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ARTICLE

Widespread theta synchrony and high-frequency
desynchronization underlies enhanced cognition
E.A. Solomon 1, J.E. Kragel2, M.R. Sperling3, A. Sharan4, G. Worrell5, M. Kucewicz5, C.S. Inman6, B. Lega7,

K.A. Davis8, J.M. Stein9, B.C. Jobst10, K.A. Zaghloul11, S.A. Sheth12, D.S. Rizzuto2 & M.J. Kahana2

The idea that synchronous neural activity underlies cognition has driven an extensive body of

research in human and animal neuroscience. Yet, insufficient data on intracranial electrical

connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through

the lens of memory encoding and retrieval processes, we construct whole-brain connectivity

maps of fast gamma (30–100 Hz) and slow theta (3–8 Hz) spectral neural activity, based on

data from 294 neurosurgical patients fitted with indwelling electrodes. Here we report that

gamma networks desynchronize and theta networks synchronize during encoding and

retrieval. Furthermore, for nearly all brain regions we studied, gamma power rises as that

region desynchronizes with gamma activity elsewhere in the brain, establishing gamma as a

largely asynchronous phenomenon. The abundant phenomenon of theta synchrony is posi-

tively correlated with a brain region’s gamma power, suggesting a predominant low-

frequency mechanism for inter-regional communication.
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The brain gives rise to behavior and thought through the
coordinated activity and transfer of information between
disparate regions1. Despite over a century of investigation

into the brain’s interconnectedness2, the nature of these inter-
regional interactions remains unknown. Our understanding of
connectivity in the brain originates from studies that use indirect
measures of neural activity, like blood–oxygen-level dependent
(BOLD) functional MRI, extracranial electroencephalography
(EEG), and magnetoencephalography3. While these techniques
provide a useful picture of how distant brain regions act in
concert during cognition, they lack the spatial or temporal

precision of direct electrical recordings in the brain4. Until
recently, the limited availability of such intracranial data made it
difficult to assess the connectivity dynamics of the whole brain as
it performs cognitive tasks.

Recent studies using direct brain recordings in neurosurgical
patients have made it possible to robustly investigate neural
synchronization, the coordinated activity of ensembles of neurons
in different parts of the brain. Synchronization is an appealing
mechanism for explaining how the brain stores memories, pro-
cesses sensory inputs, or performs any operation that involves
interlinking representations of the outside world3, and it generally
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Fig. 1 Network construction and basic analysis. a 3D visualization of all surface electrodes included in our data set, colored by the Talairach atlas labels
used in this article’s analysis. b Schematic of spectral phase approach that compares the distributions of phase differences between electrodes across all
trials of the verbal free-recall task. Significantly tighter distributions indicate greater synchronization. c Connectivity maps were extracted for each of 294
neurosurgical patients, reflecting the connectivity change associated with successful item recall. Effects were pooled across subjects and ROIs to construct
the final network. Blue indicates decreased phase synchrony associated with successful encoding, red indicates increased synchrony. d 74 × 74 ROI
adjacency matrices representing the z-scored time-averaged and frequency-averaged connection weights during the item presentation interval
(0–1600ms). The high gamma network is constructed from frequencies between 45–100 Hz, and theta from 3–8 Hz. Node indices are organized by lobe
per the indicators on the axes. Gray areas represent connections between ROIs with fewer than seven subjects’ worth of data. e 3D visualizations of the
whole-brain HG and theta networks. f Summed positive and negative connection weights in each frequency band. In a remembered vs. not-remembered
contrast, the total level of synchronous theta connections and asynchronous HG connections were significantly greater than chance (P< 0.01), and there
was a significant frequency-synchrony interaction (P< 0.01, χ2 test). Dotted lines indicate mean chance level, shaded area ±1 STD
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occurs on different timescales—or frequencies—of neural activity.
In particular, gamma-band (30–100 Hz) synchronization is fre-
quently invoked as a means for the brain to communicate
between regions, since the fast nature of an oscillatory gamma
signal is timed appropriately for rapid perceptual operations or
induction of synaptic strengthening5–8. Support for this idea
comes mostly from animal studies6,7,9,10, though some human
EEG studies also report cognitively induced low-gamma and
short-range synchronicity11–13. However, others have argued that
this body of work is conceptually and empirically deficient to
defend the broad notion that high-frequency activity supports a
meaningful neural connection14–18. Notably, conduction delays
between cortical areas would make the precise synchronization of
gamma oscillations difficult, and overall power at high fre-
quencies may be too weak to support neuronal synchrony. Fur-
thermore, the literature on this subject is mixed—even some of
the most influential studies of gamma synchrony in humans
report significant periods of desynchronization11,12,19 and steep
drop-offs in synchrony at higher frequencies13. These critiques
raise the possibility that gamma does not serve to support com-
munication between cortical regions, though this hypothesis has
not been directly tested.

If activity in the gamma range is not synchronous, it may
instead reflect the aggregation of rapid, stochastic firing in a
population of neurons near an electrode, not an oscillatory
modulation of activity that indicates coordinated activity across
space20,21. Were this true, the general neural activation of a brain
region—captured by the spectral power recorded at a cortical
electrode—would rise as the synchronicity of that region with
others would tend to fall. However, this form of broadband
asynchronous activity may coexist with narrowband synchronous
oscillations22,23, and both may contribute to spectral changes at
frequencies in the gamma band. In this case, it remains untested
whether the oscillatory component of a gamma-band signal
underlies long-range synchronization, and to what extent high-
frequency activity during cognition reflects synchronous oscilla-
tions vs. asynchronous broadband activity.

If high-frequency activity is not the principal mediator of inter-
regional synchronization, low-frequency interactions may be a
promising alternative. Synchrony in the slower theta-band
(3–8 Hz) has been reliably found to correlate with cognition in
humans and animals24–27, and theta oscillations are also linked to
modulations of gamma activity28,29. However, low-frequency
networks have not been characterized on a brain-wide scale,
making it difficult to differentiate general principles of brain
function from dynamics that may be particular to specific
structures. It is possible that canonical regions such as the medial
temporal lobe (MTL) and prefrontal cortex participate in low-
frequency networks while less well-studied regions break from
this trend. Moreover, low-frequency interactions have not yet
been directly related to modulations of spectral power on a brain-
wide scale, though probing these interactions may reveal the
relationship between a region’s functional connectivity and local
processing.

