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Abstract: With continually improving treatment strategies and patient care, the overall mortality
of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-
edged sword, as many patients who survive cardiovascular complications will progress towards a
chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor
necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development
of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different
organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles
in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance.
In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its
prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular
system by analyzing current knowledge. In particular, we examine the association of CTRPs with
endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD.
Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular
injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in
patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-
2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a
profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate.

Keywords: CTRPs; cardiovascular disease; COVID-19; obesity

1. Introduction

Cardiovascular disease (CVD) is the leading global cause of death, accounting for 17.3
million deaths per year [1]. With the increase in the number of people with diabetes, the
morbidity and mortality of CVD are excessively accelerated [2,3].

A comprehensive understanding of the relationship between CVD and its risk factors
is of great interest in the research community. Recently, a family of C1q complement/tumor
necrosis factor (TNF)-associated proteins (CTRPs) has received attention due to their
newly discovered role in the cardiovascular system. CTRPs possess broad distribution,
participate in multiple aspects of metabolism, and potentiate regulation of homeostasis, and
hold potential as diagnostic or therapeutic targets of obesity-related metabolic disorders,
including CVD. Unraveling the signaling pathways downstream of CTRP family members
will facilitate new insights into therapeutic strategies for CVD.

CTRPs are also of interest in relation to COVID-19, the global pandemic evolving in
real time. A growing number of clinical reports indicate that obesity/diabetes is a risk
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factor for COVID-19 severity in CVD, [4] and patients with cardiac injury and COVID-19
have adverse prognoses. The relationship between of CTRPs and heart-related symptoms
in COVID-19, including the effects of the disrupted adipokines on inner homeostasis of
cardiovascular system, is of interest.

In this review, we focus on the pathophysiologic roles of CTRPs with cardiovascular
disease and summarize the relationship between cardiovascular disease, COVID-19, and
diabetes.

2. What Are CTRPs and How Are They Related to CVD?

The CTRP superfamily, originally introduced by Harvey Lodish and colleagues, de-
scribes a new family of secreted proteins [5,6]. The CTRP superfamily is a paralog of
adiponectin (APN), composed of CTRP1-CTRP15, which share a common structural
domain with APN [5]. CTRPs are composed of four distinct domains, comprising an N-
terminal signal peptide, a short variable domain, a collagen-like domain, and a C-terminal
Clg-like globular domain. Clq forms trimers composed of A, B, and C chains [7]. (Figure 1)
The globular domain is important for its biological function. The C-terminal region of
the tumor necrosis factor (TNF) homology domain (THD), which is similar to that of the
globular C1q (gC1q) domain, is a typical feature of members of the TNF family. The Clq
and TNF family proteins have similar gene structures: their gClq or THD domains are
each encoded within one exon, while introns are restricted to respective stalk regions [7,8].
CTRPs are secreted by different viscera and tissues, including the adipose tissue, heart, and
liver [9]. These adipokines play important roles in obesity, diabetes, and cardiovascular
disease. According to current research, CTRP1, CTRP3, CTRP5, CTRP6, CTRP9, CTRP12,
CTRP13, and CTRP15 are related to CVD. These proteins influence the progression of
CVD by regulating inflammatory responses, endothelial function, metabolic dysfunction,
myocardial cell apoptosis, and fibrosis [10,11].
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Figure 1. Structural organization of the C1q complement/tumor necrosis factor (TNF)-associated

proteins (CTRPs). (A): Domain structure of a CTRP monomeric protein. (B): Homotrimeric CTRP
protein structure. CTRP monomeric proteins form homotrimeric protein structures.

3. CTRPs and Vascular Diseases

CTRPs have been reported to play important roles in maintaining homeostasis of
the vascular system against endothelial dysfunction through regulating inflammatory
responses and correcting metabolic imbalance.

3.1. CTRPs and Endothelial Cell Dysfunction

Endothelial dysfunction, the earliest alteration in vascular pathology, plays a critical
role in atherosclerosis development. Several CTRPs are involved in regulating endothelial
pathophysiological progression.
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CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunc-
tion induced by oxidized low-density lipoproteins (oxLDLs) in mouse aortic endothelial
cells by activating the PI3K/Akt/eNOS pathway [12]. Inflammation plays a key part in
atherosclerosis, so these results suggest that overexpressed CTRP3 may play a role in a
novel approach for preventing inflammation and endothelial dysfunction and inhibiting
atherosclerosis.

