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Impact of the SPOP Mutant Subtype 
on the Interpretation of Clinical 
Parameters in Prostate Cancer

INTRODUCTION

Prostate cancer is a clinically and molecularly 
heterogeneous disease.1-4 Current risk stratifica-
tion guidelines, such as those from the National 
Comprehensive Cancer Network,5 the Ameri-
can Urological Association/American Society for 
Therapeutic Radiology and Oncology,6 and the 
European Association of Urology–European 
Society for Radiotherapy–Oncology–International  
Society of Geriatric Oncology7 use clinical 
and pathologic parameters, including the level 

of prostate-specific antigen (PSA), to guide 
management decisions for clinically localized 
disease. PSA is also used in a number of other 
clinical scenarios in prostate cancer, including 
initial diagnosis, monitoring for recurrence after 
primary therapy, and monitoring disease burden 
and treatment response for metastatic disease.

The emerging next-generation DNA and RNA 
sequencing data point toward distinct molecu-
lar subclasses of prostate cancer,2-4,8,9 but their 
clinical impact remains unclear. The Cancer 

Purpose Molecular characterization of prostate cancer, including The Cancer Genome 
Atlas, has revealed distinct subtypes with underlying genomic alterations. One of these 
core subtypes, SPOP (speckle-type POZ protein) mutant prostate cancer, has previously 
only been identifiable via DNA sequencing, which has made the impact on prognosis and 
routinely used risk stratification parameters unclear.
Methods We have developed a novel gene expression signature, classifier (Subclass Pre-
dictor Based on Transcriptional Data), and decision tree to predict the SPOP mutant 
subclass from RNA gene expression data and classify common prostate cancer molecular 
subtypes. We then validated and further interrogated the association of prostate cancer 
molecular subtypes with pathologic and clinical outcomes in retrospective and prospec-
tive cohorts of 8,158 patients.
Results The subclass predictor based on transcriptional data model showed high sen-
sitivity and specificity in multiple cohorts across both RNA sequencing and microarray 
gene expression platforms. We predicted approximately 8% to 9% of cases to be SPOP 
mutant from both retrospective and prospective cohorts. We found that the SPOP mu-
tant subclass was associated with lower frequency of positive margins, extraprostatic 
extension, and seminal vesicle invasion at prostatectomy; however, SPOP mutant cancers 
were associated with higher pretreatment serum prostate-specific antigen (PSA). The 
association between SPOP mutant status and higher PSA level was validated in three 
independent cohorts. Despite high pretreatment PSA, the SPOP mutant subtype was 
associated with a favorable prognosis with improved metastasis-free survival, particularly 
in patients with high-risk preoperative PSA levels.
Conclusion Using a novel gene expression model and a decision tree algorithm to de-
fine prostate cancer molecular subclasses, we found that the SPOP mutant subclass is 
associated with higher preoperative PSA, less adverse pathologic features, and favorable 
prognosis. These findings suggest a paradigm in which the interpretation of common 
risk stratification parameters, particularly PSA, may be influenced by the underlying mo-
lecular subtype of prostate cancer.
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Genome Atlas (TCGA) study identified seven  
core prostate cancer subtypes, which were defined 
by underlying genomic alterations.4 One key 
molecular subclass, which represents approxi-
mately 10% of prostate cancers, harbors recur-
rent missense mutations in the E3 ubiquitin ligase 
component SPOP.2-4,10-13 To date, identification 
of SPOP mutations has required mutational anal-
ysis using genomic (DNA) sequencing. These 
cohorts typically have limited follow-up,3,4,10 thus 
limiting definitive conclusions about the clinical 
effect of the molecular subtypes. In contrast, gene 
expression (RNA) data are widely available from 
a variety of prostate cancer cohorts, often with 
the long follow-up necessary to define prognostic 
impact.14-21

Here, we reported the first development and 
validation of the Subclass Predictor Based on 
Transcriptional Data (SCaPT) model, which 
we used to define key prostate cancer molecu-
lar subclasses, including SPOP mutant cancer, 
using gene expression data. We used the SCaPT 
model to predict the molecular subclass from a 
retrospective cohort that included 1,626 patient 
samples and a prospective cohort that included 
6,532 samples using genome-wide microarray 
gene expression data from a clinically available 
prognostic assay (Decipher; GenomeDx Biosci-
ences, Vancouver, BC, Canada), and we explored 
the clinicopathologic and prognostic associations 
of key molecular subclasses of prostate cancer.

