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Abstract

The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high 

selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two 

diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-

phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 

bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the 

identification of specific binding determinants within the enzyme active site, relevant to generate 

structure/activity relationships for diarylisoxazole NSAIDs.
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INTRODUCTION

Prostaglandin endoperoxide H synthase-1 and -2 (PGHS -1 and -2) also known as 

cyclooxygenases (COXs) - are bifunctional, membrane-bound and heme-containing 

enzymes that catalyze the conversion of free arachidonic acid (AA) into Prostaglandin H2 

(PGH2), which represents the committed step of prostanoid biosynthesis [1–3]. COX 

isoenzymes are inhibited through the action of non-steroidal anti-inflammatory drugs 

(NSAIDs), which bind the COX active site, preventing AA binding.

NSAIDs are a broad and heterogeneous group of drugs that belong to different chemical 

classes. NSAIDs can be classified on the basis of their mechanisms of COX inhibition in 

three groups: (a) rapid and reversible competitive inhibitors (e.g. ibuprofen and naproxen); 

(b) rapid, lower affinity, reversible inhibitors followed by time-dependent, higher affinity, 

slowly reversible binding (e.g. indomethacin and flurbiprofen); (c) rapid, reversible 

inhibitors followed by irreversible, covalent modification of the enzyme (e.g. acetylation by 

aspirin) [4]. Another recurring classification of COX inhibitors is based on their relative 

inhibitory potency for COX isoforms, quantitatively expressed as IC50 and selectivity index 

(SI = COX-2 IC50 /COX-1 IC50). In this context, COX inhibitors can be divided into five 

main groups: (a) compounds capable of producing full inhibition of both COX-1 and COX-2 

with poor selectivity; (b) compounds capable of producing full inhibition of COX-1 and 

COX-2 with preference toward COX-2; (c) compounds that strongly inhibit COX-2 with 

only weak activity against COX-1; (d) compounds that strongly inhibit COX-1 with only 

weak activity against COX-2; and (e) compounds that are weak inhibitors of both COX-1 

and COX-2 [4–5]. Finally, from a chemical point of view, NSAIDs are grouped into three 

main classes: (a) carboxylic acids (salicylic acid and its esters, acetic acids, propionic acids, 

fenamic acids), (b) phenazones (pyrazolones, oxicams) and (c) non-acidic compounds [5].

At the core of COX-1 catalytic activity is the ability to trap AA between residues R120/

Y355 and the catalytic Y385. Similar to the substrate AA, the majority of NSAIDs 

containing a carboxylic acid interacts with COXs forming a salt bridge with the guanidinium 

group of the conserved R120, located at the entrance of the hydrophobic active site channel. 

This residue orients the aromatic portion of NSAIDs toward the catalytic Y385, located at 

the top of the COX active site. A tyrosyl radical at Y385, generated upon transfer of an 
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electron to the heme, removes a hydrogen atom from the carbon-13 of AA: the AA-radical 

intermediate is then converted into prostaglandine G2 (PGG2) and prostaglandine H2 (PGH2) 

by COX cyclooxygenase- and peroxidase-activities, respectively [1–3]. Aspirin, the only 

irreversible COXs inhibitor, is recognized by R120 through its benzoic acid moiety and 

covalently modifies both COX-1 and COX-2 through acetylation of S530. Acetylation 

renders COXs completely inactive [6], preventing AA access to the catalytic site. Unlike 

aspirin, other NSAIDs reversibly inhibit COX activity with different selectivity for the two 

isoforms.

Over the last two decades, limited effort has been devoted to developing selective COX-1 

inhibitors [7–9], possibly due to the scarce knowledge of COX-1 biology and its 

involvement in human diseases [10]. In contrast, many COX-2 inhibitors (COXIBs) have 

been identified and characterized at the molecular level, and found in most cases to contain a 

diarylheterocycle bearing either a sulfonamide or a methylsulfamoyl group. The 

development of COXIBs solved in part the selectivity problem in favor of COX-2 [4–5]. 

This effort was undertaken to reduce the gastrointestinal (GI) adverse effects associated with 

the poor COXs selectivity of most traditional NSAIDs, which was mistakenly associated 

with selective COX-1 inhibition [11–13]. Our discovery of 3-(5-chlorofuran-2-yl)-5-

methyl-4-phenylisoxazole (P6) [7] (Fig. 1) as a highly selective COX-1 inhibitor lacking GI 

toxicity [11] prompted us to attempt in-depth structural modifications of this inhibitor, in 

order to understand how replacement of chemical moieties affects COX-1 selectivity [5,14–

16]. Overall, the selectivity of NSAIDs for COXs remains an open target, mainly due to the 

similarity between COX isoforms and the complex chemistry of NSAIDs binding to the 

active site [4,5].

