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Simple Summary: miR-21 is an oncogenic microRNA that has been associated with breast tumor
growth and metastasis in vitro and is also noted to be upregulated by cytotoxic stressors in model
systems and in breast cancer patients who have undergone radiation. In the present study, our
findings demonstrate the novel role of miR-21 in vivo for breast cancer initiation and metastases, and
in sensitizing tumor cells to cytotoxic therapy by upregulating the FAS/FASL signaling pathway.

Abstract: Breast cancer (BrCa) relies on specific microRNAs to drive disease progression. Oncogenic
miR-21 is upregulated in many cancers, including BrCa, and is associated with poor survival and
treatment resistance. We sought to determine the role of miR-21 in BrCa tumor initiation, progression
and treatment response. In a triple-negative BrCa model, radiation exposure increased miR-21 in both
primary tumor and metastases. In vitro, miR-21 knockdown decreased survival in all BrCa subtypes
in the presence of radiation. The role of miR-21 in BrCa initiation was evaluated by implanting
wild-type miR-21 BrCa cells into genetically engineered mouse models where miR-21 was intact,
heterozygous or globally ablated. Tumors were unable to grow in the mammary fat pads of miR-
21−/− mice, and grew in ~50% of miR-21+/− and 100% in miR-21+/+ mice. The contribution of miR-21
to progression and metastases was tested by crossing miR-21−/− mice with mice that spontaneously
develop BrCa. The global ablation of miR-21 significantly decreased the tumorigenesis and metastases
of BrCa, while sensitizing tumors to radio- and chemotherapeutic agents via Fas/FasL-dependent
apoptosis. Therefore, targeting miR-21 alone or in combination with various radio or cytotoxic
therapies may represent novel and efficacious therapeutic modalities for the future treatment of
BrCa patients.

Keywords: breast cancer; metastases; miR-21; apoptosis

1. Introduction

Breast cancer remains the most common malignancy in women in the United States,
and while most women have favorable outcomes, a significant number of patients have
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poor responses to standard treatments [1]. Further delineation of the molecular underpin-
nings linking tumor initiation, progression and treatment resistance could lead to improved
treatment modalities for breast cancer.

miRNAs can act as either oncogenes or tumor suppressors, and outside of these roles,
they can also perturb processes such as epithelial–mesenchymal transition, vessel invasion
and metastasis, and the evasion of apoptosis [2,3]. Recent data have implicated specific
miRNAs in tumorigenesis and cancer progression, as well as resistance to treatment [4–6].
miR-21 is one of the most commonly upregulated miRNAs in breast cancer. It has prog-
nostic implications as it has been closely linked to advanced tumor stage, lymph node
metastasis, and decreased overall survival in multiple retrospective clinical studies [7–10].
Additionally, the upregulation of miR-21 has been consistently demonstrated with stress
stimuli, such as free radical and DNA damage; thus, this microRNA could play a role in
resistance to cytotoxic therapies, such as chemotherapy or radiotherapy, both of which are
integral in the treatment of breast cancer [11–15].

While high levels of miR-21 portend a poor prognosis in breast cancer patients, there
are no data suggesting that targeting miR-21 in vivo could improve disease progression
in breast cancer and outcomes of cytotoxic therapies. Given its potential intersection
among prognosis, tumorigenesis and treatment resistance, we sought to determine the
role of miR-21 in breast cancer tumor development and progression using mouse models,
including a newly created miR-21 knockout mouse. We utilized a model which mimics the
spontaneous neoplastic transformation of the breast and the development of metastases in
order to analyze the effects of miR-21 expression during disease progression [16]. Moreover,
we examined the oncogenic effects of miR-21 and its response to DNA-damaging agents.
We demonstrate that the loss of miR-21 decreases the tumorigenesis and metastasis of
breast cancer, while sensitizing breast carcinomas to DNA-damaging agents through the
Fas/FasL pathway.

2. Material and Methods
2.1. Cell Culture

4T1 cells, MDA-MB-468 cells, SKBR3 cells (ATCC) and MCF-7 (gifted by Dr. Karen
Bussard) were verified with isoenzymology using the Authentikit system (ATCC, Manassas,
VA, USA) and authenticated using STR profiling. All experiments were performed with
mycoplasma-free cells. 4T1 cells were cultured in RPMI-1640, MDA-MB-468 in DMEM,
MCF-7 in MEM and SKBR-3 in McCoy’s 5A media. All media were supplemented with 10%
Fetal Bovine Serum and 1% Penicillin–Streptomycin solution (Invitrogen, Carlsbad, CA,
USA). To obtain miR-21+/+ and miR-21−/− cells for in vivo models, tumors were excised
from miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT mice, minced, and digested by
shaking in buffer containing 0.25% trypsin and 0.5 mg/mL collagenase in PBS. Samples
were centrifuged for 10 min at 1500 rpm after which the supernatant was aspirated, and the
tumor tissue was resuspended in media (DMEM, 10% Fetal Bovine Serum, 0.5% Penicillin–
Streptomycin) and incubated at 37 ◦C. The miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-
PyMT cells were cultured in media containing high-glucose DMEM, supplemented with
5% fetal bovine serum and sodium pyruvate (Life Technologies, Carlsbad, CA, USA).