METHODS

Prostate Cancer Tumor Samples and 
Microarray Data

We used a total of 8,559 radical prostatectomy 
(RP) tumor expression profiles for training, 
testing, and validation. For training and testing, 
we used RNA sequencing expression and DNA 
mutation data from TCGA prostate cancer 
project (n = 333)4 and the Weill Cornell Med-
icine (WCM) sequencing (n = 68) cohort. For 
validation, expression profiles of retrospective  
(n = 1,626) and prospective (n = 6,532) cohorts 
were derived from the Decipher Genomics 
Resource Information Database (GRID) registry 
(ClinicalTrials.gov identifier: NCT02609269). 
The retrospective GRID cohort was pooled 
from seven published microarray studies: Cleve-
land Clinic,22 Erasmus MC,23 Johns Hopkins,15 
Memorial Sloan Kettering Cancer Center,1 
Mayo Clinic (Mayo I and Mayo II),20,24 and 

Thomas Jefferson University.21 The prospective 
GRID cohort was from clinical use of the Deci-
pher test. DNA and RNA from the TCGA and 
WCM cohorts were extracted from fresh fro-
zen RP tumor tissue, as previously described.4 
RNA from the GRID cohorts was extracted 
from routine formalin-fixed, paraffin-embedded  
RP tumor tissues, amplified, and hybridized to 
Human Exon 1.0 ST microarrays (Thermo 
Fisher Scientific, Waltham, MA).24,25

SPOP Mutant Transcriptional Signature

We developed the SPOP mutant transcriptional 
signature, which includes 212 genes differ-
entially expressed between SPOP mutant and  
wild-type samples from TCGA prostate cancer 
RNA sequencing data4 (Fig 1). Low-expressed 
genes (mean resem [RNA-seq by expectation- 
maximization] < 1) were filtered before the 
analysis. Specifically, we identified significantly 
differentially expressed genes by comparing 
SPOP mutant and wild-type cases as determined 
from DNA mutational analyses among TCGA 
samples that lacked ETS family gene fusions 
(ERG, ETV1, ETV4, and FLI1) using Wilcoxon 
rank-sum test,26 and controlled for false dis-
covery using Benjamini-Hochberg adjustment 
(false-discovery rate ≤ 0.0001).27 By performing 
DESeq2 (DESeq2 v1.20.0; https://bioconduc-
tor.org/packages/release/bioc/html/DESeq2.
html) on SPOP mutant and wild-type cases (the 
same approach used initially), we found 300 dif-
ferentially expressed genes at a false discovery 
rate of < 0.05 via DESeq2, and 105 genes that 
overlapped with the 212-gene list. The over-
lap between two methods was significant (P <  
2.2 × 10−16), which confirmed similar results when 
applying these methods.

SCaPT Development on the Basis of SPOP 
Mutant Transcriptional Signature and the 
Support Vector Machine Model

To predict tumors in the SPOP mutant subclass 
in the absence of DNA sequencing data—that is, 
microarray data sets—we developed the SCaPT 
model on the basis of the support vector machine 
(SVM) model.28-30 Given a set of training data 
marked with two categories, SVM builds a model 
that assigns testing data into one category or the 
other, which makes it a nonprobabilistic binary 
linear classifier (Fig 2A). In our SCaPT model, 
training data were defined as the transcriptional 
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z-scores of SPOP mutant signature from TCGA 
cohort. Testing data would be the transcriptional 
z-scores from RNA sequencing or microar-
ray expression data of SPOP mutant signature. 
By performing 10-fold cross-validation on the 
TCGA training data set, we found cost—cost of 
constraints violation—equal to 0.04 to yield the 
model with the highest sensitivity and specificity. 
In the following analysis, we used cost equal to 
0.04 to predict SPOP mutant subclass.

Prostate Cancer Molecular Subclass 
Prediction by Decision Tree

In each individual study of the retrospective and 
prospective GRID cohorts, the SPOP mutant 
subclass was first predicted using the SCaPT 

model. Next, using a decision tree and previ-
ously developed microarray-based classifiers for 
the ERG-positive and ETS-positive subtypes,25 
we classified the remaining cases in each cohort. 
Some cases with both predicted SPOP mutant 
and ERG-positive/ETS-positive status were clas-
sified as conflict subclass, and the rest without 
SPOP mutant calling and outlier expression were 
considered as other subclass (Data Supplement).