In this study, our goal is to determine what principles underlie
how neural activity is coordinated across the brain during
memory processing, and to answer how spectral power and
synchrony are related: To what extent is inter-regional commu-
nication mediated by low-frequency vs. high-frequency interac-
tions? As the local high-frequency activity of a region increases,
does its synchrony concomitantly decrease? How often do we
observe high-frequency oscillations during cognition, and are
they associated with long-range connectivity? While 294 subjects
perform memory encoding and retrieval tasks—processes that
rely on the integration and binding of information—we record
intracranial electroencephalographic (iEEG) data and construct

whole-brain networks of high-frequency and low-frequency
phase interactions. To determine how synchrony changes over
time and space, we parse these networks with graph-theoretic
tools that identify hubs of the network, and then correlate the
spatio-temporal pattern of synchrony at these hubs with simul-
taneously measured spectral power. Though our focus is on
gamma-band and theta-band synchrony, we consider whether
connectivity dynamics in these bands are better captured by
broader frequency ranges, such as broadband low (< 30 Hz) and
broadband high
(> 30 Hz). We observe widespread desynchronization of high-
frequency activity and synchronized low-frequency activity dur-
ing memory processes, which correlate with regions of enhanced
high-frequency power. Our findings support the notion that
macroelectrode scale recordings largely reflect asynchronous
neural firing at high frequencies, but also suggest a low-frequency
mechanism for inter-regional communication.

Results
Quantification of brain-wide connectivity phenomena. To
assess connectivity between brain regions, we collected iEEG data
from 294 patients undergoing clinical monitoring for seizures
while they performed a verbal free-recall memory task (Fig. 1a;
see Supplementary Fig. 1 for behavioral results). In this task,
patients saw a series of words, each presented briefly on a screen,
and were instructed to recall as many as possible. To construct
networks of activity, we adopted a common spectral phase syn-
chronization approach to measure connectivity between pairs of
electrodes, called the phase-locking value, which quantifies the
consistency of phase differences at a given frequency across trials
of the experiment30 (Fig. 1b, c; Methods section). In this paper,
we primarily focus on regularly spaced frequencies in the
45–100 Hz range, referred to collectively as “high gamma,”
though we make no prior assumption as to whether these fre-
quencies capture predominantly broadband asynchronous or
oscillatory synchronous effects. Some analyses are extended to the
30–60 Hz range, referred to as “low gamma.”

We first sought to quantify the grand-average modulation in
high gamma (HG) and theta connectivity during item encoding
that correlates with subsequent successful recall of that item—in
other words, the relative level of synchronization comparing
successful to unsuccessful encoding events. To measure this, we
averaged the modulation in HG or theta connectivity across all
possible electrode pairs that spanned every pair of anatomically
defined regions of interest (ROIs) in all subjects (ROIs are based
on automated Talairach atlas labeling31, e.g., superior frontal
gyrus, middle temporal gyrus, etc. See Methods section for details;
Supplementary Table 1 for ROI abbreviations used in this paper).
Connection weights are then z-scored against a null distribution,
obtained by permuting remembered/not-remembered trial labels,
to reflect the connection strength between ROIs relative to that
expected by chance. The results of this procedure in the gamma
and theta bands are adjacency matrices, which represent the
pairwise connectivity between all ROIs (Fig. 1d), and which can
be rendered as brain maps (Fig. 1e).

Encoding networks showed markedly different properties
between HG-band and theta-band frequencies. As measured by
the summed connection weights across the entire network, HG
asynchrony and theta-band synchrony significantly correlated
with successful encoding (Fig. 1f; P< 0.01 via permutation test of
summed connection weights; Methods section). And though the
network-wide level of synchronous activity in HG was not
significant (permutation P= 0.892), this does not preclude the
possibility that specific connections among ROIs are associated
with successful memory encoding. Similarly, the overall level of
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theta-asynchronous interactions was not greater than chance
(permutation P> 0.99). Extending this analysis to higher and
lower frequencies revealed significant asynchrony (Fig. 2a;
permutation P< 0.05) in frequencies between 30 Hz and
120 Hz, including the typical 30–60 Hz low gamma band.
Significant synchrony in frequencies between 3 Hz and 28 Hz—
theta, alpha, and beta bands—was also observed (permutation P
< 0.01). The brain-wide connectivity z-score is given as a
heatmap for each assessed frequency and timepoint in Fig. 2b.

Our findings of brain-wide HG asynchrony and theta
synchrony during successful memory encoding suggest that
low-frequency connections support information integration or
coordinated brain activity during memory formation. However,
we must first answer two deeper questions to determine whether
there is a relationship between the neural activity of a region and
the state of its connections to the rest of the brain. First, what is
the brain-wide spatio-temporal pattern of synchrony/asynchrony
during memory processing, and how does it relate to the pattern
of local spectral power? Second, are there differing fundamental
sources of neural activity that may have different power-
synchrony relationships?

Identification of network hubs. Given that we observed significant
levels of synchrony or asynchrony in low and high-frequency
ranges, we next asked whether there is anatomic specificity to these
phenomena. Are positive and negative connections homogenously
distributed throughout the brain, or are there specific regions that
exhibit greater modulation of connectivity during successful mem-
ory encoding?

To determine the most highly connected (or highly discon-
nected) ROIs, we turned to basic principles of graph theory. We
used the node strength statistic (the sum of the unthresholded
weights of every connection to a given node, here defined as an
ROI) to identify which brain regions act as highly connected
“hubs” in the memory network during the word presentation
interval (0–1600ms), the epoch with the greatest task-related
modulation32. We defined hubs as ROIs with significantly greater
node strength than expected by chance (P< 0.05 via permutation
test of node strengths, Benjamini–Hochberg corrected for

multiple comparisons across ROIs), and we performed this
analysis to identify hubs from all synchronous and asynchronous
connections separately (Methods section). In HG, we found
3 synchronous hubs and 19 asynchronous hubs, which reflect
brain regions that significantly increase or decrease their overall
connectivity when a word is successfully encoded (0.006< P<
0.033, FDR-corrected). The theta network exhibits 32 synchro-
nous hubs widely dispersed across the cortex (0.005< P< 0.049,
FDR-corrected), but no hubs of asynchronous activity. Theta and
HG hubs are depicted in Fig. 3, along with their strongest
connections (Z> 2.5).