2.2. Transfection and Cell Viability Assays

To determine the optimal concentration of miRvana miR-21 inhibitor for each cell line,
the cell lines were transfected with Lipofectamine RNAiMAX transfection reagent as per the
manufacturer’s guidelines (Thermofisher, Waltham, MA, USA), and 5 concentrations of the
inhibitor or negative scramble control were applied: 0 nM, 1 nM, 30 nM, 60 nM and 90 nM.
The final treatment concentrations chosen caused at least 50% miR-21 knockdown. Once the
treatment concentrations of miR-21 inhibitor were determined, the cell lines were seeded
at a density of 5 × 104 cells in 24-well plates and transfected with 60 nM (MDA-MB-468),
90 nM (MCF-7) and 30 nM (SKBR-3) of miRvana miR-21-5p inhibitor or negative scramble
control (Thermofisher, Waltham, MA, USA). Cell viability was determined with 3-(4, 5-
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dimethylthiozol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT; Sigma Aldrich, St. Louis,
MO, USA) using 0.5 mg/mL MTT and isopropyl alcohol:Triton X:HCl solubilization buffer.

2.3. Treatment for Autophagy Determination

miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT cells cultured as above were
seeded at a density of 2 × 105 cells/well in 6-well plates and treated at 90–95% confluency
with 500 nM Bafilomycin (Sigma, St. Louis, MO, USA) for 6 h prior to lysis. DMSO
(Thermofisher, Waltham, MA, USA) was used as the vehicle for Bafilomycin. The cells were
then processed for analysis using western blot.

2.4. Mouse Models

The Institutional Animal Care and Use Committee approved all mouse studies.

2.4.1. Breast Cancer Metastases Murine Model

Twenty BALB/c mice (female, 12-week-old, Charles River Laboratories, Wilmington,
MA, USA) were orthotopically injected with 5 × 104 4T1 cells into the #4 mammary fat
pad of the mice. Once the tumors measured ~100 mm3, 10 mice received sham irradiation
and the other 10 received focal irradiation (6.5 Gy) to the primary tumor. The mice
were monitored until the tumor volume reached 2000 mm3, and were then sacrificed,
with primary tumors and lung metastases collected in RNA later (Qiagen, Germantown,
MD, USA).

2.4.2. MMTV-PyMT Orthotopic Mouse Model

miR-21+/+, miR-21+/− and miR-21−/− female FVB mice (6–8 weeks old) were orthotopi-
cally injected in the mammary fat pad with 106 miR-21+/+;MMTV-PyMT cells. Post-injection,
ten mice from each phenotype were monitored three times a week with tumor measure-
ment for up to 10 weeks. Mice were euthanized and tumors collected when the largest
primary tumor reached 1500 mm3, or the tumor burden reached 2000 mm3.

2.4.3. MMTV-PyMT Genetically Engineered Mouse Model

Male MMTV-PyMT mice obtained from Jackson Laboratories were crossed with fe-
male miR-21+/+ or miR-21−/− mice to generate homozygous male/female miR-21+/+;MMTV-
PyMT and miR-21−/−;MMTV-PyMT mice. Mice were genotyped and only female miR-21+/+

and miR-21−/−;MMTV-PyMT mice were used for experiments due to their mature mam-
mary tissue. miR-21+/+ and miR-21−/−;MMTV-PyMT mice were monitored for 18 weeks or
until they reached humane endpoints for both primary and metastatic tumor formation.
Primary tumors and lungs were collected at sacrifice for gross examination, and the number
of metastases was counted. Additional tumor-bearing miR-21+/+;MMTV-PyMT and miR-
21−/−;MMTV-PyMT mice were irradiated (6.5 Gy) when their tumors reached 1000 mm3,
and were permitted to grow until the total tumor volume reached 2000 mm3. The tumors
were divided into equal parts and placed in RNAlater or snap-frozen upon collection.

2.5. Human Sera

Human serum samples were obtained via IRB-approved protocol at the National
Cancer Institute (02-C-0064) according to the protocol by Khoury et al. [17]. After signing
informed consent, whole blood was obtained via venipuncture from women within one
week of starting radiation and after the last fraction of radiation was delivered. The
patients were treated with 50–60 Gy of radiation to the breast and/or regional lymph nodes.
Whole blood was spun at 2500 rpm for 10 min and serum was aliquoted and frozen in
liquid nitrogen.

