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Connecting the Brain to Itself
through an Emulation
Mijail D. Serruya*

Neurology, Thomas Jefferson University, Philadelphia, PA, United States

Pilot clinical trials of human patients implanted with devices that can chronically record

and stimulate ensembles of hundreds to thousands of individual neurons offer the

possibility of expanding the substrate of cognition. Parallel trains of firing rate activity

can be delivered in real-time to an array of intermediate external modules that in turn

can trigger parallel trains of stimulation back into the brain. These modules may be

built in software, VLSI firmware, or biological tissue as in vitro culture preparations or

in vivo ectopic construct organoids. Arrays of modules can be constructed as early

stage whole brain emulators, following canonical intra- and inter-regional circuits. By

using machine learning algorithms and classic tasks known to activate quasi-orthogonal

functional connectivity patterns, bedside testing can rapidly identify ensemble tuning

properties and in turn cycle through a sequence of external module architectures to

explore which can causatively alter perception and behavior. Whole brain emulation both

(1) serves to augment human neural function, compensating for disease and injury as

an auxiliary parallel system, and (2) has its independent operation bootstrapped by a

human-in-the-loop to identify optimal micro- and macro-architectures, update synaptic

weights, and entrain behaviors. In this manner, closed-loop brain-computer interface

pilot clinical trials can advance strong artificial intelligence development and forge new

therapies to restore independence in children and adults with neurological conditions.

Keywords: brain-computer interface (BCI), brain machine interface, organoid, whole brain emulation, medical

devices, artificial intelligence, neuroprosthetics

INTRODUCTION

Large-scale neural models primarily seek to identify the operating principles of the mammalian
brain. “Whole-brain emulation” (WBE) can be seen as the pinnacle of such neural modeling efforts,
comprising an attempt to recreate the number of neurons and synapses, of the human brain in a
realistic neuroanatomical configuration.

One of the goals of the Human Brain Project is to develop the infrastructure capable of
simulating a draft human brainmodel based on available experimental data, including the hardware
and software to make it possible to simulate such a large-scale model, store and analyze its output,
and control the simulation (Tiesinga et al., 2015). The human brain comprises an estimated 8.6
× 1011 neurons and approximately 1014 synapses presenting a formidable simulation challenge
(Fornito et al., 2015).

In digital simulations, the dynamics of neuronal models are encoded and calculated on general
purpose digital hardware, while in “neuromorphic” firmware, the dynamics of the neural systems
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are expressed directly on an analogous physical substrate.
Models can be tailored to address brain dynamics from a
wide range of spatial and temporal scales, from intracellular
ion channel currents to million-neuron volume averages.
While improvements in hardware have enabled increasingly
sophisticated digital software and analog firmware models,
emulating an entire human brain remains a significant challenge.

In addition to “whole-brain emulation,” bioengineering
techniques continue to make progress toward “whole-brain
recapitulation” in which tissue culture techniques applied to
human pluripotent stem cells can be used to forge cerebral
organoids (Lancaster and Knoblich, 2014; Chen et al., 2016).
These organoids are three-dimensional constructs that can
be coaxed into forming a structure mimicking the fetal
telencephalon, or into particular neural tissue substructures
(e.g., the midbrain Jo et al., 2016). Organoids, stacked cultures
(organotypic slice, dissociated, micropatterned), and other three
dimensional neural constructs could be used as “biological
hardware” to achieve a kind of whole brain emulation (Pan et al.,
2015; Albers and Offenhäusser, 2016).

In parallel with the development of large-scale neural
models and organoids, research in neuroprosthetic devices have
advanced our ability to record and stimulate ensembles of
neurons in the mammalian brain for months and years at a time
(Suner et al., 2005; Flesher et al., 2016). While the goal of neural
modeling may be to better understand the operation of the brain
and create strong artificial intelligence, neuroprosthetic devices
are intended to treat human neurological disease and injury. In
this review, an approach to developing whole-brain emulation
and neuroprosthetic interventions together to enhance each
other will be discussed. Whole-brain emulation, linked to a
patient via a multi-site brain-computer interface device, could
afford a versatile restorative potential significantly beyond what
were possible with more narrowly specified decoder-effector
systems currently being investigated in pilot human clinical
trials.