CTRP5 promotes early-stage atherosclerosis through two synergistic mechanisms:
facilitating entry of circulating LDLs into the subendothelial space via transcytosis and
inducing oxidation of LDLs by endothelial cells (ECs) [13]. Furthermore, CTRP5 exerts
these effect via upregulating 12/15-lipoxygenase (LOX) expression through STAT6 signal-
ing, thus facilitating transcytosis of low-density lipoproteins (LDLs) across endothelial
monolayers and inducing LDL oxidation [13].

Among CTRPs, CTRP9 exerts by far the highest expression in the heart and can
also be found in serum and adipose tissue [14-16]. CTRP9 is also the closest paralog of
APN and has the highest amino acid sequence similarity (54%) at the globular domain
to APN [17]. CTRP9 attenuates TNFa-induced NF-kB activation in vascular endothelial
cells, thereby downregulating the NF-kB-dependent gene expression of cell adhesion and
inflammatory molecules (e.g., ICAM-1, VCAM-1, MCP-1). The process is mediated by
AMPK activation in endothelial cells [18]. The protective effects of CTRP9 on endothelial
oxidative damage are likely associated with enhanced mitochondrial biogenesis through
the sirtuin-1 (SIRT1)-dependent proliferator-activated receptor-coactivator-1oc (PGC-1)
pathway, which is AdipoR1-dependent [19]. CTRP9 induces endothelial NO production to
elicit vasorelaxation in an AMPK-dependent manner, and AdipoR1 acts as a receptor of
CTRP9 [20]. CTRP9 therefore provides a protective function in endothelial cells (Figure 2).

CTRP3

.

PI3K/Akt/eNOS
AdipoR1/AMPK/  Vascular T l

eNOS > relaxation
/! M
AMPK- ICAM-1, VCAM-1 ,; /'
ACC MCP-1

Figure 2. The role of CTRPs in endothelial cell dysfunction and involved mechanisms.

For the therapeutic prevention of vascular disease, CTRP3 may be a novel target for
preventing atherosclerosis through anti-inflammation while CTRP5 and CTRP9 may be
more involved in the metabolic process than inflammatory response. However, although
many of the mechanisms of CTRPs have been discovered, the direct receptors of CTRPs
are still unclear. It is a great pursuit to explore the detection of these mediators on the cell
surface, which will contribute to the prospects of clinical therapeutic target development.

3.2. CTRPs and Atherosclerosis

Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary
underlying cause of CVD. The origin of atherosclerosis is related to lipid metabolism alter-
ations, chronic inflammation, and oxidative stress. Many studies have demonstrated that
several CTRPs are involved in regulating the pathophysiological progression of atheroscle-
rosis [21,22]. In particular, current research indicates that various CTRPs are involved in
the development and progression of atherosclerosis by regulating inflammation response,
lipid metabolism, and vascular smooth muscle cell (VSMC) proliferation [23-25].

CTRP1 reduces VSMC growth through the cAMP-dependent pathway to prevent
the development of pathological vascular remodeling [26]. Compared to a control group,
patients with severe coronary artery disease (CAD) had higher levels of CTRP1 in sera, coro-
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nary endarterectomy samples, atherosclerotic plaques, and peripheral blood mononuclear
cells (PBMCs) [27]. CTRP1 increases the expression of adhesion molecules and inflam-
matory cytokine through the p38 MAPK/NF-kB pathway, thereby promoting leucocyte
adhesion to endothelial cells in vitro and in vivo, suggesting that CTRP1 is an adipokine
contributing to atherogenesis [27]. However, which CTRP1-expressing cell type contributes
to promoting atherosclerosis and whether treatments targeting CTRP1 will prevent further
progression of established atherosclerosis and induce plaque regression have not been
confirmed. Further research is required.