Taken together, these findings demonstrate that frontal,
temporal, and MTL cortical regions became desynchronized
from each other in HG during memory encoding. A smaller
subset of right mesial frontal regions expressed synchronous
activity with each other and functionally connect to temporal and
parietal cortex. In the slower theta rhythm, the brain exhibited
generally correlated activity, with numerous fronto-temporal,
temporal-parietal, and interhemispheric functional connections.

Our finding that there is widespread theta synchronization
during memory encoding follows from prior scalp and intracra-
nial studies, which have shown that low-frequency entrainment is
associated with cognition24–27,33. These findings also mirror
findings in the fMRI literature of low-frequency networks that
converge on the MTL in memory tasks34. The emergence of
bilateral MTL as asynchronous hubs in HG is more surprising—
this observation suggests, in a general sense, that structures such
as the hippocampus do not synchronize at high frequencies with
many other brain regions during successful encoding.

Temporal modulation of connectivity effects. To better char-
acterize the role of these hubs in memory encoding, we asked
whether a hub’s participation in the HG or theta network changes
over time. We assessed this by computing the node strength
statistic at each 200 ms non-overlapping time window spanning
200 ms prior to 200ms after the word presentation interval
(Methods section). ROIs exhibited their strongest modulation of
network participation between 400 ms and 1200 ms after onset of
a word, with a particularly robust decrease in HG connectivity of
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Fig. 1f (edge weight sum). Shaded gray areas represent chance mean ±1 STD. b Z-scored brain-wide phase synchronization subsequent memory effect
(SME) in the memory encoding interval, measured by summing all connection weights in the network, compared to the sum expected by chance. This
analysis is performed in successive 200ms windows spanning the encoding interval. Red reflects increased synchrony associated with successful memory
encoding, blue reflects decreased synchrony (see Methods section for details). Vertical black lines indicate word onset and offset
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left MTL structures between 800–1000 ms (significant hippo-
campus, parahippocampus, and uncus ROIs, P< 0.05 via per-
mutation test of node strengths; see Methods section for details).
Correspondingly, the right MTL exhibited an increase in theta
synchrony between 800–1200 ms (permutation P < 0.05). Theta
synchrony in the right frontal lobe (significant middle, medial,
inferior, and superior frontal cortices, permutation P < 0.05)
peaked earlier, between 600–800 ms, while right temporal (sig-
nificant middle, transverse, superior, and inferior temporal cor-
tices, permutation P < 0.05) synchrony peaked between
1000–1200 ms (left cortical areas follow a similar pattern, see
Supplementary Fig. 2). In Fig. 4, we show timecourses of node
strength for ROIs in a subset of broader brain regions that con-
tained hubs as identified previously (see Supplemental Fig. 2 for
additional timecourses).

It is not surprising that we observed strong modulation of
connectivity in both frequency bands during the item

presentation interval, since this time period is also known to
feature the greatest change in spectral power32. It is unknown,
however, how the directionality of connectivity changes relates to
changes in spectral power—does enhanced theta synchrony or
decreased HG synchrony in a brain region predict its HG or theta
power?

Relationship between connectivity and spectral power. Having
established the spatio-temporal dynamics of synchrony during
performance of a memory task—noting the presence of MTL
hubs that peak in their activity during the item presentation
interval, for instance—we are now equipped to ask how these
connectivity dynamics relate to spectral power, or the general
neural activation of a region. Answering this question fills an
important gap in knowledge about the nature of connectivity in
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Fig. 4 Timecourse of ROI participation in memory networks. Node strength as a function of time for 6 key regions that contain hubs in the theta or high
gamma networks: right and left MTL, frontal lobe, and temporal lobe. Blue-shaded lines indicate asynchronous hub strength over time, while red indicates
synchronous hub strength. Vertical lines indicate word onset and offset at 0 ms and 1600ms. Above the z-scored timecourses are plotted the total count
of specific ROIs within each broader region that reach significance at a given timepoint (P< 0.05). For visualization only, timecourses were smoothed with
a 2-point moving average and radial basis filter
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the brain, by showing how connectivity and power relate across a
diverse array of cortical regions during memory processing.

We used the node strength of each ROI as a basis for a spectral
power-synchrony correlation, asking whether a region’s overall
participation in the whole-brain network correlates with that
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Fig. 5 Power-synchrony correlations across the whole brain. a Pearson correlation of the modulation of high gamma node strength and power across time
and frequency for each ROI, during the word encoding interval. Bar plots show the power-synchrony correlation for each ROI, with blue indicating negative
and red indicating positive correlations. Faded bars are not significant after FDR correction for multiple comparisons (α= 0.05). b For four example ROIs
we depict time-frequency heatmaps of that ROI’s z-scored spectral power (top) and z-scored node strength (bottom). Red colors indicate a relative
increase of power/synchrony when an item is successfully encoded, while blue indicates a relative decrease. For visualization only, absolute z-scores < 1.5
are faded, and vertical bars indicate word onset and offset. c Pearson correlation of z-scored power and z-scored node strength (synchrony) against each
other for all timepoints and all ROIs, after averaging within frequency band. HG power and HG synchrony are significantly inversely related (P< 0.001,
permutation test), HG synchrony is positively correlated with theta power (P= 0.005), while other tested relationships do not meet significance
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region’s modulation of spectral power. For each ROI, we
computed the power-synchrony (node strength) correlation
across time and frequency in HG. We further asked how power
and synchrony correlate across all ROIs and time after averaging
effects within frequency band, enabling cross-band correlations.

We found that only one ROI exhibited a significant positive
correlation between HG power and synchrony—the left trans-
verse temporal gyrus—after Benjamini–Hochberg correction for
multiple comparisons (Fig. 5a; Pearson correlation, r= 0.27,
corrected P= 0.017). Twenty-four regions exhibited a significant
negative correlation (Fig. 5a; Pearson correlation, −0.48< r<
−0.23, 4.6 × 10−6< P< 0.037). Example power-synchrony heat-
maps are given for four regions in Fig. 5b, depicting significant
(corrected P< 0.05) negative correlations in the right parahippo-
campus, left MTL, and left frontal cortex.