Crystallographic studies on COX-1 and COX-2 have elucidated the detailed architecture and 

active site organization of these vital enzymes. COXs contain a long hydrophobic channel 

that spans ~25 Å from the membrane binding domain to the active site [4,5]. The entry of 

this channel contains a ‘lobby’ that narrows down into a constriction formed by three crucial 

residues: R120, Y355 and E524. This constriction opens up to allow substrates or inhibitors 

to entry into the channel, which is mainly hydrophobic. Crystal structures of COX-1 and 

COX-2 in complex with AA found that as many as nineteen amino acids in this channel 

make fifty close contacts with the substrate [1–4], underscoring a remarkably complex 

chemistry of substrate-binding. As of 2017, twenty-one of the twenty-seven crystal 

structures of COX-1 deposited in the RCSB database include complexes with NSAIDs. In 

all these structures, which were determined between 2.0 and ~3.4 Å resolution, the 

carboxylate moiety of acidic NSAIDs is always found to interact with the guanidinium 

group of R120. Consistently, binding of AA and NSAIDs containing a carboxylic moiety to 

COX-1 is greatly perturbed when R120 is mutated to a smaller uncharged residue [17–18]. 

Although most classical NSAIDs are non-selective inhibitors, in general, they seem to bind 

more tightly to COX-1 than COX-2, possibly due to the strength of the ionic interaction 

between the inhibitor carboxylate anion and the guanidinium cation of COX-1 R120 [3]. In 

this paper, we report an optimized synthetic procedure for mofezolac and 1 (P6), and the 

identification of their interactions with COX-1 active site through X-ray crystallographic 
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analysis and molecular modeling. This work paves the way to decipher the structural basis 

for selective inhibition of COX-1 by diarylisoxazole-moiety containing compounds.

RESULTS AND DISCUSSION

Two diarylisoxazoles were selected for this study (Fig. 1): mofezolac, a polar and ionizable 

NSAID, and 1 (P6) that has very low overall polarity. In mofezolac, the isoxazole group is 

linked to two mildly polar 4-methoxyphenyl groups at position C3 and C4 and to a highly 

polar acetic moiety at C5.

In contrast, 1 (P6) isoxazole is linked to a moderately polar 5-chlorofuranyl group at 

position C3 and two apolar groups, a phenyl at C4 and a methyl at C5. Mofezolac is 

clinically used as an analgesic drug in Japan, and preferentially inhibits COX-1 [19,20]. It 

functions like a time-dependent/slowly reversible inhibitor, similar to indomethacin [8] and 

its IC50 values are 0.0079 and >50 μM for COX-1 and COX-2, respectively [21]. In contrast, 

1 (P6) is a weaker, time-independent/competitive reversible inhibitor similar to ibuprofen 

[8], for which we measured IC50 values of 19 and >50 μM for COX-1 and COX-2, 

respectively [21].

Docking studies of selected diarylisoxazole NSAIDs with COX-1 revealed several equally 

plausible binding poses [5,10]. This ambiguity, which is a direct consequence of the large 

number of bonding groups in the COX-1 channel, hinders optimization and rational design 

of new diarylisoxazole NSAIDs with enhanced therapeutic properties. To gain insights into 

the chemistry of binding and inhibition of COX-1, we have determined crystal structures of 

the ovine COX-1 (oCOX-1) in complex with mofezolac and 1 (P6). oCOX-1:mofezolac and 

oCOX-1:1 (P6) complexes were solved by molecular replacement and refined to an 

Rwork/free of 19.5/22.8% and 20.0/23.4%, at 2.75 Å and 2.93 Å resolution, respectively 

(Table S1). Unlike previous structures of oCOX-1 [22–24], the current crystals do not suffer 

from twinning, allowing for an accurate structural analysis of mofezolac and 1 (P6) binding 

to oCOX-1 even at moderate resolution.

