
receptor) and GABA-B-R1 (GABA receptor). These results indicated that dysregulation of
miRNAs potentially lead to interruption of neuroactive-ligand receptor signaling pathway and
contributed to o-synuclein induced PD flies.

The mRNA levels of predicted targets were downregulated in PD flies

We examined the transcriptional levels of miR-137 targets in neuroactive ligand-receptor inter-
action pathway. Within five predicted targets, Nmdar2, GABA-B-R3, GABA-B-R1 and D2R
were confirmed to be downregulated in PD flies (Fig 8). Particularly, the NMDA receptor
Nmdar2 and GABA receptor GABA-B-R3 were most significant. Interestingly, hsa-miR-137-
3p was also predicted to target KEGG pathways including Glutamatergic synapse (hsa04724)
(p =0.001749507) and GABAergic synapse (hsa04727) (p = 0.007160067) by DIANA miRPath
analysis. GABA-B receptor (GABRA1, GABRA6, GABBR2) and NMDA receptor (GRIN2A)
were identified as hsa-miR-137-3p targets (Table 5). Our results were consistent with previous
reports that PD was associated with neuroactive ligand-receptor interaction pathway [22] and
miR-137 could regulate synaptogenesis and neuronal transmission [23]. The regulatory effects
of miR-137 on GRIN2A expression have been confirmed in human neuronal like SH-SY5Y
cells [23]. Luciferase reporter assay showed that miR-137 could target GRIN2A directly in Rats
[24]. The regulatory mechanisms seemed to be highly conserved from Drosophila to humans.
In order to further confirm dme-miR-137 could directly regulate targets in neuroactive-
ligand receptor interaction pathway, we constructed luciferase reporter plasmids carrying
Nmdar2, D2R and GABA-B-R3 3’'UTR fragments containing miR-137 binding sites (Fig 9A).

MATURE-LENGTH MATURE-SEQ EXP vs CTL Fold EXP vs CTL P-
change value
22 UCAAUUCCGUAGUGCAUUGCAG 1.285714286 0.019803941
22 UAUCACAGCCAUUUUGACGAGU 1.49382716 0.008027299
22 UAUCACAGCCAUUUUGACGAGU 1.49382716 0.008027299
22 UAUUGCUUGAGAAUACACGUAG 1.255868545 0.034111438
22 UUGGUCCCCUUCAACCAGCUGU 1.301026694 0.009145923
21 GUAAAUAUCUAAAGUUGAACU 1.228571429 0.015268072

PLOS ONE | DOI:10.1371/journal.pone.0137432 September 11,2015 10/24
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Luciferase reporter assays showed that dme-miR-137-3p could does-dependently inhibit the
luciferase activities for all these vectors as compared with miR-negative control, indicating that
dme-miR-137-3p could target these predicted sites (Fig 9B). Further more, when we mutated
both of miR-137 binding sites in D2R 3’UTR, the inhibitory effects were abolished (Fig 9C).
Taken together, these results indicate that NMDAR?2, D2R and GABA-B-R3 are direct targets
for dme-miR-137-3p.

Discussion

As regulatory molecules that fine-tune gene expression at posttrascriptional level, miRNAs
have been estimated to exert important roles in PD. However, their detailed in vivo functions
are still elusive. Drosophila models provide powerful tools to investigate etiology and interven-
tion methods for PD. Using high throughput small RNA sequenceing technology, we measured
miRNA expression profiles of early stage PD flies and identified five dysregulated mature miR-
NAs (miR-13b, dme-miR-133, dme-miR-137, miR-932 and miR-1008). KEGG functional
annotation analysis showed that neuroactive-ligand receptors to be potentially affected by
these miRNAs, which were confirmed by qRT-PCR analysis and luciferase reporter assay. Our
study proposed miRNAs as potential biomarker for early stage PD and their dysregulaton sub-
sequently participates in PD pathogenesis by interruption of neuroactive-ligand receptor inter-
action pathway.
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Fig 6. GO annotation of predicted targets for differentially expressed miRNAs. Functional annotations were performed using DAVID (count cutoff 10,

EASE 0.01) to analyze predicted targets for differentially expressed miRNAs. The top 20 clusters in biological process and molecular function as well as top
10 terms in cellular component were shown (p<0.05).

doi:10.1371/journal.pone.0137432.9006
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Fig 7. Pathway enrichment of predicted miRNA targets. DIANA miRPath v.2.0 was used for pathway functional annotation. Significant affected pathways
(p<0.05) were shown. The results were displayed as—log p values.