In addition to CTRP1, CTRP3, CTRP6, and CTRP12, are involved in the regulation
of metabolism. They balance glucose levels by suppressing hepatic gluconeogenesis and
glucose output [28]. CTRP3 acts as lipopolysaccharide (LPS) antagonist of the adipose
tissue to block the proinflammatory activation of adipocytes and monocytes. It does so by
inhibiting three basic and common proinflammatory pathways: it inhibits the release of
chemokines in monocytes and adipocytes; it inhibits monocyte chemoattractant protein-1
release in adipocytes; it inhibits the binding of LPS to its receptor, TLR4/MD-2 [29]. CTRP6
mediates fatty acid oxidation via the AMPK-ACC pathway [30]. CTRP12, an adipokine
with antidiabetic actions, preferentially acts on adipose tissue and liver to control whole
body glucose metabolism [31]. CTRP12 have been found to be related to several CAD risk
factors, including BMI, inflammatory cytokines, insulin resistance, high-density lipoprotein-
cholesterol, and adiponectin [32]. This result suggests a possible link between CTRP12 and
pathogenic mechanisms of atherosclerosis [32]. Endogenous CTRP12 protects against the
development of pathological vascular remodeling by attenuating macrophage inflammatory
responses and VSMC proliferation through transforming the growth factor-f3 receptor
II (TGF-pRII)/Smad2-dependent pathway in an established mouse model of vascular
injury [33]. In addition, the TGF-$1/Smad signaling pathway is responsible for vascular
fibrosis during the development of atherosclerosis [34]. Thus, it is necessary to further
investigate whether CTRP12 promotes vascular disease by increasing arterial fibrosis.

In regard to CTRP regulation in inflammatory response, in addition to CTRP1, CTRP5
promotes inflammation, proliferation, and migration in vascular smooth muscle cells
through activation of Notchl, TGF-3, and hedgehog signaling pathways [35]. CTRP6
stimulates expression of IL-10, an anti-inflammatory cytokine, in macrophages through
activating extracellular signal-regulated kinasel/2 (ERK1/2) [36]. In addition, CTRP6
inhibits platelet-derived growth factor-BB (PDGF-BB)-induced VSMC proliferation and
migration, partially, via suppression of the PI3K/Akt/mTOR signaling pathway [37]. The
above results suggest that CTRP5 and CTRP6 may be a potential target for the treatment
of atherosclerosis through regulating inflammatory responses and the proliferation and
migration of VSMC. Additionally, there are reports suggesting that serum CTRP5 levels
were higher in in-stent restenosis (ISR) patients than in non-ISR patients after drug-eluting
stent (DES)-based percutaneous coronary intervention (PCI) [35].

Although CTRP9 has been called cardiokine due to its high levels in the cardiac
system, it alters the components of carotid plaque and decreases inflammatory cytokines
in atherosclerotic plaque both in vivo and in vitro. As a result, CTRP9 may enhance
carotid plaque stability and play an anti-inflammation role against atherosclerosis [38].
CTRP9 reduces the inflammatory response to oxidized low-density lipoprotein in cultured
macrophages via an AMPK-dependent mechanism [39]. CTRP9 prevents VSMC prolifera-
tion and neointimal thickening following mechanical arterial injury [23]. Of importance, the
antiproliferative effects of CTRP9 are attributed to reduced ERK activation that is involved
in the cAMP-PKA regulatory axis [23]. CTRP9 slows the pathological progression of early
atherosclerosis by promoting cholesterol efflux to reduce the formation of foam cells, and
the AMPK/mTOR autophagy signaling pathway is a response to regulate this process [40].
CTRP9 has also shown atheroprotective function via the CTRP9-AMPK-NLR family pyrin
domain containing 3 (NLRP3) inflammasome pathway [41]. These studies indicate CTRP9
may play an antiatherogenic role. CTRP9 possesses vascular protective effects and involves
multiple signaling pathways to modulate the inflammatory response in the cardiovascular
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system. However, it is necessary to use specific endothelial cell transgenic animal models
in future studies the dissecting the role endogenous CTRP9 plays in vascular disease.

The role of CTRP13 in atherosclerosis is different from others. It focuses on the im-
munocytes other than the direct effect on cardiovascular cells. CTRP13 exerts a protective
effect in atherosclerotic plaque development through inhibition of macrophage lipid up-
take and preservation of the migration of macrophages [42,43]. It promotes autophagy
in macrophages and accelerates autophagy-lysosome-dependent degradation of CD36,
thus inhibiting macrophage lipid uptake and foam-cell migration [44]. CTRP13 hydrolyzes
cholesterol droplets stored in macrophages, inhibits intracellular influx of cholesterol, and
promotes cholesterol efflux, thus inhibiting the formation of foam cells and decelerating
progression of atherosclerosis [45,46]. CTRP13 has also showed its metabolic regulatory
function. Although it is an adipokine that promotes glucose uptake in adipocytes, my-
otubes, and hepatocytes via activation of the AMPK signaling pathway, CTRP13 also
ameliorates lipid-induced insulin resistance in hepatocytes by suppressing the SAPK/JNK
stress signaling that impairs the insulin signaling pathway. Further, CTRP13 reduces glu-
cose output in hepatocytes by inhibiting the mRNA expression of gluconeogenic enzymes,
glucose-6-phosphatase, and the cytosolic form of phosphoenolpyruvate carboxykinase [47].
Therefore, CTRP13 may be a novel therapeutic approach for attenuating the progression of
atherosclerosis via immunoregulation combined with body metabolic rebalance (Figure 3).
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Figure 3. The role of CTRPs in atherosclerosis and involved mechanisms.