Linking the real, human brain to one or more brain-inspired
devices can be seen as a culmination of a neuroengineering
trend to interface living neural tissue (in vitro or in vivo)
to artificial entities (Vassanelli and Mahmud, 2016). These
neurohybrid systems comprise at least one natural and at least
one artificial entity and lay the ground work to create both
“living robots” (such as small mobile robot reciprocally linked
to an in vitro preparation of invertebrate motor ganglia) and
“intelligent neuroprosthetics.” Even a brain linked to a living
construct (or two real brains linked together) can be considered a
neurohybrid because an artificial device is needed at some point
to connect the two systems. Actuators or stimulators are needed
to “write” information “into” living neural tissue, and sensors are
needed to “read” signals “out” of the neural tissue.

For the purposes of clarity and consistency, a descriptive
convention is proposed where {brain} refers to the patient’s brain,
{brain′} refers to the primary whole brain emulation (WBE), and
where {x} refers to the actual region “x” in the person’s brain,
while {x′} refers to an emulated or external biologic counterpart
intended to recapitulate that region’s function.

MINIMAL CONSTRAINTS FOR LINKING
THE BRAIN TO EMULATIONS

Tens to hundreds of individual neurons can be recorded
chronically from the mammalian brain, including humans,
using implanted microelectrodes, with an apparently inevitable
signal loss with time (Suner et al., 2005). Electrical stimulation
can also be performed chronically, such as with deep brain
stimulation and cochlear implants, and lacks the spatial
specificity afforded by recording due to the biophysics of current
spread, safety limitations imposed by charge density and device
biostability, and the microanatomy of fibers of passage. Advances
in microstimulation, optogenetics, endovascular recording,
ultrasound neural dust, magnetothermal nanoparticles,
genetically-encoded contrast, and the use of biological construct
“living electrodes” to mediate the brain-device interface,
may ultimately achieve lifetime recording and stimulation of
ensembles of individual neurons (Watanabe et al., 2009; Shapiro
et al., 2010; Wang et al., 2012; Seo et al., 2013; Chen et al.,
2015; Adewole et al., in review). Existing stimulation/recording
systems, and a hypothetical system that could be scaled up in
which hundreds to tens of thousands of individual neurons could
be bidirectionally addressed, via recording and stimulation, in a
human brain across a lifetime, are shown in Figure 1.

A fundamental hypothesis of this review posits that for
the human brain to be connected to one or more synthetic
constructs in a clinically and behaviorally useful manner, the
device(s) chronically implanted into the human brain must
achieve the following requirements: (1) the action potentials
of individual neurons must be recorded (extracellular), (2) the
same individual neurons must be recorded continuously across
the lifetime, (3) the device must be capable of stimulating
ensembles of the same sets of individual neurons across the
lifetime, (4) neurons from a variety of anatomical locations
throughout the brain must be recorded and stimulated, (5) in
addition to unit activity, the device must continuously record
local field potential over a range of spatial scales. A set of
interface parameters expected to be needed to link the human
brain with an external emulation is summarized in Table 1. The
lower limit on the number of neurons to be addressed, distributed
throughout the brain, is estimated to be in the hundreds, with
optimal brain-emulation function likely requiring thousands to
tens of thousands. Given that there are ∼180 anatomically and
functionally distinct cortical “parcels” (Glasser et al., 2016), and
given that approximately a third are likely to be inaccessible to
interface implantation, due to surgical and vascular constraints,
and given that a minimum of seven neurons suffice to decode
behaviorally useful data from a putative parcel (Serruya et al.,
2002), a minimum number of several hundred (840), can be
estimated as a lower limit. That said, it is unlikely that chronic
single-unit-fidelity recording/stimulation of millions of neurons
were necessary. The minimal data acquisition and stimulation
window is anticipated to be in the 50–100ms range, such that
spike counts in those windows would suffice (Oram et al., 2001;
Stüttgen and Schwarz, 2008). The utility of the brain-emulation
system would be expected to fall off dramatically with acquisition
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FIGURE 1 | Implantable devices to chronically stimulate and record from the

brain. Both low-impedance macro-electrodes and higher-impedance more

densely packed electrodes can be used for electroencephalography (EEG) with

contacts placed on the (1) scalp, (2) implanted in the subgaleal space without

breaching the skull, (3) in the epidural space, or (4) in the subdural space

where they may also be termed the electrocorticogram (ECoG) or micro-ECoG

(Yu et al., 2016). These electrodes can capture local field potentials and can

also be used to pass electrical current. To record ensembles of single units, (5)

multi-electrode arrays can be implanted into the cortex, with or without

integrated optical fibers. One solution to the apparent biological instability of

rigid microelectrodes chronically implanted into the parenchyma, is to create a

(6) “living electrode” comprising autologous neurons seeded within an agarose

minicolumn that itself can be stereotactically implanted (Struzyna et al., 2015;