The overall architecture of oCOX-1 in our crystallographic complexes (Fig. 2A and 2B) is 

similar to previously reported structures of the enzyme [22]. oCOX-1 crystallizes as a 

homodimer in the asymmetric unit, though the two subunits are thought to function as a 

heterodimer in vivo [22]. oCOX-1 consists of two ∼72 kDa subunits tightly packed against 

each other via an extensive binding interface spanning ~2,500 Å2. Each COX-1 protomer 

contains an epidermal growth factor-like domain, a membrane binding domain (MBD), and 

a large catalytic core bound to a Fe3+-protoprophyrin IX ring (heme group) that harbors both 

COX and peroxidase (POX) enzymatic activities. The COX active site lies on the opposite 

side of the POX active site, which activates the heme necessary for the cyclooxygenase 

reaction. The two active sites are connected via a ~25 Å long L-shaped hydrophobic channel 

that originates in the MBD and is partially accessible to NSAIDs. Mofezolac and 1 (P6) 

were identified in unbiased Fo-Fc OMIT maps at the entry of the COX-1 hydrophobic 

channel in the proximity of R120 and Y355, where NSAIDs are known to interact with 

COXs [23,24]. Fig. 2A shows a representative Fo-Fc OMIT electron density map for 

mofezolac contoured at 4σ(purple) and 2σ (cyan) above background and overlaid to the 
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final refined model of mofezolac that has an overall B-factor of ~70 Å2, comparable to that 

of oCOX-1 atoms. The orientation of mofezolac inside oCOX-1 active site was 

unambiguously determined due to the excellent electron density and asymmetric shape of 

this compound that has a carboxyl group above the diarylisoxazole (Fig. 2A).

In contrast, the electron density for 1 (P6) was less continuous and could be unambiguously 

identified only after excluding the bulk solvent around the omitted region (Fig. 2B). An Fo-

Fc polder OMIT map countered at 2σ above background revealed a ‘V-shaped’ density 

consistent with the expected quasi-2-fold symmetric structure of 1 (P6) (Fig. 1). At higher 

contour, the density breaks off into three peaks (colored in purple in Fig. 2B), two of which 

are connected (right hand side in Fig. 2B) and one that is more spherical (left hand side in 

Fig. 2B) and visible up to 6σ We assigned the central density to the isoxazole group of 1 
(P6), and the globular peak on the left that lacks continuity with the isoxazole group to the 

more electron-dense chlorine atom of the 5-chlorofuranyl group at position C3. In turn, the 

density peak continuous to the isoxazole was assigned to the phenyl ring at position C4 that 

has delocalized π-electrons. No density was observed for the methyl group at position C5 of 

the isoxazole. The refined B-factor of 1 (P6) (~115 Å2) is much higher than oCOX-1 atoms 

and mofezolac, underscoring the high isotropic displacement of 1 (P6) atoms inside the 

active site channel. 1 (P6) atoms move dynamically around the positions defined by the 

atomic model and thus the electron density in Fig. 2B represents the resultant of different 

conformations averaged over all COX-1:1 (P6) complexes in the crystallographic lattice.

The crystal structure of COX-1 bound to mofezolac, refined at 2.75 Å resolution, reveals the 

drug binds the enzyme active site in a planar conformation, with one methoxyphenyl group 

inserted deep inside the active site channel facing Y385 and the other methoxyphenyl group 

sandwiched between Y355 and F518 (Fig. 3A). The carboxyl moiety at position 5 of the 

isoxazole group faces the active site channel entry point, occupied by an n-octyl-β-D-

glucoside (βOG) in our structure. Hence, mofezolac makes two sets of interactions with 

COX-1 residues lining the active site channel. First, the anionic carboxylate makes a salt 

bridge with the cationic guanidinium group of R120. This salt bridge is the combination of 

an electrostatic contact between opposite charges (e.g. both mofezolac and guanidinium are 

charged at the pH of crystallization) and three close-distance (e.g. 2.5-2.8 Å) hydrogen 

bonds (H-bonds), namely two H-bonds between mofezolac carboxylate and R120 ε- and η-

nitrogen atoms and one H-bond with Y355 hydroxyl group (Fig. 3C). Second, mofezolac 

makes 83 non-bonded, mainly van der Waals and hydrophobic contacts with 17 residues in 

the COX-1 channel in a distance range between 3.5-4.5 Å (Fig. 3A). Notably, the two 

methoxyphenyl groups see different chemical environments. The methoxyphenyl at C3 is 

surrounded by almost exclusively hydrophobic residues (Y385, W387, F381, L384 and 

G526), including the catalytic Y385, while the methoxyphenyl group at C4 makes van der 

Waals interactions with more polar residues such as Q192, S353, H90 and Y355, as well as 

hydrophobic contacts with I523, F518 and L352. Overall, the combination of electrostatic, 