3.3. CTRPs and Diabetic Vascular Disease

Diabetes is undoubtably a risk factor that accelerates CVD. Among diabetic vascular
complications, diabetic atherosclerosis is a major contributory factor to CVD [44,48]. It
has been increasingly recognized that diabetic and obesity states cause chronic low-grade
inflammation. The resultant deleterious effects of ambient cytokines, as well as high-
glucose levels, further exacerbate the inflammatory response and enhance leukocyte—
endothelial interactions, leading to elementary atherosclerotic processes. In light of CTRPs
role in the regulation of inflammation and metabolism, CTRPs in diabetic vascular disease
cannot be unneglected.

CTRP1 was greatly induced after oxLDL exposure by activating nuclear receptor
(peroxisome proliferator-activated receptor) PPAR-r. This inducing of CTRP1 increased
the secretion of inflammatory cytokines (e.g., MCP-1, TNF-a, IL-1f3), thus promoting the
development of atherosclerosis [22]. CTRP9 might be important in the regulation of arterial
stiffness in humans based on findings that serum CTRP9 concentration is significantly
and positively associated with arterial stiffness in T2DM patients [49]. In T2DM and
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CAD patients, CTRP9 is positively correlated with BMI, glucose metabolism parame-
ters, inflammatory markers, and adhesion molecules, and is negatively correlated with
adiponectin. Increased levels of circulating CTRP9 in individuals with T2DM and CAD
suggest a compensatory response to insulin resistance, inflammatory milieu, and endothe-
lial dysfunction [50] (Figure 4). Schmid and colleagues illustrated that CTRP-5 might be an
adipokine, which has a counter-regulatory connection with its family member, CTRP-3 [51].
Moreover, earlier studies have shown that serum CTRP5 levels are significantly higher in
obese/diabetic animals, and the expression and secretion of CTRP5 correlates negatively
with mtDNA content in myocytes [52]. This study also demonstrated that gCTRP5 shows
similar biological activities to adiponectin, such as activating AMPK and increasing glucose
uptake and fatty acid oxidation [52].

gCTRP5
> Nox1
gMitochondria
Indirectly a Indirectly
EC
oxLDL apoplosis\ BMI
#PPAR" Glucose
o> e [+ . < o
TNF-a molecules
IL-1B8 Insulin resistance

Figure 4. The role of CTRPs in diabetic vascular disease and involved mechanisms.

Although the roles of CTRPs in the modulation of diabetic vascular disease are indirect,
the direct roles in favor of decelerated diabetic vascular disease are still under exploration
until the publication in 2020 [21], with the aim of demonstrating how globular CTRP5 (gC-
TRP5) directly influences on diabetic vascular disease. gCTRP5 is accumulated in diabetic
circulatory systems and appears to contribute to diabetic vascular EC dysfunction through
Nox1-mediated mitochondrial apoptosis. gCTRP is one of the signaling molecules (along
with HFD and HGHL) that commonly activates expression of Nox1, which is implicated
in the pathogenesis of cardiovascular diseases. Research reasoned that gCTRP5 activates
the mitochondrial apoptotic signal of EC in diabetes, which is blocked by the silencing
Nox1 gene [21]. This study’s authors suggest that interventions blocking gCTRP5 may
protect diabetic EC function, ultimately protecting against diabetic cardiovascular compli-
cations [21]. Pharmacological interventions targeting CTRP5 or its related signaling may
provide promising therapeutic avenues to attenuate the development of atherosclerosis
or diabetic EC dysfunction and cardiovascular complications. To date, the role of CTRP5
in cardiac diseases is still unclear, but the above studies provide evidence for its potential
direct role in diabetic various cardiac diseases and so on.