2.6. Irradiation and Chemotherapeutic Treatments

Irradiation was delivered by a Pantak H-320 (320 kV); Precision X-Ray, N. Bradford,
CT. Dosimetry was performed by an in-the-beam ionization chamber calibrated against
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a primary standard after making corrections for humidity, temperature and barometric
pressure. For in vitro studies, cells were treated with either sham irradiation or 4 or 8 Gy for
72 h. For in vivo studies, the mice were shielded using a custom lead jig so that irradiation
could be delivered to the primary tumor itself to a dose of 6.5 Gy. Transfected cells were also
treated with chemotherapy agents: Doxorubicin (Adriamycin) (100 nM for MDA-MB-468,
360 nM for MCF-7, or 1 µM for SKBR3) and Taxol (Paclitaxel) (16 nM for MDA-MB-
468, 68 nM for MCF-7, or 2 nM for SKBR-3) (Sigma Aldrich, St. Louis, MO, USA). The
treatment concentrations of chemotherapy agents were based on previously determined
concentrations that induced IC50 [18,19], or on the Genomics of Drug Sensitivity in Cancer
database (www.cancerrxgene.org; accessed on 20 August 2020), and independently tested
in our systems for final treatment concentrations.

2.7. Genotyping PCR, RNA Isolation and qRT-PCR

To genotype the mice for the genetically engineered and orthotopic mouse model as
described above, genomic DNA from tail clips was isolated using the REDExtract-N-Amp
Tissue PCR kit (Sigma-Aldrich). PCR was performed using the following primers: 5′-
TTTATGACGCATTGCACACCCTC (forward), 5′-CACAGAGAAGTAAGCTTCCACCTG
TTAAAG (WT reverse); 5′-AATAAGACTTATGAGATGGAGTCAGAAGGC (KO reverse).
The expected product sizes were 492 and 578 bp for wild-type and knockout alleles,
respectively.

Total RNA from cells, tissues or serum was isolated using Trizol reagent (Thermo
Fisher Scientific, Waltham, MA, USA) using the Phenol–Chloroform RNA isolation tech-
nique. Following extraction, RNA concentration was measured (NanoDrop 1000, Thermo
Scientific, Waltham, MA, USA), and 200 ng was reverse transcribed for both tissue and
serum using the miScript II RT Kit (Qiagen, Germantown, MD, USA). Tissue miRNA
expression was detected by qRT-PCR using the miScript SYBR Green PCR Kit (Qiagen,
Germantown, MD, USA), and qPCR primer sets against hsa-miR-21-5p, mmu-miR-21-5p,
FAS, controls UniSp6 and snord95 were performed in triplicate (Qiagen, Germantown,
MD, USA) using an AB7500 fast system (Applied Biosystems, Life Technologies Corpo-
ration, Carlsbad, CA, USA) with data presented as 2-∆Ct. miR-21+/+;MMTV-PyMT and
miR-21−/−;MMTV-PyMT cells were lysed with TRIzol Reagent (Life Technologies). RNA
isolation was carried out with Direct-zol RNA Miniprep Kit as per the manufacturer’s
protocol (Zymo Research, Irvine, CA, USA). Total RNA (1 µg) was annealed with oligo
(dT12-18) primers, and cDNA was synthesized using SuperScript Reverse Transcriptase
III (Life Technologies, Carlsbad, CA, USA). Gene-specific primer sets for M. musculus
Map1lc3a and Actb were utilized. Gene expression analysis was performed on a Roche
LightCycler 480-II and presented as 2-∆Ct.

2.8. Hematoxylin Eosin Staining

Paraffin-embedded tissue sections were stained with Harris’ hematoxylin (Sigma-
Aldrich, St. Louis, MO, USA) and counterstained with eosin Y solution, alcoholic (Sigma-
Aldrich, St. Louis, MO, USA), according to the manufacturer’s protocol.

2.8.1. cDNA Profiling

Total RNA was isolated from irradiated miR-21−/−;MMTV-PyMT and miR-21+/+;MMTV-
PyMT tumors, then quantified (Nanodrop ND-100 spectrophotometer), and quality as-
sessed (Agilent 2200 TapeStation; Agilent Technologies, Palo Alto, CA, USA). Affymetrix
gene chips (Mouse Gene 2.0-ST) were hybridized with 5 µg fragmented and biotin-labeled
cDNA in 200 µL of hybridization cocktail. Target denaturation, followed by hybridization
and staining, were done as per the methods used by Singh, J. et al. [20]. Differentially
expressed gene lists were subjected to pathway analysis using IPA software, and significant
genes were identified using the a priori selection criteria of absolute fold-change greater
than or equal to 2, with a p-value < 0.05. The microarray data were deposited at GEO:
GSE144773.

www.cancerrxgene.org
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2.8.2. Tissue Lysis, Western Blotting and Statistical Analysis

Tissues were lysed in T-PER tissue protein extraction reagent (Thermo Scientific,
Waltham, MA, USA) as per the manufacturer’s instructions. Protein concentration was
determined via a BCA assay, and SDS-PAGE-performed PVDF blots were probed with
antibodies against FAS (Abcam, Cambridge, MA, USA), Caspase-3, 7, 8, 9, GAPDH (Cell
Signaling Technology, Danvers, MA, USA), LC3, p62, β-Actin (Sigma, St. Louis, MO, USA),
and were visualized with ECL substrate chemiluminescent detection reagent (Thermofisher,
Waltham, MA, USA). ImageJ (NIH) software was used to quantify. miR-21+/+;MMTV-PyMT
and miR-21−/−;MMTV-PyMT cells treated with 500 nM Bafilomycin were lysed using RIPA
buffer for 25 min on ice, then resolved via SDS/PAGE. Proteins were then transferred
to nitrocellulose membranes (Bio-Rad), immunoreacted with the indicated primary an-
tibodies (GAPDH, LC3-I/-II, or p62) and developed with enhanced chemiluminescence
(ThermoFisher Scientific). The membranes were then detected using an ImageQuant LAS-
4000 (GE Healthcare, Chicago, IL, USA). A total of 3–5 biological replicates were performed
for each experiment. The original western blotting figures can be found in Figure S4.