H-bonds, hydrophobic and van der Waals contacts results in a remarkable surface 

complementarity that cements mofezolac inside the COX-1 active site channel, explaining 

its low IC50 (Fig. 1).
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In the crystal structure of COX-1 bound to 1 (P6), the chlorofuranyl group of 1 (P6) faces 

down toward the active site channel entry point (Fig. 3B) at a position occupied by the 

bulkier carboxyl group in the COX-1:mofezolac complex (Fig. 3A). The 1 (P6) chlorine 

atom is coordinated by Y355 and R120, similar to the free chlorine atom found in the active 

site of the RNA phosphatase PIR1, which is also coordinated by a Y/R pair [25]. Analysis of 

the chemical interactions between 1 (P6) and COX-1 in a distance range 2.5 - 4.5 Å reveals 

that the drug is stabilized by two H-bonds and 56 non-bonded contacts with 9 residues of 

COX-1 (Fig. 3B). The H-bonds involve the ε-nitrogen of COX-1 R120 and 1 (P6) chlorine 

atom (2.4 Å distance) and the hydroxyl group of Y355 with the furanyl oxygen atom of 1 
(P6) (Fig. 3C). 1 (P6) isoxazole group makes van der Waals and hydrophobic contacts with 

S353, L352, V349, I517 and I523 (Fig. 3B) and the phenyl ring engages in hydrophobic 

interactions with I517, L352, V349 and F518. However, COX-1 aromatic residues F381, 

Y385 and W387, which are important binding determinants for mofezolac, are located more 

than 5 Å away from 1 (P6), and thus unlikely to significantly contribute to the overall 

energetics of interaction. The binding free energies (∆G) of mofezolac and 1 (P6) for 

oCOX-1 calculated from atomic coordinates are −10.2 and −6.9 kcal/mol, respectively 

(Table S2). A free energy difference of ~3 kcal/mol is in good agreement with the structural 

data, supporting the notion that mofezolac binds oCOX-1 with much higher affinity than 1 
(P6).

Both mofezolac and 1 (P6) are isoxazole-derivatives, but the position of the isoxazole-group 

differs greatly in the two complexes. 1 (P6)-isoxazole is rotated by 180° as compared to 

mofezolac, with the phenyl ring occupying a position almost superimposable to the 

methoxyphenyl group of mofezolac (Fig. 3C). In both drugs, this hydrophobic moiety 

mimics the aliphatic chain of AA, which, however, is longer and inserts itself deeper inside 

the COX-1 hydrophobic channel (Fig. 3C). Thus, 1 (P6) weak inhibition of COX-121 as 

compared to mofezolac (IC50 ~19 vs 0.0079 μM, respectively) can be explained by the lack 

of an ionic interaction with R120, at the mouth of the COX-1 tunnel, and fewer hydrophobic 

contacts with COX-1 channel residues facing the heme, especially F381, Y385 and W387. 

This imperfect complementarity may cause 1 (P6) to ‘wobble’ or even partially rotate inside 

the COX-1 substrate/inhibitor-binding channel, explaining the high B-factor of 1 (P6) atoms 

observed in our structure. Despite these differences, mofezolac and 1 (P6) do not make 

water-mediated contacts with COX-1 residues [26] and in both structures the conformation 

of Leu531 is consistent with the closed conformation of the enzyme [27].

The IC50 values of mofezolac and 1 (P6) for COX-1 are over two orders of magnitude lower 

than for COX-2 (mofezolac and 1 (P6) SI is ~ 3 and 6,300, respectively) (Fig. 1). Comparing 

the structure of human COX-2 [29] with the crystallographic complexes of oCOX-1 

described in this paper provides clues to decipher the structural basis for this selectivity. 

COX-2 has a 20-25% larger and more accessible substrate/inhibitor-binding channel than 

COX-1 [3], and contains an additional hydrophilic side-pocket in the proximity of F518 

(Fig. 4A,B). Access to this pocket is restricted in COX-1 by three aminoacid substitutions: 

I523 and I434, both replaced by valines in COX-2, and H513 (R513 in COX-2) that fills the 

pocket. 1 (P6) poor IC50 for COX-2 (>50 μM) can be explained by the larger substrate/

inhibitor-binding channel of this isoform and the more hydrophilic nature of the drug-
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binding site, which provides an energetically unfavorable chemical environment for a poorly 

polar molecule like 1 (P6) (Fig. 4B). Though more polar and ionizable, mofezolac inserts 

one of the two methoxyphenyl group toward F518, making a stacking interaction with I523 

(Fig. 4A). This contact is likely weaker in COX-2 where I523 is replaced by the smaller and 

less hydrophobic V523. In summary, mofezolac and 1 (P6) selectivity for COX-1 are a direct 

consequence of the snugger fit between these diarylisoxazole NSAIDs and the smaller active 

site channel of this isoform.