Across all ROIs (74) and timepoints (10) together, the HG
power-synchrony Pearson correlation was −0.339, P= 0.002 via a
permutation test of synchrony and power correlation (Fig. 5c; see
Methods section for details). In theta, within-ROI correlations
showed 3 ROIs each of positive and negative power-synchrony
relationships (corrected P< 0.05; Supplementary Fig. 3), but the
general effect across all time and ROIs together was negative

though not significant (Pearson correlation, r= −0.12, permuta-
tion P= 0.23; Fig. 5c). Additionally, theta synchrony was weakly
—but not significantly—correlated with HG power (Pearson
correlation, r= 0.11, permutation P= 0.2; Fig. 5c). The brain-
wide spectral power and synchrony at all frequencies from 3 Hz
to 120 Hz are shown in Supplementary Fig. 4.

Measuring correlations across all ROIs together may obscure
meaningful relationships within the subset of ROIs that actively
participate in memory processing. We therefore sought to assess
whether regions of the “core” memory network—those ROIs that
significantly modulate their neural activity during successful
memory encoding—exhibit power-synchrony dynamics that are
different from the rest of the brain. These regions are said to
exhibit a subsequent memory effect (SME)35. We found a total of
37 ROIs with no significant difference between HG power during
successful vs. unsuccessful encoding, and classified these as
outside the core memory network. Next, we matched these ROIs
against the 37 ROIs with the largest SMEs, representing the core
memory network (see Supplementary Table 1 for ROI classifica-
tions and z-scores). Among these two ROI subsets, we again
computed power-synchrony correlations across all regions and all
timepoints during the word encoding interval. In both groups,
HG power and synchrony were inversely correlated (Fig. 6;
Pearson correlation, r= −0.38 in-network and r= −0.158 out-of-
network, P< 0.001 and P< 0.05 via permutation test; Methods
section). However, only in the core memory network was theta
synchrony significantly predictive of HG power (Pearson
correlation, r= 0.25, permutation P= 0.003; Methods section).
The difference in correlation between in-network and out-of-
network does not reach significance (permutation P= 0.20).

Generalization of network phenomena to memory retrieval. To
establish whether memory retrieval is also characterized by
desynchronized HG activity and synchronized theta-band activ-
ity, we identified all of the 500 ms time windows in each subject’s
recall period that precede onset of a response vocalization, and
compared connectivity dynamics against 500 ms time windows
that are not followed by any vocalization for at least 2 s
(“unsuccessful memory search”). Procedures are otherwise iden-
tical to those described in Fig. 1 and Methods section—phase-
locking values in successful retrieval are compared to unsuc-
cessful memory search, and these differences are pooled across
subjects and ROIs. The result is a whole-brain connectivity map
that reflects how phase synchrony is correlated with successful
memory retrieval vs. unsuccessful memory search (Fig. 7a, c).

We found that the same network-level patterns of connectivity
held true in the retrieval contrast compared to the encoding
contrast. The HG retrieval network is characterized by a
significant degree of asynchronous activity (Fig. 7b; P< 0.01 via
permutation test of edge weight sum; Methods section) and an
insignificant overall level of synchronous activity (permutation P
> 0.99). In theta-band, there is a greater degree of synchronous
activity compared to asynchronous (permutation P< 0.01;
Fig. 7b). The relationship between power and synchrony also
holds true in the analysis of recall. Even without sub-selecting for
a core memory network as in Fig. 6, we find an inverse HG
power-synchrony correlation (Pearson correlation, r= −0.67,
permutation P< 0.01; Fig. 7d), although theta synchrony was
positively but not significantly correlated with HG power
(Pearson correlation, r= 0.11, permutation P= 0.36; Fig. 7d).

Filtering for oscillatory activity. Findings of HG desynchroni-
zation associated with successful memory encoding and retrieval
suggest stochastic, non-oscillatory neural activity. However, it is
possible that a mixture of two fundamental signals occupy the
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same frequency band: some components may be oscillatory,
facilitating inter-regional communication, while others reflect
asynchronous neural spiking activity. If the asynchronous com-
ponent is much stronger or more commonplace than the oscil-
latory component, our results may be unable to capture true high-
frequency synchronization that correlates with successful mem-
ory operations.

To answer whether high-frequency synchronization is driven
by oscillatory dynamics, we examined which electrodes exhibit
oscillations in the low gamma band (“LG,” 30–60 Hz), utilizing a
validated oscillation-detection routine (“Better Oscillation Detec-
tion” method, or BOSC, see Methods section for details; see
Fig. 8a for an example)36. We identified the specific frequency
and time at which a given electrode showed reliably increased
oscillatory activity associated with trials that were later remem-
bered, as compared to those forgotten (“oscillatory SME”; Fig. 8b
for an example). Among the subset of electrodes with oscillatory
SMEs, we reconstructed our phase synchronization networks to
determine whether enhanced oscillatory activity was associated
with increased inter-regional synchronization.

A total of 261 electrodes in our data set exhibited increased
oscillatory activity associated with successful memory, maximally
occurring at 52 Hz, between 400 and 600 ms after word onset
(Fig. 8c). This is 1% of the total electrodes assessed; 5.6% of
electrodes exhibited a 30–60 Hz SME and 10.4% of electrodes
exhibited a 65–100 Hz power SME in the same time window
(Fig. 8d). In the phase synchronization subnetwork that can be
constructed from these 261 electrodes, we observed more
synchronous ROI pairs than asynchronous pairs, when examin-
ing the network at the specific time (400–600 ms) and
approximate frequencies (50–55 Hz) of maximal oscillatory
SME (Fig. 8e; P= 0.068 via permutation test of edge count
sum; Methods section). Examining this subnetwork at the same
time but at higher frequencies (65–85 Hz) reveals a return to the

typical preponderance of asynchronous activity (Fig. 8e; permu-
tation P= 0.046). This same trend can be observed in Fig. 8f,
where maximal subnetwork-wide synchrony occurs in the same
frequency range as that of maximal oscillatory SME (maximal Z
= 1.2 at 55 Hz).

Discussion
We set out to uncover fundamental principles that govern the
electrophysiological networks of activity in the human brain. As
294 subjects performed a verbal free-recall memory task, we
analyzed three frequency bands that have been strongly impli-
cated in neural synchronization37: theta (3–8 Hz), low gamma
(30–60 Hz), and high gamma (45–100 Hz). Gamma networks
exhibited strong desynchronizations between brain regions,
especially those that saw an increase in gamma power. Theta
networks were characterized by enhanced synchrony, especially
among regions with strong increases in HG power. Moreover,
hubs of theta network activity tended to localize in frontal,
temporal, and medial temporal cortices—regions that are known
to play a strong role in memory encoding and retrieval38.