Statistics were assessed using a Student’s t-test for miRNA expression levels, one-way
ANOVA followed by Dunnett’s post-test for mRNA and protein expression, and two-way
ANOVA followed by Bonferroni post-test for miRNA expression levels and cell survival
assays. Tumor-free survival was determined using the Mantel–Cox test to generate a
Kaplan–Meier curve. The median tumor-free survival between the groups was compared
and the significance was determined using a pre-specified α = 0.025 (0.05/2). Statistical
analyses were done using GraphPad Prism software (GraphPad Software, La Jolla, CA,
USA) or Sigma Stat (v3.10).

3. Results
3.1. miR-21 Expression Plays a Critical Role in Breast Cancer Growth, Metastases and Treatment

As an increased expression of miR-21 is implicated in the poor prognosis and progres-
sion of several types of cancer and treatment resistance, we used an in vivo model for the
first time to evaluate this in triple-negative breast cancer. In this 4T1 model, the expression
of miR-21 was increased ~4-fold in primary tumors and ~11.8-fold in the metastases com-
pared to normal mammary fat pad tissue (MFP) (Figure 1A). Prior studies have shown
miR-21 to play a role in radiation resistance, so primary tumors were also evaluated for
miR-21 expression in the presence or absence of radiation [21,22]. Tumors treated with
radiation showed a ~1.5-fold increase in miR-21 expression compared to the untreated tu-
mors (Figure 1B). Next, we validated these animal experiments by determining the miR-21
levels in human sera collected from breast cancer patients (n = 10) before or after a six-week
course of radiation. We discovered that radiation caused an increase in the circulating
levels of miR-21 in the sera of irradiated patients (Figure 1C). As miR-21 increased with the
progression of disease, and also increased with radiation in a syngeneic murine model and
was noted to be consistently upregulated in patient samples, we wanted to determine if
miR-21 knockdown could increase radiation sensitivity in breast cancer cells of all subtypes.
miR-21 inhibition caused significant inhibition of tumor growth compared to scramble con-
trol in the triple-negative cell line MDA-MB-468 (Figure 1D, p < 0.05), the estrogen-positive
MCF-7 line (Figure 1E, p < 0.001) and the Her-2-neu-positive breast cancer cell line SKBR-3
(Figure 1F, p < 0.05). Collectively, these results indicate that miR-21 is associated with breast
cancer progression and the stress response evoked by radiation treatment in murine and
human models. Importantly, the loss of miR-21 significantly increases radiation sensitivity
in in vitro breast cancer models.
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Figure 1. Stress-activated miR-21 plays a critical role in breast cancer growth and metastases. (A) miR-21 expression was
increased as the breast cancer progressed. Basal levels of miR-21 were seen in the normal fat pad, the orthotopic primary
tumor showed increased expression of miR-21, and the maximum increase in miR-21 was seen in lung metastases (n = 2
mice/group; •—Individual replicates for normal mammary fat pad (MFP), �—Individual replicates of primary tumor (PT)
N—Individual replicates of Metastases (MT). (B) Radiation-caused stress induced increases in miR-21 expression in the
primary tumor (n = 2 mice/group; •—Individual replicates for primary tumor without radiation, �—Individual replicates of
primary tumor irradiated with dose 6.5 Gy). (C) miR-21 expression was increased in human serum post-radiation (n = 10).
(D) Knockdown of miR-21 with a specific inhibitor sensitized MDA-MB-468, MCF-7 (E), and SKBR3 (F) cells to increasing
doses of radiation over a total treatment period of 72 h (n = 3/group). For (A–C), mean ± SEM with ***, ** are significantly
different with p < 0.001 or <0.01 as determined by one-way ANOVA or student’s t-test. For (D–F), mean ± SD with ***, **, *
are significantly different with p < 0.001 or < 0.01 or 0.05 as determined by one-way ANOVA or student’s t-test.

3.2. Loss of miR-21 Protects Mice from Breast Cancer Initiation: Orthotopic Model

Although miR-21 is noted to play a role in breast cancer, its ability to initiate cancer
has not been explored. To understand the effect of miR-21 on tumor initiation, we isolated
miR-21 wild-type breast carcinoma cells from MMTV-PyMT mice, in which MMTV-LTR
drives the expression of mammary gland-specific polyomavirus middle T-antigen, leading
to the rapid development of highly metastatic tumors [23]. We then orthotopically injected
them into the mammary fat pads of mice with three distinct genotypes, namely, miR-21+/+,
miR-21+/− and miR-21−/− [24] (Figure 2B). The expression of miR-21 was verified in each
genotype, and revealed a ~50% and ~95% reduction in miR-21+/− mice and miR-21−/− mice,
respectively (Figure 2A). We found that five weeks after injection, 100% of the miR-21+/+

mice developed tumors. In contrast, by the end of the study at 150 days, only ~45% of the
miR-21+/− mice developed tumors, and none of miR-21−/− mice had detectable neoplasms
(Figure 2C). Collectively, these findings demonstrate that the lack of miR-21 in the tumor
microenvironment prevented the growth of tumors, suggesting that miR-21 may play an
important role in tumor initiation.