Statistical Analysis

Statistical analyses were performed in R (ver-
sion 3.1.2; https://www.r-project.org/). All 
statistical tests were two sided, with the signif-
icance level set at P < .05. Univariable logis-
tic regression analyses were performed on the 
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WCM RNA-seq validation cohort

P < 1.9 x 10-3

SPOP ERG+, n = 21

ETS+, n = 5

SPOP, n = 9

Total, N = 68

Subclass

mRNA cluster

212 differentially expressed genes
by Wilcoxon test at FDR < 0.0001 

A

TCGA RNA-seq training cohort

P < 2.2 x 10-16

ERG+, n = 152

ETS+, n = 49

SPOP, n = 37

Total, N = 333

SPOP

ERG+ ETS+ SPOP Other

Fig 1. SPOP mutant transcriptional signature. (A) SPOP mutant transcriptional signature that included 212 differentially expressed genes be-
tween SPOP mutant and wild-type samples from The Cancer Genome Atlas (TCGA) non-ETS fusion RNA sequencing (RNA-seq) data. The sig-
nature was generated from the TCGA study and tested back in the TCGA training cohort. Significant enrichment of SPOP mutant cases was based 
on hierarchical clustering of 333 TCGA prostate cancer samples. Different colors represent molecular subclasses from genomic and transcriptomic 
annotations. (B) Significant enrichment of SPOP mutant case from 68 Weill Cornell Medicine (WCM) prostate cancer samples with SPOP mutant 
transcriptional signature on the basis of hierarchical clustering. ERG, ERG-fusion position; ETS: other ETS fusion positive; FDR, false-discovery 
rate.
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combined cohort to test the statistical associa-
tion between SPOP mutant status and clinical 
variables, including age, race, preoperative PSA, 
Gleason score, lymph node invasion, surgical 
margin status, extracapsular extension, and sem-
inal vesicle invasion. We evaluated the associa-
tions between SPOP mutant status and patient 
outcomes, including biochemical recurrence, 
metastasis, and prostate cancer–specific mortal-
ity, on the basis of Kaplan-Meier analysis. Pre-
operative PSA from TCGA and Taylor cohorts 
were downloaded from cBioPortal (http://www.
cbioportal.org/).31,32

RESULTS

Development and Validation of a 
Transcriptional Signature for SPOP Mutant 
Prostate Cancer

To build an SPOP mutant prediction model 
that could be applied to RNA expression data, 
we first developed a transcriptional signature of 
SPOP mutant tumors. As SPOP mutations are 
mutually exclusive with ERG and other ETS 
rearrangements,13 we excluded prostate can-
cer samples with ETS fusions to define SPOP 
mutant–specific gene expression effects (Fig 
1A). Using TCGA RNA sequencing data, we 
identified 212 differentially expressed genes 
between SPOP mutant and wild-type samples 

(Data Supplement). Among those 212 genes, we 
found that upregulated genes from the SPOP 
mutant subgroup were enriched in transport 
vesicle membrane and oxidoreductase activity,  
but that there was no significant enriched function 
in downregulated genes from the SPOP mutant 
subgroup (Data Supplement). Applying the SPOP 
mutant transcriptional signature on the training 
data of 333 TCGA prostate cancer samples, we 
found significant enrichment (P < 2.2 × 10−16) of 
SPOP mutant cases on the basis of unsupervised 
clustering (Fig 1A and Data Supplement).

To test the SPOP mutant transcriptional sig-
nature, we used the WCM RNA sequencing 
cohort with SPOP mutant annotations based 
on whole-exome DNA sequencing (Data Sup-
plement). In this independent cohort, we 
found significant enrichment (P < 1.9×10−3) of 
SPOP mutant tumors in one subcluster based 
on unsupervised clustering (Fig 1B and Data 
Supplement). We next used the SPOP mutant 
transcriptional signature in a locked SVM 
model—that is, with fixed parameters on the basis 
of the training step using the TCGA cohort (see 
Methods)—to generate scores for each sample 
in the WCM cohort. We found 89% sensitivity 
and 95% specificity of SPOP mutant prediction 
compared with DNA mutation annotation (Fig 
2A). Finally, we applied the SCaPT model to 
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A
Fig 2. High accuracy 