To investigate how mofezolac and 1 (P6) affect the overall structure of oCOX-1, we 

performed molecular modelling studies using the software FLAP (Finger Print for Ligands 

and Proteins) [30]. We removed all ligands from the atomic coordinates of the 

oCOX-1:mofezolac and oCOX-1:1 (P6) complexes and calculated all binding cavities in 

oCOX-1 for each structure (Fig. 5). Interestingly, we identified eleven internal cavities in the 

structure of oCOX-1 bound to mofezolac and only nine in the complex with 1 (P6). As the 

two complexes were crystallized under identical conditions, have equal crystal contacts and 

are crystallographically isomorphous, the difference in internal cavities is presumably 

caused by bound inhibitors and may reflect the way different NSAIDs affect the enzyme 

breathing motion. The larger, more polar and potent mofezolac fits tightly inside the 

oCOX-1 channel, bridging the Y355/R120 pair at the channel entry with the catalytic Y385 

(Fig. 4A), thereby reducing the enzyme breathing motion and freezing its internal cavities. 

On the contrary, 1 (P6) is smaller, lacks contacts with the aromatic residues next to the heme 

(Fig. 3B) and moves dynamically inside COX-1 substrate channel allowing the enzyme to 

breathe more dynamically. This is consistent with the lower resolution of oCOX-1:1 (P6) 

crystals and smaller number of internal cavities identified by FLAP.

CONCLUSION

In recent years, there has been a growing interest in developing selective inhibitors of 

COX-1. This isoform is proven to play a critical role in the inflammatory processes that lead 

to many neurodegenerative diseases and cancers, mainly ovarian cancer. In addition, low 

dose aspirin, a commonly used antithrombotic drug and a selective and irreversible inhibitor 

of platelet COX-1, is a poor drug that fails to prevent as many as 80% of non-fatal and fatal 

cardiovascular events [31]. Incomplete suppression of platelet thromboxane A2 (TXA2) 

biosynthesis by aspirin has also been implicated in aspirin resistance [32]. Thus, the 

development of novel and potent COX-1 inhibitors is a major focus of modern 

pharmaceutical research. A number of highly selective COX-1 inhibitors share a 

diarylisoxazole scaffold [7,8]. This study describes the structural basis for selective 

inhibition of COX-1 by diarylisoxazoles mofezolac and 1 (P6). Our structural data suggest 

the low IC50 of mofezolac for COX-1 depends on the snug fit of this drug with the enzyme 

active site, whereas 1 (P6) lower potency correlates with the smaller size of this NSAID and 

its wobble inside the active site channel. In turn, the selectivity of both diarylisoxazoles for 

COX-1 appears to be a direct consequence of the smaller substrate/inhibitor-binding channel 

of this isoform that has greater van der Waals complementarity than COX-2. We validate the 

importance of a carboxylic group in mofezolac, or a halogen in 1 (P6), essential to make 

contacts with Arg120/Try355 at the entry of the active site channel, while the bulkiness and 

chemical features of substituents linked to the central heterocycle appears to control the 
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avidity for the COX-1 channel [5]. In summary, this work paves the way for the development 

of novel COX-1 inhibitors with enhanced potency, greater selectivity and reduced toxicity.

EXPERIMENTAL SECTION

Reagents and procedures

AA was purchased from Cayman Chemical Co (Ann Arbor, MI). Hemin (heme) was 

purchased from Frontier Scientific (Logan, UT). N-octyl β-D-glucopyranoside (β-OG) and 

C10E6 were purchased from Anatrace (Maumee, OH). BCA protein reagent was purchased 

from Pierce (Thermo Scientific). EDTA free protease inhibitor was purchased from Roche 

Applied Science. Nickel-NTA Agarose beads were purchased from Gold Biotechnology. All 

other chemicals (reagents and solvents) were purchased from Sigma Life Science. 

Mofezolac was prepared by us following a known procedure [33] with a slight modification. 