doi:10.1371/journal.pone.0137432.9007

PD is a neurodegenerative disorder characterized by intraneuronal accumulation of fila-
mentous inclusions known as Lewy body in substantia nigra. Feany and Bender established PD
fly models by panneuronal expression normal and mutant forms of human o.-synuclein, the
main components accumulated in Lewy body [8, 14, 15]. PD flies shows intraneuronal inclu-
sions, loss of dopamine neurons and impaired locomotive ability. It provides powerful tool to
investigate underlying mechanisms for PD. Endonuclease G (EndoG) and sirtuin2 (SIRT2)
have been identified contributing to o synuclein toxicity while vacuolar protein sorting 35
(VPS35), glucose phosphate isomerase 1 (GPI), tumor necrosis factor receptor-associated pro-
tein 1 (TRAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), Rabla, Rab8, histone deace-
tylase 6 (HDACS6), PTEN induced putative kinase 1 (Pink1), Cu/Zn superoxid Dismutase
(SOD), methionine sulfoxide reductase A (MSRA), parkin as well as heat shock cognate 70-kd
protein (Hsp70) could intervene PD progression [25-37]. Drugs currently used to treat this
disorder have been tested in this model. Dopamine agonist (such as L-DOPA, pergolide, bro-
mocriptine, and 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) and

Table 3. KEGG pathway analysis for differential expressed miRNAs.

KEGG pathway p-value genes miRNAs
Neuroactive ligand-receptor interaction 0.000265508 8 4
Fatty acid elongation 0.01106502 1 1
Sphingolipid metabolism 0.01106502 3 2
Terpenoid backbone biosynthesis 0.04363707 2 2

doi:10.1371/journal.pone.0137432.1003
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Table 4. Target genes for differential expressed miRNAs in neuroactive-ligand receptor interaction

pathway.

miRNA names

dme-miR-137-3p

dme-miR-133-3p
dme-miR-13b-3p
dme-miR-932-5p

doi:10.1371/journal.pone.0137432.t004

Nmdar2
GABA-B-R3
D2R
DopR
GABA-B-R1
AR-2
Lgr3
AlstR
GABA-B-R1

Targets

FBgn0053513
FBgn0031275
FBgn0053517
FBgn0011582
FBgn0260446
FBgn0039595
FBgn0039354
FBgn0028961
FBgn0260446

prototypical muscarinic cholinergic receptor antagonist are found to be effective to restore
climbing defects, confirming the utility of this model in screening PD drugs [38]. Since then, a
number of potential drugs have been clarified. Spermidine, GABA, L-ascorbic acid, nordihy-
droguaiaretic acid, fendiline, geldanamycin, isorhynchophylline (IsoRhy), curcumin, epicate-
chin gallate, mannitol, sodium butyrate, S-methyl-L-cysteine (SMLC) as well as plant extracts
including cinnamon extract precipitation (CEppt), Ocimum sanctum leaf extract extract,

E. citriodora extract and Regrapex-R have been proved to ameliorate PD pathogenesis [35,

*%k

0.0

Nmdar2 GABA-B-R3 GABA-B-R1

D2R

DopR

Fig 8. Validation analysis for targets in neuroactive ligand-receptor interaction pathway. The mRNA levels for targets were validated using qRT-PCR

in control and PD flies. The results showed that the targets were significantly inhibited in PD flies. (* p<0.05, ** p<0.01).

doi:10.1371/journal.pone.0137432.9008
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Table 5. Target genes for hsa-miR-137-3p in GABAergic synapse and Glutamatergic synapse path-
way in Homo sapiens.

GABAergic synapse Glutamatergic synapse
hsa-miR-137-3p targets GABRA1 ADCY1
PLCLA1 ADCY2
ADCY1 GRM5
ADCY2 SLC17A6
GABRG2 CPD
GABBR2 PLCB1
GAD2 PPP3CB
GABRA6 DLGAP1
SRC GRM7
CACNA1D CACNA1D
ADCY9 GRIN2A
SLC6A1 ADCY9
KCNJ3
SLC1A2

doi:10.1371/journal.pone.0137432.t005

39-52]. Taken together, these results demonstrate that o synuclein induced PD fly models pro-
vide efficient tool for clarifying etiology and screening potential drugs for this disorder.