and confidence of SPOP 
mutant (SPOPmut) subclass 
prediction on Weill Cornell 
Medicine (WCM) and 
Gene Expression Omni-
bus (GEO) data set by the 
SCaPT (SubClass Predictor 
Based on Transcriptional 
Data) model. (A) SCaPT 
model example and its 
SPOPmut prediction on 
WCM prostate cancer RNA 
sequencing (RNA-seq) data. 
Different colors represent 
molecular subclasses from 
genomic and transcrip-
tomic annotations. (B) The 
SPOPmut prediction of 
the SCaPT model on three 
independent exon array data 
downloaded from the GEO 
database. Data from Taylor 
et al,1 Erho et al,24 and Kelin 
et al.22 wt, wild type.
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the GRID microarray expression data, which do 
not have SPOP mutation annotation from DNA 
analysis. Between 9% and 15% of samples in the 
cohorts were predicted as SPOP mutant sub-
class, which is consistent with the known prev-
alence of SPOP mutations at the genomic level 
in previous prostate cancer studies3,4,10,12 (Fig 
2B). Overall, these results demonstrated that the 
SCaPT model predicted SPOP mutant subclass 
on the basis of the transcriptional data with high 
accuracy and confidence.

Molecular Subtyping of 8,158 Patients 
Using the SCaPT and Decision Tree

We applied the SCaPT model and decision 
tree to 8,158 patients from retrospective and 

prospective GRID cohorts. Among the retro-
spective cohort with 1,626 RP specimens, we 
predicted 9% (range, 2% to 13%) of samples to 
be SPOP mutant subclass (Data Supplement). 
Previously defined expression thresholds25 clas-
sified 42% (35% to 68%) as ERG positive and 
11% (8% to 13%) as non-ERG ETS positive, as 
well as 35% without outlier expression, which 
we defined as an “other” subtype (Fig 3A and 
Data Supplement). Approximately 2% of sam-
ples with both predicted SPOP mutant and 
ERG-positive/ETS-positive status were clas-
sified as conflict cases. Among the prospective 
cohort with 6,532 RP specimens, we predicted 
8% of cases to be SPOP mutant subclass, 41% 
as ERG positive, 12% as ETS positive, 39% as 
other subtype, and 1% as conflict cases (Fig 3C). 
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Fig 3. The SPOP mutant prediction and its impacts on clinical and prognostic outcomes from retrospective (n = 1,626) and prospective GRID  
(n = 6,532) cohorts. (A) The pie chart of predicted molecular subclasses from the retrospective cohort with 1,626 samples, on the basis of the 
SCaPT (SubClass Predictor based on Transcriptional data) model and decision tree. Different colors represent molecular subclasses. (B) Associations 
between predicted SPOP mutant status and clinical variables via univariable analysis in the retrospective cohort, with SPOP wild type as reference. 
Box size indicates the significance from univariable analysis. (C) The pie chart of predicted molecular subclasses from the prospective GRID cohort 
with 6,532 samples, on the basis of the SCaPT model and decision tree. Different colors represent molecular subclasses. (D) Associations between 
predicted SPOP mutant status and clinical variables via univariable analysis in the prospective GRID cohort, with SPOP wild type as reference. 
Box size indicates the significance from univariable analysis. ERG, ERG-fusion position; ETS, other ETS fusion positive; OR, odds ratio; PSA, 
prostate-specific antigen.
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The percentage of each molecular subclass was 
consistent with that reported in previous pros-
tate cancer studies,1-4,14,25 which supports the 
validity of our approach.

SPOP Mutant Subclass Associated With 
Favorable Pathology at RP

We used binominal univariable analysis to 
compare clinical and pathologic characteristics 
between SPOP mutant and wild-type subclasses 
(Figs 3B and 3D). SPOP mutant subclass was 
less likely to harbor adverse pathologic features, 
such as positive surgical margins, extraprostatic 
extension, and seminal vesicle invasion, com-
pared with wild-type subclass in both retrospec-
tive and prospective cohorts (Figs 3B and 3D). 
Surprisingly, SPOP mutant cancers were associ-
ated with higher preoperative PSA in both ret-
rospective (odds ratio [OR], 2.00; 95% CI, 1.43 
to 2.76; P < .001) and prospective cohorts (OR, 
1.28; 95% CI, 1.01 to 1.60; P = .074).