Briefly, desoxyanisoin oxime was prepared by reacting desoxyanisoin (10 g, 39 mmol) and 

NH2OH•HCl (76 mmol) in methanol/water (60 and 50 mL, respectively). NaOH (0.12 mol) 

was, then, slowly added. The reaction mixture was stirred for 15 minutes and then heated to 

70°C. After 1h, methanol was added to the hot mixture until dissolution was almost 

complete. The mixture was filtered and the methanol distilled under reduced pressure. The 

residue was cooled by adding ice-water, filtered and the resulting solid dissolved in ethyl 

acetate (EtOAc) and treated with brine. The organic layer was dried over anhydrous 

Na2SO4, filtered and concentrated to obtain the oxime as a yellow solid (9 g, 85% yield). It 

was used without any further purification to prepare the 3,4-di(4-methoxyphenyl)-5-

methylisoxazole direct precursor of mofezolac. Hence, 2.4 N n-BuLi (3.1 mL, 7.4 mmol) 

was slowly added to a solution of the oxime (1 g, 3.7 mmol) in tetrahydrofuran (THF) (40 

mL) kept at −15 °C and under argon atmosphere. The reaction mixture was stirred at 0°C for 

30 minutes, and then ethyl acetate (0.15 g, 2 mmol) in THF (15 mL) was added. After 15 

minutes, 6 N HCl (100 mL) was added and the reaction mixture refluxed with stirring by an 

oil-bath for 18h, cooled and the layers separated. The aqueous layer was extracted with 

EtOAc (3 × 100 mL). The combined organic layers were dried with Na2SO4, filtered and the 

solvent removed under reduced pressure. Methanol was added to the reaction crude, cooled 

and the crystalline desoxyanisoin removed by filtration. The filtrate was concentrated and 

then treated with warm ethanol (5 mL). On cooling in a freezer overnight the 3,4-di(4-

methoxyphenyl)-5-methylisoxazole was obtained as a colorless solid. Mp 95-98 °C after 

recrystallization from ethanol (307 mg, 50% yield). 1H-NMR (300 MHz, CDCl3, δ): 7.37 (d, 

2H, J = 9.0 Hz); 7.09 (d, 2H, J = 9.0 Hz); 6.90 (d, 2H, J = 9.0 Hz); 6.83 (d, 2H, J = 9.0 Hz); 

3.80 (s, 3H); 3.83 (s, 3H); 2.40 (s, 3H). 3,4-Di(4-methoxyphenyl)isoxazol-5-acetic acid 

(mofezolac) was prepared by dropwise adding 1.6 N n-BuLi (5 mL) to a stirred cold (dry 

ice– acetone bath) solution of 3,4-di(4-methoxyphenyl)-5-methylisoxazole (2 g, 7 mmol) in 

THF (30 mL) under an argon atmosphere. After stirring for 1h at −75 °C, anhydrous gaseous 

CO2 was flushed into the stirred red colored reaction mixture till the disappearance of the 

colour. Then, the stirred reaction mixture was allowed to warm to room temperature, 

concentrated, and the residue dissolved in water. The resulting solution was twice extracted 

with EtOAc. The organic phase was cooled and acidified with concentrated HCl. The layers 

were separated and the aqueous phase extracted with ethyl acetate. The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and the solvent removed under reduced 
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pressure. The obtained sticky foam residue was recrystallized from toluene to give 

mofezolac as a colorless solid (1.68 g, 71% yield). Mp 142-143 °C. 1H-NMR (300 MHz, 

CDCl3, δ): 9.55 (bs, 1H: exchanges with D2O); 7.40-7.38 (d, 2H, J = 8.8 Hz, aromatic 

protons); 7.15-7.13 (d, 2H, J = 8.8 Hz, aromatic protons); 6.93-6.91 (d, 2H, J = 8.8 Hz, 

aromatic protons); 6.84-6.82 (d, 2H, J = 8.8 Hz, aromatic protons); 3.83 (s, 3H); 3.81 (s, 

2H); 3.79 (s, 3H).