The relationship of CTRPs with diabetes is more complex than expected. According
to clinical research data, CTRPs are responsible for the majority of the changes that occur
at the different levels of diabetes, including insulin resistance. Whether CTRPs can serve as
diagnostic or prognostic markers and a full view of the role of CTRPs in diabetes need to
be further investigated and discussed.

4. CTRPs and Cardiac Diseases

Growing evidence has confirmed that CTRPs exerts crucial effects on cardioprotection
aspects through anti-inflammation, antiapoptosis, antifibrosis, and proangiogenesis.

4.1. CTRPs and Heart Failure

Cardiac hypertrophy is an adaptive response to maintain cardiac function, but it
ultimately becomes mainly maladaptive and leads to heart failure (HF). However, accu-
mulated data provided evidence that CTRPs are highly associated with cardiometabolics,
inflammatory response, and immunoregulatory function [53-55].

CTRP3 expression is upregulated in hypertrophic and failing hearts in murine mod-
els [56]. CTRP3 also promotes pressure overload-induced cardiac hypertrophy via acti-
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vation of the transforming growth factor (3-activated kinase 1-c-Jun N-terminal kinase
(TAK1-JNK) axis [56]. CTRP9 is upregulated in hypertrophic heart disease and induces
cardiomyocyte hypertrophy and cardiac dysfunction by activating ERKS5 after transverse
aortic constriction (TAC) in mice [57]. Furthermore, this study identified GATA4 as a
downstream target of CTRP9-ERKS [57]. GATA4 could account for increased hypertrophy
during CTRP9-ERKS signaling, but likely not for cardiac dysfunction. Thus, additional
downstream targets of the CTRP9-ERKS5 probably contribute and will need to be identified.
These observations advance our understanding of relationship between CTRPs and heart
failure (Figure 5).

T Cardiomyocyte
Cardiac hypertrophy,
— - —> < <— ERK5-GATA4 «—

dysfunction

Figure 5. The role of CTRPs in heart failure and involved mechanisms.

4.2. CTRPs and Ischemic Cardiac Disease

The main characteristic of CTRPs are metabolic and inflammatory regulation. Ac-
cumulated data have demonstrated metabolic-related dysfunction was elicited during
ischemic heart disease. Ischemic cardiac disease is a type of disease given to heart problems
caused by narrowed heart arteries that lead to myocardiac ischemia (MI). A variety of
links have been made between CTRPs and ischemic cardiac disease [58]. The involved
mechanisms has been clarified in many aspects.

CTRP1 protects against myocardial ischemic injury by reducing apoptosis and inflam-
matory response through activation of the sphingosine-1-phosphate (S1P)/cAMP signaling
pathways in cardiomyocytes, suggesting that CTRP1 plays a protective role in ischemic
heart disease [59]. Thus, CTRP1 plays an opposite role in vascular diseases and cardiac
diseases, and the underlying mechanism involved needs to be further studied. Meanwhile,
research indicates CTRP3 has a protective effect on the cardiovascular system, involving
multiple signaling pathways. The expression and production of CTRP3 are significantly re-
duced post-M], [60] and replenishment of CTRP3 attenuates post-MI pathologic remodeling,
including reducing heart size and cardiomyocyte apoptosis, increasing cardiomyocyte sur-
vival/regeneration, attenuating remote area interstitial fibrosis, as well as enhancing infarct
border zone revascularization [60]. Furthermore, by promoting cardiomyocyte—endothelial
cell communication involving Akt-HIF1x-VEGF signaling, CTRP3 exerts an angiogenic
effect [60]. CTRP3 further exerts a cardiac antifibrotic effect post-MI by inhibiting myofibrob-
last differentiation and the subsequent extracellular matrix production. AMPK is required
for the protective effect of CTRP3 against TGF-1-induced profibrotic response. The effect
of CTRP3 may be achieved by targeting the Smad3 signaling pathway [61] (Figure 3). These
findings provide further understanding of the molecular mechanisms of CTRP3 in cardiac
protection and provide new insights into therapeutic targets for cardiac remodeling. Perhaps
preventing post-MI CTRP3 inhibition or CTRP3 supplementation can act as a promising
therapeutic approach for creating stable and functional vessels post-MI, restoring cardiac
function, and improving the heart failure phenotype.