Here we report findings that address whether theta or gamma
band neural activity drives synchronization during memory
processing. Gamma activity as a general biological mechanism of
information transmission3,5,6,24 is not backed by many compel-
ling observations in the human brain. We found a profound
decrease in HG synchronization that is associated with successful
memory encoding and retrieval, especially among regions that see
heightened overall HG activation. This relation is consistent with
the hypothesis that broadband high-frequency activity in the
human brain—as detected by macroelectrodes on the cortical
surface—largely reflects the aggregation of fast, stochastic spiking
activity of a population of neurons15. It refutes the notion that
this kind of broadband signal synchronizes across long distances
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during cognitive operations, though such interactions may still be
at play in visual areas39 and at smaller spatial scales.

Far from suggesting that brain regions are cut off from their
neighbors, the observation that highly active memory regions
significantly increase their theta synchronization offers a low-
frequency mechanism by which the brain coordinates its many
parts—a brain-wide finding that was suggested by prior studies
which could only examine specific interactions27,40. Furthermore,
our results demonstrate how theta networks exhibit time-varying
structure, highlighting fronto-temporal hubs that strengthen their

connections starting 500 ms after onset of an item to be
remembered. The fMRI connectivity literature parallels this,
demonstrating broad, low-frequency networks that act to support
human memory by convergence on the MTL34,41–43. The extent
to which whole-brain iEEG-based networks overlap with fMRI
networks is unexplored territory.

A small subset of electrodes exhibited increased narrowband
gamma-oscillatory power associated with successful memory
encoding. We observed increased long-range phase synchroni-
zation among this subset at the frequency of maximal oscillatory
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indicated. c Count of all electrodes in the 294-subject data set that exhibit an oscillatory subsequent memory effect (SME) between 30 and 58 Hz, at each
200ms epoch spanning the word presentation interval (Methods section). The most electrodes exhibit oscillatory SMEs at 52 Hz, between 400 and
600ms after onset of a word (black box). d Count of electrodes in the data set that exhibit different kinds of SMEs between 400 and 600ms: 52 Hz
oscillation, 30–60 Hz average power, or 65–100 Hz average power. e Count of significant synchronous or asynchronous network connections using only
the subset of electrodes exhibiting 52 Hz oscillatory SME at 400–600ms. Synchronization effects were deemed significant at P< 0.05, with the chance
mean and standard deviation at this significance level indicated in the gray shaded area. Left: counts observed at 50–55 Hz, near the frequency of maximal
oscillatory SMEs (52 Hz). Right: counts observed in the 65–85 Hz range among the same electrode subset. The frequency/synchrony interaction is not
significant (P= 0.11). f Average network synchrony (z-score) for the subnetwork of regions sampled in the 52 Hz oscillatory electrode subset, measured by
summing the subnetwork connection weights at each frequency in the 400–600ms window, and comparing to the sum expected by chance
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activity. This indicates that, in some instances, gamma-band
activity is organized into coherent, oscillatory waves that may
serve to coordinate activity between different regions. The rare-
ness of this phenomenon should not be understated; statistically
reliable oscillatory SMEs were detected in only 1% of electrodes in
our 294-subject data set.

A prior study by Burke et al.40 in 2013 also suggested a general
decrease in gamma synchronization and increase in theta during
memory encoding in humans, but only at the level of lobe-wise
interactions. The findings presented here extend that work in
several important ways. First, we establish that decreases in
synchrony accompany increases in high-frequency power, and
that this fundamental relationship between power and synchrony
manifests itself throughout the human brain. Second, we exam-
ined synchrony dynamics at a much finer spatial scale, allowing
for the possibility that aggregation by lobe obscured synchronous
gamma activity between nearby regions. Third, we teased out
oscillatory effects in gamma, demonstrating that while synchrony
is observed in rare instances, successful human cognition is
overwhelmingly associated with a relative increase in asynchro-
nous high-frequency signal.

Our data demonstrate the existence of two forms of gamma:
Broadband asynchronicity, more common, and more rarely,
narrow-band synchronous oscillations featuring long-range syn-
chronization. Typically, the asynchronous broadband signal
overwhelms the rare instances of oscillatory synchronization,
explaining the widespread high-frequency desynchronization we
found. These findings help reconcile a discrepancy in the syn-
chronization literature. There is an established body of animal
work in which cellular-scale recordings document high-frequency
synchronization within or between inferotemporal, medial tem-
poral, prefrontal, and occipital cortices during cognition9,10,44–46.
But a far more tenuous corpus exists for humans at the macro-
electrode scale—intracranial reports of synchronous gamma
activity are rare and often simultaneously find significant periods
of desynchronization11,12,19. Here, we quantified the extent to
which human cognition is associated with two high-frequency
neural dynamics, and found a predominant asynchronous signal
at all frequencies above 30 Hz alongside a minority oscillatory
synchronous signal. It is likely that more robust oscillatory
activity can be detected with microelectrode recordings—as in
prior animal work—but the results here speak against the
importance of such dynamics at the scale of iEEG.

Whole-brain connectivity patterns still must be characterized
in alternative memory paradigms, and other cognitive tasks
altogether. Here, we investigated functional connectivity during a
free-recall task, a prominent technique used to probe contextually
mediated episodic memory. In freely recalling items from a pre-
viously studied list, subjects engage in a process of cue-dependent
retrieval, wherein the cue for each recalled item includes infor-
mation about the context of the target list and the previously
recalled items. While this procedure disentangles neural activity
from the influence of an external stimulus, experimenter-cued
memory paradigms—especially cued recall and recognition—can
provide additional valuable information about the timecourse of
item retrieval.