3-(5-Chlorofuran-2-yl)-5-methyl-4-phenylisoxazole was synthesized starting from 2-

furancarbaldehydoxime, in turn prepared from the reaction of the 2-furancarbaldehyde and 

NH2OH•HCl in aqueous/EtOH (1:1) in the presence of NaOH. 2-Furancarbaldehydoxime 

(0.5 g, 4.5 mmol) dissolved in anhydrous dimethyl formamide (DMF) (5 mL), contained in a 

round-bottom flask equipped with magnetic stirrer, was cooled to 0°C. N-Chlorosuccinimide 

(NCS) (1.2 g, 9.0 mmol) was slowly added, and the obtained suspension was stirred for 5 h 

to room temperature. Then, ethyl ether was added and the solution was washed three times 

with water to remove DMF. The combined organic extracts were dried over anhydrous 

Na2SO4, and then the solvent was evaporated under vacuum. The residue was dissolved in 

EtOAc. A pale yellow solid of 5-chloro-2-furancarbohydroximoyl chloride formed (75% 

yield) by slow addition of petroleum ether (ethyl acetate/petroleum ether = 1:1). The 

obtained 5-chloro-2-furancarbohydroximoyl chloride (3.87 mmol) was then converted into 

the nitrile oxide by NEt3 (3.87 mmol), that after NEt3•HCl removal by filtration, was added 

dropwise to a yellow suspension of NaH (95% w/w, 4.26 mmol) and phenylacetone (0.518 

mL, 3.87 mmol) in THF (20 mL) at 0 °C for 1h under nitrogen atmosphere, using a 

nitrogen-flushed, three-necked flask equipped with a magnetic stirrer, a nitrogen inlet, and 

two dropping funnels. The reaction mixture was allowed to reach room temperature and 

stirred overnight. The reaction was quenched by adding aqueous NH4Cl solution. The 

reaction product was extracted three times with ethyl acetate. The combined organic phases 

were dried over anhydrous Na2SO4 and then the solvent distilled under vacuum affording 1 
(P6) in 60% yield. Mp 71-73 °C (yellow crystals). FT-IR (KBr): 3147, 3051, 2927, 2848, 

1633, 1520, 1435, 1412, 1236, 1204, 1134, 1020, 985, 940, 926, 897, 796, 775 cm-1. 1H-

NMR (300 MHz, CDCl3, δ): 7.40-7.47 (m, 3H, aromatic protons); 7.25-7.30 (m, 2H, 

aromatic protons); 6.25-6.27 (d, 1H, J = 3.6 Hz); 6.11-6.12 (d, 1H, J = 3.6 Hz); 2.36 (s, 3H). 
13C-NMR (75 MHz, CDCl3, δ): 11.41, 108.14, 113.87, 114.99, 128.58, 129.01, 129.63, 

130.20, 138.59, 143.76, 152.42, 167.10. GC-MS (70 eV) m/z (rel int): 261 [M(37Cl)+, 5], 

259 [M(35Cl)+, 15], 219 (11), 217 (36), 154 (17), 127 (10), 89 (14), 77 (9), 63 (10), 51 (12), 

43 (100). If 3-(5-chlorofuran-2-yl)-5-hydroxy-5-methyl-4-phenyl-2-isoxazoline [direct 1 

(P6) precursor] is present in the ethyl acetate extracts (TLC analysis) obtained after 

quenching the reaction mixture with NH4Cl, it can be separated by column chromatography 

(silica gel, petroleum ether/ethyl acetate = 15/1) of the reaction crude and converted into 1 

(P6) by Na2CO3/methanol under reflux for 2h.

Protein expression and purification

The gene encoding oCOX-1 was cloned in a modified pFastBac vector (Invitrogen) 

engineered with an N-terminal 8X-his tag and a TEV protease cleavage. Generation of 

recombinant baculovirus, expression of recombinant his-tagged oCOX-1, and purification of 

untagged oCOX-1 were carried out as previously described [22]. O2 consumption (see 
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functional assay paragraph) was measured at each step of purification and increased from 

136,165 to 210,998 nmol/min: the final purified oCOX-1 had specific activity of 40,000 

unit/mg ± 0.49. Purified oCOX-1was concentrated using a Millipore Ultrafree-15 spin 

concentrator to 5-6 mg/ml (as assessed by BCA protein assay, Pierce, Rockford, IL) in 

HEPES pH = 7.0, 40 mM NaCl and 0.4% ß-OG and used for crystallization.