CTRP6 is a cardioprotective adipokine that ameliorates ventricle remodeling post-MI,
including inhibiting myofibroblast differentiation, extracellular matrix (ECM) produc-
tion, and cardiac fibroblast (CF) migration [62]. AMPK and Akt activation contribute to
the protective effect of CTRP6 against TGF-p1-induced fibrotic response by targeting the
Smad-independent myocardin-related transcription factor-A (RhoA/MRTF-A) signaling
pathway [62]. At present, there are no reports on the effects of CTRP6 on cardiomyocyte
apoptosis and angiogenesis post-MI. Further study is needed on the effects of CTRP6 and its
potential mechanisms. Recently, research has found that CTRP12 also ameliorates patholog-
ical remodeling of myocardium after MI by reducing myocardial inflammatory response
and apoptosis in vivo [63]. Furthermore, CTRP12 reduces inflammatory response and
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apoptosis of cardiomyocytes through the PI3 kinase/ Akt signaling pathway [63]. CTRP15,
which is expressed abundantly in skeletal muscle and to a lesser extent in the lung, eye,
smooth muscle, heart, and brain, exerts multiple biological effects, including promoting
lipid metabolism in hepatocytes and adipocytes, suppressing autophagy in the liver, and
modulating erythropoiesis [64—-68]. CTRP15 is also known as myonectin [69]. Studies have
found that CTRP15 inhibits the fibrotic response through attenuating myofibroblast differ-
entiation and expression of profibrotic molecules on pressure overload-induced cardiac
remodeling. The beneficial effects of CTRP15 on the TGF-f1-induced fibrotic response is
through the IR/IRS-1/PI3K/ Akt pathway. Smad3 also participates in this CTRP5’s role [70].
CTRP15 suppresses cardiomyocyte apoptosis and macrophage inflammatory response
through the S1P-dependent activation of the cAMP/Akt pathway in the heart, thereby
ameliorating acute myocardial ischemic injury [71]. The receptor involved in mediating
these signaling pathways in cardiovascular tissues is not known and needs to be clarified
in future studies (Figure 6).
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Figure 6. The role of CTRPs in ischemic cardiac disease and involved mechanisms.

CTRP?9 is the only cardiokine which is widely accepted and recognized in the CTRP
family. CTRP9 is the most abundantly expressed adipokine in the heart, exceeding local
APN expression more than 100-fold, with local cardiac CTRP9 levels exceeding plasma
CTRP9 levels more than 2-fold [14]. It undergoes proteolytic cleavage to generate gCTRP9,
its dominant circulatory and biologically active isoform [16]. Serum CTRP9 is an indepen-
dent protective factor of CAD [72]. Serum CTRP9 decreases significantly, and the protein
and mRNA expressions of CTRP9 in epicardial adipose tissue (EAT) are reduced markedly
in CAD patients compared to non-CAD patients [72]. Although the clinical significance has
been identified, basic studies clarified why CTRP9 has strong effect on the cardiac function
with the following properties. Serum CTRP9 is negatively associated with traditional
risk factors of cardiovascular diseases and some inflammatory factors, but it is positively
associated with serum APN and high-density lipoprotein-cholesterol (HDL-C) [72]. These
associations suggest that circulating and coronary CTRP9 play important roles in the
inflammation that occurs in CAD [57]. CTRP9 treatment significantly decreases matrix
metalloproteinase2 /matrix metalloproteinase 9 (MMP2/MMP9) activity and TGF-f1 pro-
duction, the two most significant mechanisms contributing to post-MI fibrosis [73]. CTRP9
treatment also dramatically attenuates apoptotic cell death and significantly suppresses
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interstitial fibrosis [73]. Collectively, CTRP9 prevents left ventricle (LV) remodeling by
reducing apoptosis and fibrosis, and this occurs largely via a PKA-dependent pathway [73].
Studies in chronic intermittent hypoxia (MI+CIH) animals found that CTRP9 attenuates
interstitial fibrosis, improves cardiac function, and enhances survival rate via inhibiting
TGF-B/Smad and Wnt/ -catenin pathways [74]. MI+CIH upregulates the expression
of miR-214-3p, which is the target of CTRP9 gene [74]. Altogether, MI+CIH suppresses
cardiac CTRP9 expression by upregulating miR-214-3p, and exacerbating post-MI remod-
eling [74]. These findings provide evidence that CTRP9 and its related signaling maybe
a novel therapeutic target in improving cardiac function and alleviating the heart failure
(HF) phenotype in MI patients with obstructive sleep apnea (OSA). CTRP9 contributes
to cardiac hypertrophy and failure during pressure overload in part through activating
the ERK5-GATA4 pathway [57]. In the above research regarding the role of CTRP9 on
remodeling post-MI, the CTRP9 was administered before or shortly after ischemia and
alleviated adverse cardiac remodeling. In general, CTRP9 plays an crucial role in atten-
uating atrial inflammation, fibrosis, and atrial fibrillation post-MI in the following ways:
it markedly downregulates inflammatory factors, interleukin-1f and interleukin-6, and
upregulates interleukin-10 in 3 days post-MI to ameliorate macrophage infiltration and
inflammatory responses; it reduces the expressions of collagen types I and III, a-SMA,
and transforming growth factor 31 in 7 days post-MI by depressing the Toll-like receptor
4/nuclear factor-kf3 and Smad2/3 signaling pathway, thus playing an antifibrotic role in
the left atrium; CTRP9 ameliorates vulnerability to atrial fibrillation in post-MI rats [75];
it can epigenetically modulate microRNAs to adjust the genes expression. Nevertheless,
it is unclear whether CTRP9 can reverse pathological immunoresponses and remodeling
that have already developed. Clarification of this issue will require screening out a more
delayed interval for CTRP9 administration.