In contrast, consistent with prior reports,25,33-36 
tumors in the ERG-positive subclass were asso-
ciated with lower preoperative PSA in both ret-
rospective (OR, 1.51; 95% CI, 1.27 to 1.79;  
P < .001) and prospective cohorts (OR, 1.47; 
95% CI, 1.29 to 1.68; P < .001), but were more 
likely to have extraprostatic extension in both 
retrospective (OR, 1.37; 95% CI, 1.16 to 1.62;  
P = .002) and prospective cohorts (OR, 1.43; 
95% CI, 1.28 to 1.60; P < .001; Data Supple-
ment). These data suggest that the SPOP mutant 
subclass was associated with more favorable 
pathologic outcomes at RP, but expresses higher 
levels of PSA and was associated with tumors 
from older men, whereas the opposite was true 
in the ERG-positive subclass of prostate cancer.

Consistent Association Between SPOP 
Mutation and Higher PSA in Multiple Cohorts

The inverse association of PSA and prognosis 
in specific prostate cancer subtypes has poten-
tial clinical implications. To independently vali-
date the association of SPOP mutant status and 
higher preoperative PSA, we examined multiple 
distinct RP cohorts (GRID, TCGA, Taylor, and 
WCM). We observed a similar trend of higher 
preoperative PSA in SPOP mutant cases, and 
the SPOP mutant subclass was more enriched in 
the higher PSA subgroups (PSA > 10; Fig 4A). 
All cohorts demonstrated significantly higher 
PSA in SPOP mutant than in the ERG-positive 

subclass via Kolmogorov-Smirnov test. On uni-
variable analysis across cohorts, SPOP mutant 
status was significantly associated with higher 
preoperative PSA (Fig 4B), whereas ERG fusion 
status was significantly associated with lower 
preoperative PSA (Fig 4C).

SPOP Mutation Is Associated With 
Favorable Clinical Outcomes After RP

On Kaplan-Meier analysis, the SPOP mutant 
subclass had the highest biochemical-free, 
metastasis-free, and lowest prostate cancer– 
specific mortality compared with ERG-positive, 
ETS-positive, and other subtypes in the retro-
spective GRID cohort (Fig 5B and Data Supple-
ment). Whereas long-term outcomes were not 
available for the prospective GRID cohort, we 
evaluated the association with metastasis risk 
using the Decipher score, a validated metric for 
prostate cancer metastatic potential.22,24,37,38 We 
found fewer SPOP mutant tumors in the Deci-
pher high-risk score (> 0.6) group compared with 
the low- and average-risk groups (Data Supple-
ment), which again is consistent with a favorable 
prognosis subtype. Together, these data support 
that SPOP mutant prostate cancer had favorable 
prognosis after RP, despite its association with 
higher preoperative PSA.

Favorable Prognosis in High-Risk PSA 
Subgroup in the SPOP Mutant Subclass

Pretreatment PSA level is a standard compo-
nent of risk stratification for prostate cancer, 
with a PSA level > 20 ng/mL considered to be 
high risk by a number of risk assessment meth-
ods.39-41 Consistent with this, higher PSA was 
associated with worse metastasis-free survival 
and prostate cancer–specific mortality in the 
retrospective cohorts (Fig 5A); however, SPOP 
mutant status had a dramatic effect on prognosis 
within the subgroup of patients with high PSA. 
Among patients with a PSA level > 20 ng/mL, 
SPOP mutant tumors were associated with bet-
ter clinical outcomes, which were comparable to 
the lowest PSA subgroup (PSA < 10 ng/mL; Fig 
5D). These data suggest that, among patients 
with high-risk PSA levels, the SPOP mutant 
subtype was associated with favorable prognosis 
in patients who underwent RP. More broadly, 
these data establish the principle that the iden-
tification of molecular subtype may impact the 
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interpretation of PSA-based risk stratification in 
a variety of clinical scenarios.

DISCUSSION

PSA is a critical component of risk assessment 
systems in multiple clinical scenarios: risk of 
prostate cancer before diagnosis, stratification of 
newly diagnosed disease, monitoring for recur-
rence after initial therapy, and as a marker for 
response to therapy and prognosis in metastatic 

disease. Despite some controversy surrounding 
its clinical utility,42-44 PSA remains a key prostate 
cancer biomarker for the foreseeable future. The 
current work provides a framework for precision 
PSA interpretation by prostate cancer molecular 
subtype.