Crystallographic methods

oCOX-1 was reconstituted with a 2-fold molar excess of heme (Fe3+-protoprophyrin IX) and 

2-fold molar excess of mofezolac [or 1 (P6) ]and allowed to incubate at room temperature 

for 10 min before setting up crystallization trays. Crystallization trials were set up at 25°C 

using the sitting-drop vapor diffusion method. 1 μL of protein was mixed with 1 μL of drop 

solution consisting of 0.5-0.9 M LiCl, 0.7 M sodium citrate pH 6.5, 1 mM sodium azide and 

0.3 %(w/v) β-OG and was equilibrated within a reservoir containing 0.6-0.85 M LiCl, 0.7 

and 0.85 M sodium citrate pH 6.5 and 1mM sodium azide. Crystals appeared within 2-3 

weeks. Prior to data collection, crystals were harvested, briefly soaked in a solution 

containing 1M sodium citrate, 1M LiCl, 0.15% β-OG, and 1mM sodium malonate as a cryo-

protectant and flash-frozen in liquid nitrogen. Diffraction data were collected at beam line 

21-ID-F, Life Science-Cat (Argonne National Laboratory, Argonne, IL) on a MARMOSAIC 

225 CCD detector and processed using HKL2000 [34]. The structure was solved by 

molecular replacement (MR) using the program PHASER [35] and oCOX-1 (PDB 3KK6) as 

a search model. For both crystal structures, the hexagonal asymmetric unit contains a dimer 

of oCOX-1 that was subjected to iterative cycles of positional and B-factor refinement using 

distinct TLS groups using phenix.refine [36]. Ligands and water molecules in the structure 

were identified in Fo-Fc electron density difference maps. Mofezolac and 1 (P6) were 

identified in Fo-Fc polder maps, as implemented in phenix.polder[37]. Visualization and 

model building were done using Coot [38]. The final models consist of residues 32-584, 

Fe3+-protoprophyrin IX, carbohydrates moieties linked to N68, N144 and N410, four βOGs 

and mofezolac or 1 (P6) bound in the oCOX-1 active site of each monomer and a few water 

molecules (Table S1). Figures were generated using PYMOL [39].

Functional analysis of oCOX-1

COX activity was monitored by O2 consumption using a Clark-type O2 sensitive electrode 

(YSI 5300 A, Yelow Springs, Ohio). A typical assay consisting of 100 mM Tris-HCl (pH 

8.0) containing 1 mM phenol, 1.5 μL of 1 mM heme, 50 μL of 100 μM AA, 50 μL of protein 

(3 mL final volume). Mofezolac and 1 (P6) inhibition of COXs was measured using a 

colorimetric inhibitor screening assay, as described in reference [21].

Computational Methods

The computational tools employed in this work are mainly part of FLAP package [30]. 

FLAP was employed in structure-based mode using the crystallographic structures of 

COX-1:mofezolac and COX-1:1 (P6) as templates. Binding free energies were computed 

from atomic coordinates as described in reference [40].
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

COXIB selective cyclooxygenase-2 inhibitor

FLAP Finger Print for Ligands and Proteins

MBD membrane binding domain

PGHS -1 and -2 Prostaglandin endoperoxide H synthase-1 and -2

PGG2 prostaglandin G2

PGH2 prostaglandin H2

POX peroxidase

SI selectivity index
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Figure 1. 
Chemical structures of mofezolac and 1 (P6), and their IC50 for COX-1 and COX-2 obtained 

using a colorimetric inhibitor screening assay [21].
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Figure 2. 
Crystallographic analysis of mofezolac and 1 (P6) bound to oCOX-1. (A, B) Right panel: 
surface representation oCOX-1 with the two chains colored in cyan and yellow. Fe3+-

protoprophyrin IX (blue), carbohydrates moieties and βOG (green) are also shown. Left 
panel: Fo-Fc polder OMIT map for mofezolac (A) and 1 (P6) (B) contoured at 2σ (cyan) 

and 4σ (purple) above background. The OMIT maps were calculated using all reflections 

between 15 - 2.75 Å resolution for mofezolac and 15 - 2.93 Å for 1 (P6) and are overlaid to 

the final refined atomic models.
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Figure 3. 
Structural determinants for mofezolac and 1 (P6) binding to oCOX-1 active site. Residues in 

oCOX-1 active site within 2.5 - 4.5 Å bonding distance for (A) mofezolac and (B) 1 (P6). 

The semi-transparent spheres around mofezolac, 1 (P6) and heme represent van der Waals 

radii. An n-octyl-β-D-glucoside (βOG) molecule located at the entrance of the channel is 

shown in magenta. (C) Comparing the position of mofezolac and 1 (P6) isoxazole group 

with AA bound to the COX-1 active site.
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Figure 4. 
Schematic representation of the structural differences between mofezolac and 1 (P6) bound 

to the substrate/inhibitor-binding channels of (A) COX-1 and docked inside (B) COX-2. 

Adapted from reference [28].
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Figure 5. 
Difference in cavities (yellow) in COX-1 bound to mofezolac (purple) versus 1 (P6) (blue).
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