4.3. CTRPs and Diabetic Cardiomyopathy

Diabetic cardiomyopathy (DC) is a diabetes mellitus (DM)-induced pathophysiological
condition that can result in HE. DC is characterized by myocardial fibrosis, dysfunctional
remodeling, and associated diastolic and systolic dysfunctions, and eventually HF [76]. To
date, there are few studies on the role of CTRPs in DC. CTRP3 in the heart protects against
diabetes-related cardiac dysfunction, oxidative damage, inflammation, and cell death
in vivo. Moreover, the protective effect of CTRP3 is mediated by activation of AMPKe,
and CTRP3 activates AMPK« via the cAMP-EPAC-MEK-LKB1 pathways in vivo [77].
Its downregulation by TNF-a-initiated oxidative PPARy suppression exacerbates cardiac
injury in diabetic hearts [14]. These limited results may provide some theoretical basis
for the role of CTRPs in DC. In addition to CTRP9, CTRP1, CTRP4, and CTRP7 are also
expressed in the heart at levels significantly greater than APN. However, the impact of
these CTRPs on DC are unclear. Future studies should examine the roles of these CTRPs
and their underlying mechanisms in DC. (Figure 7)

TNF-a-initiated oxidative

PPARyY
CTRPY
cardiac
dysfunction, CTRP1
CTRP3 —» AMPK oxidative T > D CTRP4
damage, ' CTRP7
inflammation and
cell death

Figure 7. The role of CTRPs in diabetic cardiomyopathy and involved mechanisms.
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5. CTRPs and the Role in CVD Patients with COVID-19

The outbreak of SARS-Cov-2 (Coronavirus Disease-2019 (COVID-19)) has been claim
a public health emergency of international concern [78]. Its effects include injury to the
cardiovascular system.

5.1. Role of COVID-19 in Cardiovascular Injury

The genome of CoVs is a single stranded positive-sense RNA, and SARS-CoV-2 contains
four structural proteins (S, E, M, and N) and sixteen nonstructural proteins (nsp1-16) [79-82].
Angiotensin-converting enzyme 2 (ACE2) has been identified as a functional receptor
for SARS-CoV and SARS- CoV-2 [81,83,84]. Thus, the expression of ACE2 is a critical
determinant for the entry of the virus. ACE2 is a membrane-bound aminopeptidase that
exerts a key effect in the cardiovascular and immune systems [83,85,86]. Recently, further
research has identified ACE2 as highly expressed in pericytes of adult human hearts, [87] and
patients with basic heart failure disease exhibited increased expression of ACE2, suggesting
an intrinsic susceptibility of the heart to SARS-CoV-2 infection [87,88]. Clinical direct
evidence was provided in early studies in China, where 7-20% of patients with COVID-19
were observed with damage to the cardiac system [88-92]. In one study, 5 out of 41 COVID-
19 patients showed SARS-COV-2-related myocardial injury, mainly manifested by increased
levels of high-sensitivity cardiac troponin I (hs-cTnl) levels (>28 pg/mL) in Wuhan [88].
Therefore, in addition to causing respiratory damage, COVID-19 disease could also damage
the cardiovascular system [93,94].