MiRNAs regulate gene expression at posttranscriptional level, which plays important roles
in neurodegenerative diseases. Expression profiling analysis has identified a variety of miRNAs
dysregulated in brain regions and blood samples from PD patients and animal models [17-20].
As a-synuclein inclusions is the major component of Lewy body, miRNAs (miR-34b, miR-34c,
miR-153 and miR-7) could target 3’'UTR of a-synuclein and ameliorate its toxic effects [53,
54]. In addition, miRNAs could also act on downstream signaling molecules mediating o-synu-
clein toxicity. Midbrain dopamine neuron (DA) specific miR-133b was found to target paired-
like homeodomain transcription factor (Pitx3) and regulate DA neurons differentiation and
activity [55]. MiR-128 could repression of transcription factor EB (TFEB) in both A9 and A10
DA neurons which further inhibits mTOR activation and defense against a-synuclein toxicity
[56]. However, these findings were obtained from in vitro studies. Further experiments using
genetic modified animal models are required to clarify detailed miRNA functions in PD. With
advantages discussed previously, Drosophila PD models could contribute to elucidation PD
related miRNA functions in vivo.

Our study using high throughput sequencing of miRNAs identified miR-13b, miR-133,
miR-137, miR-932 and miR-1008 consistently upregulated in early stage PD flies. Among the
dysregulated miRNAs, miR-13b, miR-133 and miR-137 were highly conserved from Drosoph-
ila to H. sapiens and their expression was validated by qRT-PCR. MiR-13b’s human homo-
logue is miR-499 [57] that expressed in brain region and its polymorphism is associated with
ischemic stroke [58]. Previously, we found miR-13b was also upregulated in adult onset AD
flies [59]. These results indicate that miR-13b/miR-499 play important roles in pathogenesis of
brain insults. MiR-133a and miR-133b are human orthologs of dme-miR-133 and enriched in
human brain. Exosomes containing miR-133b from mesenchymal stem cells (MSCs) regulate
neurite outgrowth of neural cells [60]. Morphine regulates dopaminergic neuron differentia-
tion via miR-133b [61]. In addition to its physical functions, miR-133b is essential for func-
tional recovery after spinal cord injury in adult zebrafish [62]. By targeting Pitx3, miR-133b
was found to regulate the maturation and function of midbrain dopaminergic neurons, con-
tributing to PD pathogenesis [55]. MiR-137 is also a highly conserved miRNA and exerts
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results showed that dme-miR-137-3p could inhibit the luciferase activities for all these vectors does dependently as compared with miR-negative control. (C)
The inhibitory effects were abolished when all the miR-137 targeting sites within the amplified sequences in D2R 3'UTR were mutated. (* p<0.05, ** p<0.01).

doi:10.1371/journal.pone.0137432.9009

important roles in neuronal development and diseases. By regulating expression of nuclear
receptor tailless (TLX) and lysine-specific demethylase 1 (LSD1) in neural stem cells, miR-137
controls the dynamics between neural stem cell proliferation and differentiation during neural
development [63]. MiR-137 could also regulate neuronal maturation by targeting ubiquitin
ligase mind bomb-1 [64]. Recently, it was reported that miR-137 and its seed-similar fly homo-
logue miR-1000 regulated vesicular glutamate transporter (VGlut) expression and fine-tune
excitatory synaptic transmission [65]. In addition, miR-137 also plays important roles in brain
disorders. MiR-137 is associated with intellectual disability [66]. miR-137 is also proved to be
associated with schizophrenia susceptibility, which usually accompanied with PD [67-69]. The
mechanistic studies reveal that miR-137 regulates gene sets involved in synaptogenesis and
neuronal transmission as well as glucocorticoid receptor-dependent signalling network, con-
tributing to etiology of schizophrenia [23, 70]. In another neurodegenerative disorder Alzhei-
mer’s disease, miR-137 is found to be associated with serine palmitoyltransferase (SPT) and
amyloid B (AB) levels [71].

The reason for a-synuclein induced miRNA dysregulation in vitro could be explained in
various mechanisms. Firstly, o-synuclein overexpression and aggregation in neuronal cells
may influence signaling pathways and transcription factors that mediate miRNA expression.
o-synuclein expression could influence signaling pathways including IRS-1/insulin/Akt,
mTOR/S6K, MAPK, p53, GSK3B, PKC, synaptic transmission, ubiquitin protein pathway
(UPS) and the autophagy pathway [72-79]. These pathways could further stimulate transcrip-
tion factors and lead to miRNA dysregulation. a synuclein could increase the activity of tran-
scription factors including NRF2, NFAT, MEF2C-PGCla, CREB, NF-«B, p53, Nurrl, and
FOXP1 [74, 80-86]. We analyzed the promoter region of dme-miR-137 (5kb upstream of pre-
dme-miR-137) using AliBaba2.1 based on TRANSFAC 4.0 and found three CREB binding
sites as well as six NF-kB binding sites. In addition, CREB and NF-«B were also predicted to
bind to hsa-miR-137 promoter, indicating the regulatory mechanisms were highly conserved.
Taken together, a synuclein may induce miR-137 expression by transcription factor CREB and
NF-kB. Second, a-synuclein overexpression and aggregation in neuronal cells may stimulate
cells to release different factors that induce miRNA expression. These factors include brain-
derived neurotrophic factor, glial cell line-derived neurotrophic factor, reactive oxygen species,
nitric oxide and other factors [87-90]. These factors may act on other cells and actviate relevant
signaling pathways as well as downstream transcription factors and induce miRNA expression.
Third, the extracellular o-synuclein aggregates may act on neurons to regulate miRNA expres-
sion. It was reported that exogenous o.-synuclein fibrils induce could activate singlaing path-
ways including PI3/Akt, calpain-dependent CDKS5, LKB1/AMPK/Raptor, leading to synaptic
dysfunction and neuron death [91-94]. Extracellular alpha-synuclein may also induce miRNA
expression in vitro. Detailed experiments are required to clarify this problem