Adewole et al., 2016). This three-dimensional living construct can both send

axons to stimulate surrounding cortex and receive synapses to capture local

activity and transmit this to an aggregate on the cortical surface where a planar

optoelectronic array can reciprocally relay recordings and stimulation triggers

with an external computer. The externalized aspect of the living electrode (7)

could be capped with myocytes to achieve biopotential amplification such that

signals could be captured by a subgaleal grid. That grid could in turn wirelessly

broadcast signals to external computers. The subgaleal grid could also

achieve stimulation of the brain, to provide input and feedback, by transmitting

microcurrents to ephaptically modulate the living electrode cap in a manner

analogous to the ampullae of Lorenzini in chondrichthyes, chondrostei and

teleost fish and monotreme mammalian electroception structures.

TABLE 1 | Hypothetical minimal constraints for chronically implanted neural

sensor-actuators to link the brain to a whole brain emulation.

Feature Minimal Optimal

Number of single-units

to record

500 500,000

Number of LFP

channels

10 5,000

Time window 100 ms 50 ms

Anatomical sites M1, PM, S1, A1, V1, BA10,

BA46, DLPFC, TPJ, PPC,

angular gyrus

Fusiform (vWF),

pulvinar, thalam-retic

nuc, striatum, GP

Data types Spikes, LFPs Spikes, LFPs, ECG,

RR, GSR, kinematics,

user inputs, audio,

visual

windows longer than 100 ms (Averbeck and Lee, 2003). While
windows less than 50 ms might afford certain advantages, it
is expected that these advantages would only be afforded for
neurons recorded in certain areas (e.g., early sensory cortices)
(Arabzadeh et al., 2006). Ideally there should be zero delay
between the living brain and the emulation. The instant that
action potentials have been counted in a 50–100ms window from
the recording at a particular channel within the real brain, this
data should be available to the emulation.

Additional data streams that would augment the brain-
emulation system, and yet would not be absolutely required,
would include autonomic data (heart rate, heart rate variability,
respiratory rate), sensory data (images recorded from cameras
mounted on glasses, sounds recorded from microphones worn
at the ears), kinematic data (accelerometers and gyroscopes worn
on the body), user inputs (mouse and keyboard at a computer,
tongue taps to tooth/palate sensors, sip’n’puff controllers, EMG
sensors, and micromechanical switches).

The number and choice of anatomical sites in the human
brain in which to implant bidirectional interfaces will rely on
pre-operative characterization of a patient’s specific lesions,
deficits, surgical constraints, and rehabilitation goals. Hence
for a person with a focal lesion (e.g., middle cerebral artery
infarction), interfaces implanted around the lesion, and
possibly in homologous cortical areas in the intact contralateral
hemisphere, may be more logical choices than randomly
selecting targets. For patients with conditions that affect the
brain more diffusely (e.g., traumatic brain injury, multiple
sclerosis, and neurodegenerative conditions), a larger number
of anatomical targets may be needed. Rather than simply lay
a uniform meshwork across the cortex and select spatially
equidistant target sites, anatomical site selection should rely on
the known function and connectivity of target areas. Functional
MRI (including resting state-derived functional connectivity),
diffusion tensor tractography, magnetic resonance elastography,
transcranial magnetic stimulation, electroencephalography,
neurological exam and formal neuropsychological testing could
be integrated to define implant targets.

SUBSTRATES FOR WHOLE BRAIN
EMULATION

Given continuous, real-time bidirectional record/stimulate
access to tens of thousands of individual neurons in a patient’s
brain, the clinician will require a principled strategy to identify
a particular substrate for the linked emulated brain, and to
optimize the potentially limitless parameters available to adjust
in that brain emulation. Substrate options include digital
simulations, neuromorphic firmware, biological constructs,
other brains (e.g., of a service animal or another human being
implanted with bidirectional interfaces), or a combination of all
of these.