The whole-brain connectivity network we report here extends
the active frontier of network neuroscience47. By enabling the
assessment of networks at different timescales of neural activity,
whole-brain iEEG studies provide insights that go beyond non-
invasive techniques—for example, the present study identified
essentially opposite dynamics between low and high-frequency
activity, which cannot be assessed by fMRI. By expanding our
understanding of connectivity to the dimension of temporal fre-
quency, this enhanced window into neural communication could
reveal new ways in which network dynamics correlate with, or

even predict, disease states48,49. Connectivity maps also inform
the use of direct brain stimulation as a therapeutic intervention—
functional connectivity could serve as a model for predicting how
stimulation effects propagate from one region to another, influ-
encing activity throughout the brain50. If these connectivity-based
models of brain function prove to be reliable, they may help
clinicians use stimulation to repair the brain activity underlying
damaged cognitive processes51, such as memory deficits in
patients with traumatic brain injury or neurodegenerative disease.

Distributed networks of electrical activity in the brain have
remained largely uncharacterized despite their critical role in
human cognition6. During memory encoding and retrieval, we
discovered that whole-brain gamma networks were largely
asynchronous, while theta networks were synchronous and spe-
cifically engaged among regions with a high degree of local
processing. Our results lay the foundation for future study of low-
frequency electrical networks as the primary driver of inter-
regional communication in the human brain.

Methods
Participants. A total of 294 patients with medication-resistant epilepsy underwent
a surgical procedure to implant subdural platinum recording contacts on the
cortical surface and within brain parenchyma. Contacts were placed so as to best
localize epileptic regions. Data reported were collected at 10 hospitals over 14 years
(2003–2017). Prior to data collection, our research protocol was approved by the
Institutional Review Board at participating hospitals, and informed consent was
obtained from the participants and their guardians.

Free-recall task. Each subject participated in a delayed free-recall task in which
they studied a list of words with the intention to commit the items to memory. The
task was performed at bedside on a laptop, using PyEPL software. Analog pulses
were sent to available recording channels to enable alignment of experimental
events with the recorded iEEG signal.

The recall task consisted of three distinct phases: encoding, delay, and retrieval.
During encoding, lists of 12 words were visually presented in the native language
(either English or Spanish) of the subject. Words were selected at random, without
replacement, from a pool of nouns (http://memory.psych.upenn.edu/WordPools).
Word presentation lasted for a duration of 1600 ms, followed by a blank inter-
sitmulus interval of 750 to 1000 ms. Presentation of word lists was followed by a
20 s post-encoding delay. Subjects performed an arithmetic task during the delay in
order to disrupt memory for end-of-list items. Math problems of the form A + B +
C= ?? were presented to the participant, with values of A, B, and C set to random
single digit integers. After the delay, a row of asterisks, accompanied by a 60 Hz
auditory tone, was presented for a duration of 300 ms to signal the start of the recall
period. Subjects were instructed to recall as many words as possible from the most
recent list, in any order during the 30 s recall period. Vocal responses were digitally
recorded and parsed offline using Penn TotalRecall (http://memory.psych.upenn.
edu/TotalRecall). Subjects performed up to 25 recall lists in a single session.

A subset of 92 patients performed a variant of the previously described task. List
presentation consisted of a total of 15 items. In addition, a green fixation cross
served as a list-cue to signal an upcoming list of words. The list-cue was presented
for a duration of 1600 ms, followed by the presentation of a blank screen for
800–1200 ms. The ISI in this variant of the task lasted from 800 to 1200 ms in
duration. The recall period for this version of the task was 45 s in length.

Electrocorticographic recordings. iEEG signal was recorded using subdural grids
and strips (contacts placed 10 mm apart) or depth electrodes (contacts spaced
5–10 mm apart) using recording systems at each clinical site. iEEG systems
included DeltaMed XlTek (Natus), Grass Telefactor, and Nihon-Kohden EEG
systems. Signals were sampled at 500, 512, 1000, 1024, or 2000 Hz, depending on
hardware restrictions and considerations of clinical application. Signals recorded at
individual electrodes were converted to a bipolar montage by computing the dif-
ference in signal between adjacent electrode pairs on each strip, grid, and depth
electrode. Bipolar signal was notch filtered at 60 Hz with a fourth order 2 Hz stop-
band butterworth notch filter in order to remove the effects of line noise on the
iEEG signal.

Anatomical localization. Anatomical localization of electrode placement was
accomplished using independent processing pipelines for depth and surface elec-
trode localization. For patients with MTL depth electrodes, hippocampal subfields
and MTL cortices were automatically labeled in a pre-implant, T2-weighted MRI
using the automatic segmentation of hippocampal subfields multi-atlas segmen-
tation method42. Post-implant CT images were coregistered with presurgical T1
and T2-weighted structural scans with Advanced Normalization Tools52. MTL
depth electrodes that were visible on CT scans were localized within MTL
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subregions by neuroradiologists with expertize in MTL anatomy53. Subdural
electrodes were localized by reconstructing whole-brain cortical surfaces from pre-
implant T1-weighted MRIs using Freesurfer54. ROIs used for connectivity analyses
were given by the Talairach label of a given electrode’s position after mapping final
contact locations to Talairach space, with the exception of any electrode localized
to a hippocampal subfield, which were collectively labeled “hippocampus.” We
considered 37 possible labels for each hemisphere, or 74 total.

In a subset of 92 patients, contact localization was accomplished by
coregistering the post-operative CTs with post-operative or pre-operative MRIs
using FSL (FMRIB Software Library) BET (Brain Extraction Tool) and FLIRT
(FMRIB Linear Image Registration Tool) software packages.

Contacts placed in an epileptogenic area or in non-neural tissue (as determined
by a clinician) were excluded from all the analyses in this report.

Data analyses and spectral decomposition. iEEG signals were all treated as
bipolar montages (a difference in the raw signals from two adjacent electrodes),
with sampling rates varying between 500 Hz and 2000 Hz, depending on the
subject. We convolved the signal (downsampled to 500 Hz) from each bipolar
electrode in each subject with complex-valued Morlet wavelets (wave number 5) to
obtain phase and power information. We used 35 wavelets from 3–120 Hz, though
most analyses focus on the 45–100 Hz (high gamma) and 3–8 Hz (theta) ranges
(HG: 11 wavelets spaced 5 Hz, except between 90 Hz and 100 Hz; theta, 6 wavelets
space 1 Hz). Each wavelet was convovled with 3600 ms of data surrounding each
word presentation (referred to as “trial,” 1000 ms before word onset to 2600 ms
after word onset), and buffered with 1000 ms on either end (clipped after
convolution).