Cancers 2021, 13, 888 7 of 16

Cancers 2021, 13, 888 7 of 16 
 

 

mice, respectively (Figure 2A). We found that five weeks after injection, 100% of the miR-
21+/+ mice developed tumors. In contrast, by the end of the study at 150 days, only ~45% 
of the miR-21+/− mice developed tumors, and none of miR-21−/− mice had detectable neo-
plasms (Figure 2C). Collectively, these findings demonstrate that the lack of miR-21 in the 
tumor microenvironment prevented the growth of tumors, suggesting that miR-21 may 
play an important role in tumor initiation. 

 
Figure 2. Genetic deletion of miR-21 protects against breast tumor formation. In the orthotopic model, 1 × 106 MMTV-
PyMT cells were injected into the mammary fat pad of miR-21+/+, miR-21+/− and miR-21−/− (n = 10 mice/group). (A) miR-21 
expression in mammary fat pads of miR-21+/+, miR-21+/− and miR-21−/−, determined by one-way ANOVA and represented 

as mean ± SEM, (****—p < 0.0001, n = 2 mice/group; ●—Individual replicates of miR-21+/+ tumors, ▪—Individual replicates 
of miR-21+/− tumor, ▲—Individual replicates of miR-21−/− tumors). (B) Schema. (C) Tumor formation was noted in all miR-
21+/+ and 45% of miR-21+/− mice, but the miR-21−/− had 0% tumor formation at 150 days determined by Mantel–Cox test (p < 
0.001, n = 10 mice/group). 

To understand the mechanism by which a lack of miR-21 in the tumor microenviron-
ment prevents tumor growth, miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT cells 
isolated from MMTV tumors were analyzed for expression and protein levels of autoph-
agy markers. The cells were analyzed for the expression of MAP1LC3A using qRT-PCR. 
The MMTV-PyMT cells were also treated with Bafilomycin A1, which blocks the fusion of 
autophagosomes and lysosomes, and we analyzed its effect on the levels of p62 and LC3-
I/II using western blots. We observed that there was no difference in the mRNA expres-
sion of MAP1LC3A between the miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT cells. 
Basal levels of LC3-II were significantly higher (p < 0.001) in the miR-21-/- cells. These find-
ings showing increased autophagy were validated by treating the cells with Bafilomycin 
A1. We observed that the basal levels of p62 were reduced in miR-21−/− cells compared to 
miR-21+/+ cells. Bafilomycin caused a significant increase in both p62 and LC3-II (p < 0.001) 
in the miR-21−/− cells, which indicates an increase in autophagic flux (Figure S3). 

  

Figure 2. Genetic deletion of miR-21 protects against breast tumor formation. In the orthotopic model, 1× 106 MMTV-PyMT
cells were injected into the mammary fat pad of miR-21+/+, miR-21+/− and miR-21−/− (n = 10 mice/group). (A) miR-21
expression in mammary fat pads of miR-21+/+, miR-21+/− and miR-21−/−, determined by one-way ANOVA and represented
as mean ± SEM, (****—p < 0.0001, n = 2 mice/group; •—Individual replicates of miR-21+/+ tumors, �—Individual replicates
of miR-21+/− tumor, N—Individual replicates of miR-21−/− tumors). (B) Schema. (C) Tumor formation was noted in all
miR-21+/+ and 45% of miR-21+/− mice, but the miR-21−/− had 0% tumor formation at 150 days determined by Mantel–Cox
test (p < 0.001, n = 10 mice/group).

To understand the mechanism by which a lack of miR-21 in the tumor microenviron-
ment prevents tumor growth, miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT cells
isolated from MMTV tumors were analyzed for expression and protein levels of autophagy
markers. The cells were analyzed for the expression of MAP1LC3A using qRT-PCR. The
MMTV-PyMT cells were also treated with Bafilomycin A1, which blocks the fusion of au-
tophagosomes and lysosomes, and we analyzed its effect on the levels of p62 and LC3-I/II
using western blots. We observed that there was no difference in the mRNA expression of
MAP1LC3A between the miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT cells. Basal
levels of LC3-II were significantly higher (p < 0.001) in the miR-21−/− cells. These findings
showing increased autophagy were validated by treating the cells with Bafilomycin A1.
We observed that the basal levels of p62 were reduced in miR-21−/− cells compared to
miR-21+/+ cells. Bafilomycin caused a significant increase in both p62 and LC3-II (p < 0.001)
in the miR-21−/− cells, which indicates an increase in autophagic flux (Figure S3).