Digital
Partial differential equations can be used to model cellular level
biophysics, membrane potential, ionic concentrations, neuron
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geometry, and molecular cascades, at multiple time scales. The
Blue Brain project started withmodeling a single cortical column,
using thousands of compartments per cell (Markram, 2006).
Large scale thalamocortical models, with millions of multi-
compartment spiking neurons, and billions of synapses, have
been modeled in software, capturing receptor kinetics, short
term plasticity, and long term spike timing dependent synaptic
plasticity (Izhikevich and Edelman, 2008). Yet a one second
simulation of 22 million neurons with 11 billion synapses in
layer 2/3 took an IBM Blue gene supercomputer over 1 h, clearly
demonstrating that such an approach would not be feasible for
real-time linkage to a living, real brain (Djurfeldt et al., 2008).
For the brain emulation to effectively be integrated with the
patient’s brain, it must operate on the same time scale. That said,
digital models likely offer the greatest flexibility to explore model
parameters and numerous open-source libraries are available to
accelerate large-scale neural modeling that could lay the basis for
WBE (Ames et al., 2012; Sanz Leon et al., 2013; Bekolay et al.,
2014; Freeman et al., 2014; Vitay et al., 2015; Cheung et al., 2016;
Ulloa and Horwitz, 2016).

More recent work has made progress at real-time simulation
of 50,000 neurons, with 50 million synapses, at a time
(Sharp et al., 2014). Chains of graphic accelerator cards could
enable the digital simulation of millions of Hodgkin-Huxley
spiking neurons simultaneously (Yavuz et al., 2016). Rather
than modeling neurons specifically, multi-input/multi-output
(MIMO) nonlinear dynamic models have been used to capture
underlying spike train-to-spike train transformations between
areas within the hippocampus and neocortex (Berger et al., 2011;
Hampson et al., 2012). These MIMO models have been applied
to ensemble recordings to extract patterns of firing related to
successful task performance and have been used in real-time
to facilitate and recover performance when administered to the
same locations as patterns of electrical pulses delivered back into
the brain (Deadwyler et al., 2017).

Numerous reasons why higher brain functions would not
be expected to spontaneously emerge from digitally-based
simulations (syntactic Turing machines) are described elsewhere
(Cicurel and Nicolelis, 2015). The key utility in digital attempts at
whole brain emulations would lie not in their fidelity of mimicry
of a biological brain, and rather in their flexibility in exploring
connectivity patterns when linked reciprocally to a living, human
brain with an explicit goal of restoring day-to-day function.

Analog
Themost studied neuromorphic hardware approach to modeling
neural systems is based on very large scale integration (VLSI)
technology (Indiveri et al., 2011). In addition, memristors
(Strukov et al., 2008), carbon nanotubes (Joshi et al., 2011), and
organic nanowires (Xu et al., 2016) have been explored for their
synaptic-like plasticity. Unlike logic gates in a digital computer,
VLSI neuromorphic chips rely on silicon neurons: analog
electronic circuits of transistors that mimic the ion-channel
properties of a real neuron with configurable interconnectivity.
Once the balance between cell count and connections per cell can
be adjusted to simulate multiple cortical areas in real time, the
arrangement can scale up to include tens of millions of neurons

(Merolla et al., 2007; Silver et al., 2007). Analog substrates
could also recapitulate their own equivalent of the ephaptic and
capacitive coupling interactions linking local field potentials and
membrane potential biases altering spike timing that may be
crucial for a priori active model representation of the world and
dynamic, integrative exchange with the environment (Cicurel
and Nicolelis, 2015).

Biologics
The connectivity principles of the real-synthetic interface could
generalize across a wide range of synthetic instantiations. In
addition to digital simulation large-scale neural models and
neuromorphic analog circuits, the “emulated brain” module
could also comprise biological substrate, such as dissociated
cultures or organotypic slices grown chronically on multi-
electrode arrays in perfusion chambers (Killian et al., 2016), or
neural organoids (themselves implanted with living electrodes)
sustained either in vitro incubators, or implanted into the
patient’s body. Cerebral organoids appear to recapitulate the
endogenous developmental program, and can give rise to
developing cerebral cortex, ventral telencephalon, choroid plexus
and retinal identities, among others, within 1–2 months
(Lancaster and Knoblich, 2014; Chen et al., 2016).