In addition, myocardial injury and heart failure accounted for 40% of deaths in one
Wuhan cohort [95]. One study reported a 16.7% incidence of arrhythmia in 138 Chinese
COVID-19 patients [89]. Brain-type natriuretic peptide (BNP) levels were also elevated
in Washington ICU inpatients [96]. Thus, cardiac injury is prevalent in COVID-19 and
apparently impacts prognosis. However, the mechanism of COVID-19 caused cardiac injury
is unknown. Although accumulating data reveal elevated inflammatory cytokines levels
(including IL-2, IL-7, IL-10, granulocyte colony- stimulating factor (G-CSF), IP-10, MCP1,
macrophage inflammatory protein 1a (MIP1e) and TNF) and percentage of CD14*CD16*
inflammatory monocytes in blood plasma of patients with severe COVID-19, [97] evidence
for whether these cause a storm of inflammation in the heart is lacking. The myocardial
injury may involve increased cardiac stress due to respiratory failure and hypoxemia;
indirect injury due to systemic inflammation; direct myocardial infection by SARS-COV-2;
or a combination of all three factors.

5.2. Diabetes in CVD Patients with COVID-19

Other than inflammation, a growing number of clinical reports indicate that obesity is
a risk factor for COVID-19 severity [4,98] and an adverse prognosis [97]. In COVID-19 infec-
tions, one notable feature of this disease is that the high prevalence of obese patients among
the most severe cases. Recent evidence indicates that obese states cause chronic low-grade
inflammation, which contributes to the development of CVD [5,99]. In obese state, the
secretion of proinflammatory adipokines, such as leptin, TNF-«, IL-6, and IL-1§3, are upreg-
ulated, but anti-inflammatory adipokines are downregulated, especially adiponectin [5,99].
The chronic low-grade inflammation that contributes to the innate immune system might be
already in a “primed state” that could promote an hyperinflammatory response [100,101].
Thus, the obese state may amplify the proinflammatory response to SARS-CoV-2 infection
and induce more serious cardiovascular damage compared to the nonobese state [100,101].
In addition, two months after discharge from the hospital, 70% of patients with COVID-19
showed cardiac dysfunction and significant cardiac fibrosis. The TGF-31/Smad3 pathway
may be involved in that process [102]. Varga et al. proved the presence of viral elements and
accumulation of inflammatory cells within endothelial cells of COVID-19 patients, [103]
which suggests that SARS-CoV-2 infection could cause endothelial dysfunction.
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5.3. CTRPs in Patients with COVID-19

Treatment for COVID-19 should give particular attention to cardiovascular protection,
especially in patients who have obesity or diabetes [104]. The mechanism of cardiovascular
injury caused by SARS- CoV-2 infection might be related to ACE2 and inflammatory
cytokine storms [105,106]. Numerous adipokines exert imbalanced expressions in the obese
or diabetes state, which leads to a series of inflammation response and cardiovascular
damage. Many studies have demonstrated that adiponectin plays a crucial role in anti-
inflammatory and cardiovascular protection [107]; however, adiponectin resistance is
present in obesity state and the expression level is downregulated in the diabetes state.
CTRPs share a common structural domain with adiponectin and some (e.g., CTRP3, CTRP9,
CTRP12) also exhibit anti-inflammatory and cardiovascular protective roles. Controlling
the inflammatory response via CTRPs may be a potential target for relieving cardiac injury
during treatment for COVID-19. Although current knowledge on CTRPs with COVID-
19 is largely unknown, in consideration of CTRPs’ roles in modulating cardiovascular
metabolism and preventing inflammatory response, the enhanced understanding and
potential use in clinical treatment of cardiaovascular injury of patients with COVID-19 are
promising.

6. Prospective

Although the discovery of new proteins is driven by cutting-edge techniques including
proteomics, the in-depth exploration of proteomics technology still need to broaden the
new insight/innovation on protein biological functions by improving the performances
of mass spectrometers. The newly discovered CTRP family plays an important role in
CVD not only by regulating immuno-inflammation, glucose and lipid metabolism, and
vascular endothelial function, but also by reducing cardiomyocyte apoptosis and fibrosis
and by ameliorating cardiac function. The CTRP family reveals an exciting avenue for CVD
therapeutics. CTRPs and their related signals hold potential to be used as biomarkers or
therapeutic interventions against cardiovascular disease, including in patients who have
been infected with COVID-19.
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