3.3. Loss of miR-21 Delays Tumor Growth and Reduces Metastases: Genetically Engineered Model

To evaluate if the loss of miR-21 could prevent or slow tumor progression in MMTV-
PyMT mice that typically demonstrate rapid tumor formation and progression, we crossed
our miR-21−/− and miR-21+/+ mice with the MMTV-PyMT mice (Figure 3A). Notably, the
miR-21−/−;MMTV-PyMT mice showed a delayed formation of tumors, with initiation
at ~11 weeks compared to the miR-21+/+;MMTV-PyMT mice that developed tumors at
~8 weeks, p < 0.001 (Figure 3B,C).
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Figure 3. Genetic deletion of miR-21 delays tumor growth and reduces metastases in MMTV-PyMT mice. (A) Schema.
(B,C) In crossing MMTV-PyMT mice with miR-21+/+ and miR-21−/− mice the miR-21−/−;MMTV-PyMT mice were noted to
have a delay in tumor formation of 4 weeks compared with the miR-21+/+;MMTV-PyMT mice, which was a statistically
significant delay determined by Mantel–Cox test (3B) and student t-test (3C) (***-p < 0.001, n = 3 mice/group). (D) H&E
staining of lung metastases in miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT at 16 and 18 weeks after birth. (E) Total
number of external lung metastases in the miR-21+/+ and miR-21−/−;MMTV-PyMT mice. Tumor regrowth delay was
determined using the Mantel–Cox test to generate a Kaplan–Meier curve. The overall tumor uptake ratio for the injected
groups was compared among the groups and significance was determined using a pre-specified α = 0.025 (0.05/2).

Since we found miR-21 levels to be elevated in breast cancer metastases (cfr. Figure 1A),
we investigated the contribution of miR-21 to metastasis. We found that the lack of miR-21
reduced metastases with a decrease in average size (Figure 3D). Gross examination of the
total pulmonary metastases showed a significant reduction in the mice lacking miR-21
(Figure 3E, p < 0.05), with an average of 15 metastases in the miR-21+/+;MMTV-PyMT,
and ~1 metastases in the miR-21−/−;MMTV-PyMT mice. Therefore, the loss of miR-21 in
this model causes a significant delay in tumor progression and metastases despite the
aggressive MMTV phenotype.

3.4. Radiation Increases Apoptosis in MMTV-PyMT Tumors Lacking miR-21

To evaluate the differential effect of radiation therapy in breast tumors in vivo, tu-
mors derived from the miR-21+/+;MMTV-PyMT and miR-21−/−;MMTV-PyMT models were
treated with radiation. The wild-type tumors had a ~2.5-fold increase in miR-21 evoked
by 6.5 Gy (Figure 4A, p < 0.001). In contrast, no expression was noted in the comparably
irradiated miR-21−/−;MMTV-PyMT tumors. To elucidate the underlying radiation-induced
stress response mechanism, cDNA arrays were performed and revealed 460 differentially
expressed genes in the irradiated breast tumors from miR-21−/− versus miR-21+/+; MMTV-
PyMT mice (GEO: GSE144773). Ingenuity pathway analysis of the 80 genes upregulated
in the absence of miR-21 (Figure S2) revealed the activation of apoptosis, death receptor
signaling, and the Myc-mediated apoptosis signaling pathway. We found that FAS was
common to all top pathways (Figure 4B). Notably, FAS is an apoptosis-inducing protein
and an established target of miR-21 [25–27], known to be upregulated post-radiation in
several types of cancer [28–30] with a critical role in radiation-induced cell death [25–27].
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mice. (A) To investigate the underlying mechanism of radiation sensitivity conferred by loss of miR-21, tumors generated
from miR-21−/−;MMTV-PyMT and miR-21+/+;MMTV-PyMT mice were exposed to 6.5 Gy irradiation, and collected after
24 h. Irradiation caused a 2.5-fold induction of miR-21 in the tumors derived from miR-21+/+;MMTV-PyMT mice, whereas
no increase was noted in the miR-21−/− tumors determined using one-way ANOVA (***-p < 0.001, **-p < 0.01, n = 3/group).
(B) As FAS and FASL are known targets of miR-21, the inverse correlation in the expression of miR-21 and FAS was confirmed
transcriptionally and at the protein level for Fas in tumors derived from miR-21−/−;MMTV-PyMT and miR-21+/+;MMTV-
PyMT mice exposed or not to 6.5 Gy. MDA-MB-468 cells were transfected with 60 nM miR-21 inhibitor or scramble with or
without 8 Gy. miR-21 inhibition combined with 8 Gy radiation increased FAS expression by 95% (p < 0.01) compared to
control, and 63% (p < 0.05) compared control tumors treated with 8 Gy. miR-21 inhibition also caused significant increases in
the expression of FASLG (p < 0.01) in tumors, and FAS (p < 0.01) in MDA-MB-468 cells treated with 8 Gy and miR-21 inhibitor,
determined using one-way ANOVA (****-p < 0.000, **-p < 0.01, *-p < 0.05, n = 3/group). (C) Ingenuity pathway analysis
revealed the activation of apoptosis and death receptor signaling pathways as top canonical pathways. (D) Twenty-four
hours after radiation, the activation of the caspase 3, 7, 8, and 9 signaling pathways was evaluated in miR-21−/− and
miR-21+/+ tumors by western blot and quantified. Significant upregulation of cleaved caspases was noted in the miR-21−/−

tumors (n = 3/group). In detail, caspase 3 was increased by 90%, 7 by 80%, 8 by 70% and 9 by 50% (**-p < 0.01, *-p < 0.05.
Data represent the difference in means represented as mean ± SEM of three independent mouse tumor tissues normalized
to housekeeping genes snoRNA 95, snoRNA96A miRNA, UniSp6, GAPDH mRNA and actin; p < 0.001 or <0.01 as determined
by one-way ANOVA with Dunnett’s Post-test.