In terms of clinical application, in vitro culture systems are
fragile and, should a patient become dependent on the neural
function they restore, could pose a risk if they themselves
became compromised by infection or mechanical breakdown.
For development purposes, in vitro culture systems may be
more versatile, allowing investigators to systematically alter tissue
variables and explore how it altered behavior, while for long-
term clinical applications might rely on self-contained organoids
(that ultimately would have their own blood supply) that could
be implanted into the patient.

In certain cases, temporary use of an in vitro biological
intermediary can be used to identify what transfer function
it performs transforming inputs into outputs, and recast that
function as mathematical equations that can be performed at
the same speed in the substrate of hardware. This has been
done with lamprey eel motor ganglia sustained in in vitro
and linked reciprocally to a small mobile robot; upon deriving
the ordinary differential equations that represented how the
ganglia transformed inputs into outputs, the actual living ganglia
could be discarded and replaced with hardware performing the
equation’s operations (Reger et al., 2000). The drawback to
this approach is that the transfer function may be over fit to
the conditions provided during the training and may thus not
generalize the intrinsic abilities that the original biological system
could provide.

CONNECTING THE BRAIN TO ITSELF
THROUGH AN EMULATION

If we posit the technology available to record and induce trains
of action potentials in tens of thousands of individual neurons at
numerous locations in the human brain, then we can consider
linking these neurons to a variety of synthetic architectures.
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While a synthetic system could continue to get its own inputs
(e.g., from a camera) and generate its own outputs (e.g., to a
robotic arm), its neural components could receive ongoing input
from neural counterparts living within a patient’s brain. Spike
train data emerging from the brain could be used as inputs to
modeled or cultured neurons; likewise the activity of modeled
or cultured neurons could be used to trigger and specify the
stimulation of neurons living within the brain.

In the simplest instantiation of a living-synthetic reciprocal
neural interface, the presence of an action potential
recorded from a microelectrode in the living brain triggers
microstimulation of a focal neural population at another location
within that same living brain. The external system artificially
instates a physical connectivity between two neural populations.
The linkage between spike trains streaming out of the brain
and the triggers for stimulation of distinct neurons within the
brain can become increasingly elaborate, as shown in Figure 2

(Serruya and Kahana, 2008). As the number of independent
neurons grows, the system evolves from a learning rule or
glorified voltage clamp into substrate expansion, where the
intervening processing- performed on simulated, synthetic or
ectopic biological neurons- ought to achieve novel computation
not otherwise possible in the endogenous brain itself. The
synthetic intermediary can be a large-scale neural model, and
ultimately a whole-brain emulation that both parallels and
reciprocally interacts with a patient’s brain in real-time.

At its most basic level, the parallel whole brain emulation
could restore neural function following injury and disease
by providing an auxiliary pathway linking areas that were
disconnected by the disease process. This homologous brain
(whether emulated as digital software, neuromorphic firmware,
or bioengineered neural constructs) would function continuously
in parallel with the patient’s brain and would compensate for
disconnections within the patient’s brain through connections
within itself. Given a disruption between primary motor {M1}
and sensory cortices {S1} (such as due to a stroke, mass lesion
or demyelination), interfaces implanted in those two cortical
areas could use “blind” mapping rules, e.g., spike triggered
stimulation, so if a neuron in M1 fires, it stimulates a neuron
in S1, thus instantiating a virtual U-fiber fascicle linking the
two. The alternative is to interface {M1} and {S1} separately
to the auxiliary homolog and such that {M1′} and {S1′} have
intact connectivity. While one could create non-human animal
model to compare these two options (direct {M1 :′: S1}
vs. WBE-mediated indirect {M1↔M1′↔S1′↔S1}), the model
system would be very contrived and over fit and it would be
challenging to generalize given the heterogeneity of individual
human brains and the heterogeneity of disease.

The availability of spike train data streaming from multiple
neurons recorded simultaneously at multiple sites within the
brain, and the ability to selectively stimulate particular sets
of neurons, immediately presents a design question of how
to assign, or map, this activity reciprocally onto the synthetic
construct. For neuromotor prosthetic decoding, all neural signals
are analyzed by a dedicated decoder. While this approach is
appropriate for achieving a particular functional goal (e.g., motor
intent to drive a spinomuscular stimulator, or decoding speech

for communication), for a large-scale neuroprosthetic with an
order of magnitude or more of ensemble data, different subsets of
this data could be mapped onto different targets in the synthetic
construct.