For each subject, for all possible pairwise combinations of electrodes, we
compared the distributions of phase differences in all remembered trials against all
not-remembered trials, asking whether there is a significantly higher concentration,
or tightness of the distribution, in one or the other (Fig. 1b). To do this, we found
the difference of the mean resultant vector lengths (often called phase-locking
value) of the remembered and not-remembered phase difference distributions
(R values computed with Circular Statistics Toolbox)55:

Dpqðf ; tÞ ¼ Rrem � Rnrem

Where Rrem and Rnrem refer to the mean resultant vector lengths of all remembered
and not-remembered trials, pq is an electrode pair, f is a frequency band, and t is a
window in time.

Intuitively, a higher resultant vector length (which falls between 0 and 1) reflects
a tighter distribution of phase differences and greater synchronization between two
electrodes. Therefore, higher positive differences (D) indicate greater phase-locking
for remembered trials, whereas lower negative differences reflect greater phase-
locking for not-remembered trials. D was computed for each frequency spanning a
range from 3 to 120 Hz, and for 18 non-overlapping 200 ms time windows
spanning the trial, by averaging phase difference values within those windows
before computing phase-locking values and their corresponding D. Unless stated
otherwise, the analyses in this report consider only the eight 200 ms windows
between word onset (0 ms) and offset (1600 ms), called the “item presentation
interval.”

R values are biased by the number of vectors in a sample. Since our subjects
generally forget more words than they remember (Supplementary Fig. 1), we adopt
a nonparametric permutation test of significance. For each subject, and each
electrode pair, the phase synchrony computation described above was repeated 500
times with the trial labels shuffled, generating a distribution of D statistics that
could be expected by chance for every electrode pair, at each frequency and time
window. Since only the trial labels are shuffled, the relative size of the surrogate
remembered and not-remembered samples also reflect the same R sample size bias.
Consequently, the true D (Dtrue) can be compared to the distribution of null Ds to
derive a P-value or z-score. Higher z-scores indicate greater synchronization
between a pair of electrodes for items that are later recalled.

To construct a network of phase synchrony effects between all brain regions, we
pooled synchrony effects across electrode pairs that span a pair of ROIs, and then
pooled these ROI-level synchronizations across subjects with that pair of ROIs
sampled (ROIs were determined by the Talairach label for each electrode after
coregistration). To do this, we first averaged the Dtrue values across all electrode
pairs that spanned a given pair of ROIs within a subject. Next, we averaged the
corresponding null distributions of these electrode pairs, resulting in a single Dtrue

and a single null distribution for each ROI pair in a subject. We then averaged the
Dtrue values and null distributions across all subjects with electrodes in a given ROI
pair. By comparing the averaged Dtrue to the averaged null distribution, we
computed a z-score at each frequency and temporal epoch that indicates indicating
significant phase synchrony or asynchrony, depending on which tail of the null
distribution the true statistic falls. Higher z-scores indicate greater synchronization
between a pair of ROIs for items that are later recalled.

Network construction and analyses. Using the population-level statistics
described above, a 74-by-74 adjacency matrix was constructed for each of the 18
non-overlapping temporal epochs and for each frequency. This matrix represented
every possible interaction between all ROI pairs. The z-score of the true D relative

to the null distribution was used as the connection weight of each edge in the
adjacency matrix. Negative weights indicate ROI pairs that, on average, desyn-
chronized when a word was recalled successfully, and positive weights indicate ROI
pairs that synchronized when a word was recalled successfully. We zeroed-out any
ROI pairs in the adjacency matrix represented by less than 7 subjects’ worth of
data, to limit the likelihood that our population-level matrix is driven by strong
effects in a single or very small number of individuals. 1243 ROI pairs (out of a
possible total of 2701) were excluded due to low subject counts, comprised largely
of interhemispheric pairs (795 pairs, or 64% of those excluded) and pairs involving
regions where electrodes are less commonly placed, including basal ganglia and
occipital cortex.

Since it is possible that collections of weaker connection weights may still
account for significant structure in our network, we did not apply a z-score
threshold before further analyses. To assess for the significance of phenomena at
the network level, we instead used 500 null networks that can be constructed on the
basis of Ds derived from the shuffled trial labels to generate a distribution of chance
network-level statistics. True statistics were compared to these null distributions to
obtain a P-value or z-score (e.g., network-wide summed connection weights were
computed for true and null networks and reported in Figs. 1f, 2a, and 6b).

Accordingly, for every operation performed on the true connectivity network,
the same was done on each of the 500 null networks that reflect connection
strengths expected by chance. For example, to ask whether a ROI has a significantly
increased node strength at a given point in time (see subsection on Hub analysis),
node strength was computed for each of the 500 null networks to generate a
distribution of strengths expected by chance. The true node strength is compared
to the null distribution in order to get a Z-score or P-value.

Adjacency matrices reflect the average connectivity strength during the item
presentation interval (0–1600 ms) for each frequency band. To create them, we
averaged true connection strengths within frequency bands, then averaged across
the eight 200 ms time windows in this interval, and compared the result to the
time/frequency average from each of the 500 null networks, resulting in a new Z-
score for the time/frequency-averaged network (Fig. 1d).

Hub analysis. To identify which ROIs are more highly synchronous or asyn-
chronous, we used the node strength statistic from graph theory to identify “hubs”
of the network. Node strength reflects the sum of all connection weights to a
particular node (or ROI) in the network, and is formalized as:

kwi ¼
X

jϵN

wij

Where k is the node strength of node i, and wij refers to the edge weight between
nodes i and j. N is the set of all nodes in the network47.

To identify hubs during the word presentation interval, we first averaged
connection weights within a frequency band and across the presentation interval
(as done in Fig. 1). Each ROI’s node strength is then computed with these time/
frequency-averaged weights, per the equation above. The same procedure was done
for each of the 500 null networks generated from shuffled trial labels (see “Network
construction and analyses”), creating a null distribution of node strength for each
ROI. P-values were obtained by observing where a true node strength falls in its
corresponding null distribution. Final P-values were corrected for multiple
comparisons (Benjamini–Hochberg procedure, α= 0.05 or 0.01) to yield the final
tally of significant hubs. This process was done for all synchronous (Z> 0) and
asynchronous (Z< 0) connections separately, yielding synchronous and
asynchronous collections of hub ROIs. For visualization only, connections depicted
in Fig. 3 were derived by ranking the time/frequency-averaged connection weights
of each hub, and selecting up to the top 5 connections above a Z-score of 2.5.