In order to elucidate which signaling pathways potentially affected by these dysregulated
miRNAs in PD flies, DIANA-miRPath analysis was performed and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway neuroactive-ligand receptor interaction was identified.
Consistent with our findings, Huang et al. reported that when applying to a genome-wide asso-
ciation study (GWAS) dataset for Parkinson disease, extended Bayesian lasso (EBLasso) identi-
fied three significant pathways including the neuroactive-ligand receptor interaction, the
primary bile acid biosynthesis pathway, and the mitogen-activated protein kinase (MAPK) sig-
naling pathway [95]. Our validation experiments showed that downregulations of NMDA
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receptor (Nmdar2) and GABA receptor (GABA-B-R3) were most significant. NMDA receptor
GRIN2A was also predicted to be targeted by miR-137 in Homo sapiens, which have been vali-
dated in human SY-SH5Y cells [23]. Luciferase reporter assay showed that miR-137 could tar-
get GRIN2A directly in Rats [24], suggesting the regulatory mechanisms seemed to be highly
conserved from Drosophila to humans. Interestingly, Genome-wide gene-environment study
identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interac-
tion with coffee [95]. Activation of GABAB receptors within the substantia nigra pars reticulata
(SNr), but not the globus pallidus (GP), reverses reserpine-induced akinesia in rats. The success
of intracerebroventricular injection of baclofen suggests a potential for GABAB receptor ago-
nists in the treatment Parkinson's disease [96]. Hillman R et al reported that GABA rescue the
loss of climbing activity in this PD fly models [40]. More specifically, GABA(B) agonists baclo-
fen and the allosteric agonists CG 7930 and GS 39783 could also ameliorate locomotive defects,
which diminished when flies are cofed with the GABA(B) receptor antagonist 2-hydroxysaclo-
fen. In contrast, GABA(A) receptor agonist muscimol has no effect. This result indicated the
important roles for neuroactive-ligand pathways in PD. Next step, we will use genetic manipu-
lations and pharmacological methods to clarify the role miRNA-targets axis we identified
within this pathway in PD.

Conclusions

Our findings indicated that a-synuclein could induce the dysregulation of highly conserved
and brain enriched miRNAs, which target neuroactive ligand-receptor interaction pathway in
vivo. We believe it will contribute to understanding miRNA functions in mediating a-synuclein
toxicity and provide new insights into the pathogenesis driving PD.

Supporting Information

S1 Fig. Length distribution of total small RNAs in PD (PD2 and PD3) and control (con-
trol2 and control 3) flies.
(TIF)

S2 Fig. Frequency of different classes of RNA in small RNA libraries in PD (PD2 and PD3)
and control (control2 and control3) flies.
(TIF)

S3 Fig. Predicted targets for dysreuglated Drosophila miRNAs in KEGG neuroactive
ligand-receptor interaction pathway. The targets predicted by DIANA miRPath v.2.0 in neu-
roactive ligand-receptor interaction pathway were shown in red square.

(TIF)

S4 Fig. Predicted targets in KEGG Glutamatergic synapse in H. sapiens. The hsa-miR-137-
3p targets predicted by DIANA miRPath v.2.0 in Glutamatergic synapse pathway were shown
in red square. NMDA receptor GRIN2A was identifies as potential target.

(TTF)

S5 Fig. Predicted targets in KEGG GABAergic synapse in H. sapiens. The hsa-miR-137-3p
targets predicted by DIANA miRPath v.2.0 in GABAergic synapse pathway were shown in red
square. GABA receptors including GABRA1, GABRA6 and GABBR2 were identifies as poten-
tial targets.

(TTF)

S1 Table. PCR primers for miRNAs and U6.
(XLS)
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