Next, to validate the transcriptomic findings, tumor samples were queried for FAS and
FASL, both being known targets of miR-21, and both were notably induced by radiation in
the miR-21−/− tumors at the mRNA and protein levels (p < 0.001, Figure 4C). This finding
was verified in vitro with MDA-MB-468 cells transfected with miR-21 inhibitor. We found
that following radiation there was a ~63% increase (p < 0.05) in FAS expression vis-à-vis
control cells treated with radiation, and a ~95% increase (p < 0.01) compared to control
(Figure 4D). Given that irradiation induced FAS and FASL in breast tumors lacking miR-
21, we evaluated the activation of the caspase cascade (Figure 4F). We found a ~3.2-fold
increase in cleaved Caspase-3 (p < 0.05), a ~3.6-fold increase in cleaved Caspase-7 (p < 0.01),
and a significant increase in cleaved Caspase-8 and -9 (p < 0.01 and p < 0.05, respectively).
Collectively, our findings expand our current knowledge of this onco-miR, and suggest that
miR-21 could be a novel therapeutic target for apoptotic induction during radiotherapy.
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3.5. The Inhibition of miR-21 Sensitizes Breast Cancer Cells to Cytotoxic Therapies

To determine if the potential therapeutic advantage of miR-21 inhibition may also
apply to other cytotoxic therapies, we evaluated the role of miR-21 in chemotherapeutic
resistance. A cell line representing each breast cancer subtype was chosen and treated with
Doxorubicin or Taxol in the presence of either scramble control or miR-21 inhibitor. First,
we confirmed that transfection did not affect cell survival (Figure S1) and caused a decrease
in miR-21 expression of ~69% in MDA-MB-468, as well as a >95% reduction in MCF-7 and
SKBR-3 cells (Figure 5A). Next, we found that Doxorubicin alone caused a 44% (p < 0.05),
53% (p < 0.01) and 49% (p < 0.001) decrease in cell survival in MDA-MB-468, MCF-7 and
SKBR-3 cells, respectively (Figure 5B). Notably, the combination of doxorubicin and miR-21
inhibitor further increased the cell death effects, with a decrease in cell survival to 68%
(p < 0.01), 72% (p < 0.05) and 85% (p < 0.05) in the three cell lines, respectively (Figure 5B).
Similarly, compared to control, Taxol alone caused a 61% (p < 0.001), 44% (p < 0.001) and
72% (p < 0.0001) decrease in cell survival in the MDA-MB-468, MCF-7, and SKBR-3 cells,
respectively, and when combined with the miR-21 inhibitor, we saw a further decrease
in cell survival of 91% (p < 0.05), 62% (p < 0.05) and 82% (p < 0.01) in the three cell lines,
respectively (Figure 5C). Taken together, these results indicate that targeting miR-21 may
increase the therapeutic efficacy of breast cancer therapies.
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Figure 5. Chemosensitizing effect of miR-21−/− in breast cancer cells. Knockdown of miR-21 by transfecting MDA-MB-468,
MCF-7 and SKBR-3 cells with miR-21 inhibitor sensitizes them to chemotherapy drugs; (A) 90 nM miR-21 inhibitor causes
a ~70% decrease in miR-21 expression in MDA-MB-468 cells compared to scramble, while 90 nM in MCF-7, and 30 nM
in SKBR-3 cells, caused almost complete miR-21 inhibition compared to scramble. (B) At 48 h post-treatment, miR-21
inhibition combined with doxorubicin caused a ~40%, ~50%, and ~50% decrease in cell survival of MDA-MB-468, MCF-7,
and SKBR-3, respectively, compared to scramble control. (C) At 48 h post-treatment, miR-21 inhibition combined with taxol
caused a ~70%, ~53% and ~28% decrease in the cell survival of MDA-MB-468, MCF-7, and SKBR-3, respectively compared
to scramble control. All the in vitro experiments were done in triplicates or quadruplets (n = 3/group), *** p < 0.001 or
** p < 0.01 or * p < 0.05, determined by two-way ANOVA with Bonferroni post-test or student’s t-test.



Cancers 2021, 13, 888 12 of 16

4. Discussion

miR-21 is an onco-miR [31–33] that has been associated with breast tumor growth and
metastasis in vitro [34–37], and is noted to be upregulated by cytotoxic stressors in model
systems [38–40] and in breast cancer patients who have undergone radiation [38,41]. In the
present study, we demonstrate a novel role of miR-21 in vivo for breast cancer initiation
and metastases, and in sensitizing tumor cells to cytotoxic therapy by upregulating the
FAS/FASL signaling pathway.