To construct ROI activation timecourses, we compared the frequency-averaged
node strength at each time window against its corresponding null distribution to
generate a Z-score and a P-value, done separately for all positive and negative
connection weights. Our selection of right and left MTL, frontal, and temporal
cortices was driven by their implication in memory in prior literature1,40,56 and the
presence of gamma and/or theta-band hubs in each of those broad regions (Fig. 4).

Power-synchrony analysis. Spectral power was obtained by the same Morlet
wavelet convolution as used to extract phase information (see “Data analyses and
spectral decomposition”). For all bipolar electrodes in each subject, we log trans-
formed and z-scored power within each session of the free-recall task, which
comprises approximately 300 trials. Power values were then averaged into 8 non-
overlapping 200 ms windows spanning the entire trial, matching our procedure for
phase synchrony.

To assess the statistical relationship between power and later recollection of a
trial word (called the SME), power values for each electrode, trial, time, and
frequency were separated into two distributions according to whether the trial
word was later remembered or not-remembered, and Welch’s t-test was performed
to compare the means of the two distributions. Next, we shuffled the trial labels 500
times and recomputed the t-statistic, reflecting power effects that could be observed
by chance. The true t-statistics were averaged across all electrodes that occur in a
given ROI, as are the null distributions, and those statistics are next averaged across
all subjects with electrodes in that ROI. Finally, the averaged true t-statistic was
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compared to the averaged null distributions to get a z-score at each time-frequency
point for a given ROI. These z-scores are reported as a heatmap in Fig. 5b, and we
find the Pearson correlation against node strength Z-scores as described in “Hub
analysis” (i.e., a correlation across time-frequency pixels). Correlation P-values are
then FDR-corrected for multiple comparisons (corrected P< 0.05).

To assess correlations across all time and all ROIs (Figs. 5c, 7d) or ROI subsets
(Fig. 6), we first averaged Z-scored node strength and Z-scored power within each
frequency band. Then, we correlated the strength and power values across all item
presentation timepoints and all ROIs (i.e., each vector contains time windows by #
ROIs total elements). To assess significance of these correlations, we adopted a
permutation procedure that maintains the spatial and temporal dependency
between data points: We assessed the power-synchrony correlation for each
possible 1-shift of one vector against the other, and again for the mirror image of
that vector. This procedure resulted in a distribution of chance correlations, against
which we compared the true correlation to obtain a P-value.

Retrieval analysis. To find out whether principles of brain function uncovered in
the memory encoding contrast generalize to different cognitive operations, we
further analyzed connectivity in a retrieval contrast. This was done in a manner
similar to Burke et al. 201457, as follows. For each subject, we identified any 500 ms
interval during the recall period after which no response vocalization occurred for
at least 2 s, and compared the neural activity in these “unsuccessful memory
search” intervals to the 500 ms of activity immediately prior to successful item
recollection. Phase difference values were averaged across two 250 ms time win-
dows spanning these trials, as opposed to 200 ms windows in the encoding analysis.
All other data analysis and spectral methods were matched exactly. This analysis
was performed on a subset of 197 subjects with detailed retrieval-period
information.

Oscillations analysis. We adopted a widely used method for oscillation detection,
called Pepisode or BOSC36,58,59 (“Better OSCillation detection”). Briefly, this method
applies two criteria for the identification of a true oscillation: a minimum time (at
least three cycles), and a significant deviation of spectral power from a robust linear
fit to the log-frequency vs. log-power curve (a spectral “peak”, see Fig. 8a for an
example). For each timepoint and frequency assessed, BOSC indicates whether an
oscillation is present under these criteria. For further details on BOSC imple-
mentation, see Hughes et al36.

For each electrode in our data set, we used BOSC to find out whether the
presence of low gamma (30–58 Hz, to minimize line noise artifact) oscillations was
correlated with whether a word would later be remembered or forgotten
(“oscillatory SME”). We used this range because at higher frequencies, the BOSC
measure becomes less reliable as the log-frequency vs. log-power becomes
nonlinear. For every trial, we computed the fraction of time occupied by an
oscillation in each of eight 200 ms window spanning the 1600 ms item presentation
interval, doing so for 18 log-spaced frequencies between 30 and 58 Hz. The result
was a measure of oscillatory activity in each time/frequency pixel for each trial. We
then grouped the trials by whether the word presented was later remembered or
forgotten, and computed Welch’s t test between the remembered and forgotten
distributions. P-values were FDR-corrected for multiple comparisons across time/
frequency pixels (α= 0.1, a deliberately liberal threshold to allow for enough
electrodes to analyze pairwise synchronization). The count of electrodes with
significant memory-correlated oscillatory power is depicted in Fig. 8c.

To determine whether an electrode exhibited an SME without directly assessing
for oscillations (and thus capturing elevations in spectral power due to non-
oscillatory activity), we computed an electrode’s spectral power SME (described in
“Power-synchrony analysis” above) averaged across 5-Hz spaced frequencies
within the 30–60 Hz and 65–100 Hz bands at each of the eight 200 ms windows. P-
values were FDR-corrected and declared significant at α= 0.1, as above. The count
of electrodes with significant SMEs at the 400–600 ms window is depicted in
Fig. 8d.

Since the number of electrodes exhibiting gamma-oscillatory SMEs is small
(approx. 260), the networks that can be constructed from that data set are sparse.
Accordingly, the same procedure as described in “Data analyses and spectral
decomposition” and “Network construction and analysis” is used on this small
subset of electrodes (found in 44 subjects) to generate a map of some pairwise ROI
synchronizations—a subnetwork—but not a whole-brain network. No threshold
was applied on the number of subjects needed to contribute to an ROI pair. In
Fig. 8e, subnetwork connection z-scores during the 400–600 ms window were
tested for significance at the P< 0.05 level (uncorrected), and compared against the
number of significant connections expected at that level by chance (i.e., shuffled
trial labels). In total, 50–55 Hz were chosen as the closest frequencies to the
frequency of maximal oscillatory SME (~52 Hz). In Fig. 8f, the z-scored mean
subnetwork connection weight at 400–600 ms was plotted as a function of
frequency.

Data availability. Raw electrophysiogical data used in this study is freely available
at http://memory.psych.upenn.edu/Electrophysiological_Data.
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