National Comprehensive Cancer Network, Amer-
ican Urological Association/American Society 
for Therapeutic Radiology and Oncology, and 
European Association of Urology–European Soci-
ety for Radiotherapy and Oncology–International 
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Fig 4. Association of SPOP mutant (SPOPmut) status and higher prostate-specific antigen (PSA) from four independent studies.  
(A) Enrichment of SPOPmut cases among higher PSA subgroups from prospective GRID, The Cancer Genome Atlas (TCGA), Taylor,  
and Weill Cornell Medicine (WCM) cohorts. P value indicates the significant difference between SPOPmut and ERG-positive cases via  
Kolmogorov-Smirnov test in each cohort. (B) Positive association between SPOPmut status and higher PSA via univariable analysis.  
The number of cases is shown in each cohort. (C) Positive association between ERG fusion status and lower PSA via univariable analysis. 
The number of cases is shown in each cohort.
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Society of Geriatric Oncology guidelines for 
clinically localized prostate cancer5-7 classify 
patients with a pretreatment PSA level of > 20 
as high risk, even in the absence of other adverse 
prognostic features. This results in increased 
treatment burden, and it is recommended that 
patients classified as high risk who opt for radio-
therapy undergo 2 to 3 years of concurrent 
androgen-deprivation therapy compared with a 
duration of 4 to 6 months for patients with inter-
mediate risk disease. Knowledge of the molecu-
lar subtype of prostate cancer and its impact on 
PSA level could therefore improve risk stratifica-
tion, sparing unnecessary treatment burden and 
directing higher-intensity therapy to patients 
who are truly at higher risk; however, whether 
molecular subtype will actually add clinical value 
to the current risk stratification tools—or if it 
adds additional information compared with such 
tests as Decipher—remains unclear. PSA is heav-
ily used in many other settings as well. The data 
presented here have implications for defining 
subtype-specific thresholds for PSA recurrence 
after local therapy and for monitoring PSA 
responses in metastatic disease. Additional stud-
ies will be necessary to optimally deploy these 
strategies clinically, but it is clear that molecular 
subtyping should be considered in future clinical 
trial designs.

Recent advances in technology have increased 
our understanding of molecular subclasses of pros-
tate cancer, but clinical and biologic differences 
among the key ERG-positive, ETS-positive, and 
SPOP mutant subclasses remain poorly under-
stood. Our finding, that there are distinct asso-
ciations with PSA and pathologic stage among 
subclasses, has both biologic and clinical impli-
cations. Biologically, prostate cancer cells that 
harbor mutant SPOP may produce more PSA on 
a per-cell basis as a result of enhanced androgen 
transcription, essentially leading to higher PSA 
from fewer cancer cells, whereas the opposite 

may be true from ERG-positive tumors. Clini-
cally, this may lead to earlier detection of SPOP 
mutant cancers with lower pathologic stage 
because of lead-time bias. Alternatively, the 
underlying biology of these tumors may lead to 
different rates of progression or other impacts 
on patient outcomes. These hypotheses need 
to be rigorously tested in future functional and 
clinical studies.

As a result of the retrospective nature of the 
cohorts and small sample size of case cohort 
studies, survival analysis was inevitably affected 
by baseline risk. We grouped all individual stud-
ies from retrospective cohorts and performed 
survival analyses to study the clinical outcomes of 
the SPOP mutant subclass. Although the favor-
able prognosis was consistent with improved 
clinical outcomes in the SPOP mutant subclass, 
these survival results need to be independently 
validated in additional clinical trials to be gen-
eralizable.

In conclusion, we have developed the SCaPT 
model to predict SPOP mutant subclass purely 
on the basis of transcriptional data with high 
confidence and accuracy. The SPOP mutant 
subclass was associated with higher PSA but 
fewer adverse pathologic features and favorable 
prognosis. We believe this work not only builds 
a prediction model for SPOP mutant prostate 
cancers and expands the data types usable for the 
interrogation of clinical outcomes, but it also 
reinforces the concept that molecular subtyping 
of prostate cancer can alter the interpretation of 
the current standard of care risk stratification 
methods. More broadly, these data suggest a 
paradigm in which the interpretation of cancer 
biomarkers may be influenced by underlying 
molecular subtype.

DOI: https://doi.org/10.1200/PO.18.00036 
Published online on ascopubs.org/journal/po on  
July 24, 2018.

ascopubs.org/journal/po JCO™ Precision Oncology 9

PSA (PSA < 10 ng/mL) and SPOP wild type (SPOPwt) subclass within higher PSA (PSA > 20 ng/mL) groups via Kaplan-Meier analysis of MET- 
and PCSM-free survival rates. (D) No clinical outcome difference between lower PSA (PSA < 10 ng/mL) and SPOPmut subclass within higher PSA 
(PSA > 20 ng/mL) groups via Kaplan-Meier analysis of MET- and PCSM-free survival rates.

Fig 5. (Continued).
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