Based on previously published results elaborating the role of miR-21, and our own
data, we used miR-21−/− mice that we generated in our laboratory, and demonstrated
for the first time that tumor uptake of orthotopic breast carcinoma allografts is unable to
occur with a genetic deletion of both alleles of miR-21. Moreover, we demonstrated that a
lack of miR-21 protects the mice from tumor formation as compared to the development
seen in the mice with the presence of either one or two copies of the allele (miR-21+/−,
miR-21+/+). These data imply that miR-21 expression in the host tumor microenvironment
is necessary for tumor formation. The lack of tumor uptake in the host tumor environ-
ment of miR-21−/− mice may be related to multiple mechanisms. We hypothesize that a
lack of tumor growth may be influenced by a decrease in pro-inflammatory markers, or
an induction of autophagy. Using lung cancer models, others have shown that miR-21
alters the tumor microenvironment by increasing the secretion of the pro-inflammatory
cytokines TNF- α and IL-6, through the activation of NF-κB, which decreases the number
of CD8+ TIL and promotes the polarization of M2 macrophages [42]. Our data using
miR-21−/−;MMTV-PyMT tumors demonstrated an increase in autophagic flux in miR-21−/−

cells (Figure S3). This suggests the lack of tumor initiation in the miR-21−/− mice, and
the delayed tumorigenic response and metastasis in the miR-21−/−; MMTV-PyMT model
could be the direct result of an unfavorable tumor microenvironment characterized by
augmented autophagic activity.

We also showed a delay in tumor formation using our genetically engineered miR-
21−/−;MMTV-PyMT mouse model. Although this is a novel finding in breast cancer, Ma.
et al. [43] and Li et al. [44] have shown a similar delay in a skin carcinogenesis model. We
also evaluated the contribution of miR-21 to metastatic diseases in this GEMM system,
and demonstrated that miR-21−/− mice have decreased metastases in the MMTV-PyMT
model compared to miR-21+/+; MMTV-PyMT mice. Taken together, we postulate that these
effects may be related to a change in the extracellular matrix that occurs with the deletion of
miR-21. This could mechanistically explain the lack of primary tumor engraftment, as well
as the tumor progression from the primary site to metastatic disease. It may also underlie
the tumor-suppressive benefits following miR-21 loss and/or inhibition.

As we had noted a reflexive increase in miR-21 after exposure to radiation, and others
have shown a link between miR-21 and radiation resistance in different models of cancers
and that knocking down miR-21 creates a radiosensitive phenotype in vitro [11,21,22,45,46],
we used our model to determine a mechanistic connection. Using in vitro invasion and
wound healing assays, other researchers have shown that the inhibition of miR-21 using
miR-21 inhibitors prevented or reduced cell migration and invasiveness. This may indicate
that targeting miR-21 in vivo would reduce epithelial–mesenchymal transition [47–49].
Pathways analysis of primary breast tumors lacking miR-21 and exposed to ionizing
radiation revealed apoptosis and death receptor signaling, specifically FAS/FASL signaling,
to be the key signaling nodes in breast cancer treatment response in the miR-21−/− model.
The ability to modulate FAS could be important, as it is induced by radiation, and the
knockdown of FAS resulted in the increased survival of breast cancer cells following
radiation [29]. Moreover, Wu et al. [10] and others [25–27,50] have shown an association of
FASL with miR-21 expression in breast cancer. Therefore, our data suggest that miR-21−/−

has the capability to sensitize MMTV-PyMT tumors to radiation therapy, and that this is
accomplished by the upregulation of FAS/FASL signaling, activating the caspase cascade
and resulting in increased apoptosis due to radiation in this model.
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Additionally, using in vitro studies, we determined that inhibiting miR-21 expression
also increased cell death in ER-positive, Her-2-neu-positive and triple-negative breast
cancer cells when either radiation therapy or chemotherapies were used. These data suggest
a therapeutic benefit to decreasing miR-21 in breast cancer. Others have demonstrated
the chemosensitizing effect of downregulating miR-21 in diverse cancer types, including
glioblastoma multiforme, cervical cancer, and lung cancer [7,45,51–54].

5. Conclusions

The present study demonstrates that miR-21 plays a role in breast cancer initiation,
progression and therapeutic response. In a BrCA model, radiation exposure increases
miR-21 in both the primary tumor and metastases. In vitro, miR-21 knockdown decreases
survival in all BrCa subtypes in the presence of radiation and chemotherapeutic agents.
The presence of miR-21 in the tumor microenvironment plays a role in the ability of
BrCa tumors to initiate. miR-21 in the tumor contributes to progression and metastases,
while sensitizing tumors to radio- and chemotherapeutic agents by Fas/FasL-dependent
apoptosis. Targeting miR-21 alone or in combination with various radio or cytotoxic
therapies may represent a novel therapeutic strategy for the treatment of BrCa patients.
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