MAPPING THE BRAIN AND THE
EMULATION TO EACH OTHER

In a straightforward homologous “afferent copy” mapping, real
neural activity recorded from a given brain area (e.g., primary
motor cortex layer V) would be used to “stimulate” the synthetic
neurons in the matching brain area of the model (e.g., the
synthetic excitatory neurons of layer V of motor cortex in the
model). In a directive transfugal mapping, the activity from the
real brain would be used to drive activity of its homologous
target (e.g., real primary motor cortex layer V neurons driving
synthetic neurons of simulated spinal ventral horn, red nucleus,
basal ganglia and cerebellum). In a convergent integrative

mapping, activity from numerous neurons recorded at numerous
interface sites throughout the patient’s brain, may be used to
stimulate higher-order cortical areas in themodel, to promote the
emergence of abstract categories via convergence of information
across modalities (Mesulam, 1998). These higher-order areas
are known to serve an integrative function, including prefrontal
cortex, angular gyrus, and entorhinal cortex. This integrative
approach could also be performed in the other direction, with
“recordings” from a wide variety of areas in the emulation being
assigned to higher-order cortical areas in the patient’s brain. In a
divergent duplicative mapping, recordings from a given neuron
or a single cluster of neurons in the real brain are broadcast in
replicate to numerous targets in the synthetic brain model. The
same mapping rules can apply in reverse, with “recordings” of
synthetic neurons in the simulated brain being used to target the
timing and location of optical or electrical stimulation of real
neurons across widespread sites in the real brain.

Granting that a single, static “normal” structural-functional
brain state does not exist, there may be merit in comparing
a patient’s unique endogenous functional connectivity to an
average derived from a normative database of age-matched
healthy controls. The purpose of identifying the discrepancies
between the patient’s pattern and this normative average is not
to foist a preconceived notion of normality, and instead is to
guide a process that recapitulates gross structural linkages (e.g.,
the two hemispheres linked through the corpus callosum) and
presumed “healthier” graph theoretic properties (e.g., coaxing the
inter-regional connectivity pattern of the patient’s brain to adopt
clustering and global efficiency properties seen more frequently
in healthy individuals of the same age). This connectivity

normalization mapping may be achieved either by {brain}-
{brain} connections via the BCI (“brain-brain interface” or
“brain-computer-brain-interface,” BCBI), or via using the WBE
in its entirety as an auxiliary parallel homolog to the real brain.
The normalization must address the von Monakow diaschisis of
a given lesion (i.e., the disruption of intact regions via linkage to
lesions that cause net deafferentation of excitatory input to the
remote intact area) (Alstott et al., 2009). Pre-surgical mapping
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FIGURE 2 | Approaches to connecting the brain to itself. (A) In spike-triggered microsimulation, the detection of an action potential generated by a neuron recorded

by an implanted microelectrode triggers focal microstimulation at microelectrodes located in another area of cortex (Jackson et al., 2006). (B) Rather than triggering

stimulation in a direct, linear manner, the relationship between the spike detection and microstimulation could be governed by a weighting rule meant to emulate

features of synaptic plasticity. (C) The external system could be altered to incorporate spike trains from two or more neurons and use spike-time dependent synaptic

plasticity learning rules, including temporal coincidence detection, in order to trigger target. (D) As the BCI were able to record and stimulate more individual neurons,

the external system could deploy learning rules to update the synaptic weight between all potential pairs, shown here on an image based on William James’

hypothesis about neural process interaction (James, 1890). (E) Beyond direct mapping of recording to stimulation, or an interposed simplified neural network, more

realistic cortical simulations could be used with the premise that the emulated cortex would be capable of performing its own “canonical” operations and would hence

add a computation beyond connectivity (Nelson, 2002; Kouh and Poggio, 2008; Miller, 2016). Figure reprinted from Serruya and Kahana (2008) with permission from

Elsevier.

of anatomical connectivity and activation patterns can inform
both the anatomical target of sensor-stimulator implants and the
calibration approach to cycle through tasks whose performance
was to be optimized.

While the crucial mapping between the real and synthetic
brains is achieved at the level of ensembles of spiking neurons,
additional local field potential, autonomic, endocrine, kinematic
and other data types can be deployed reciprocally. Local field
potentials (LFP) recorded at subdural, epidural or subgaleal
arrays can capture activity from a wider spatial-anatomical
range than the device-constructs used for unit recording-
stimulation (see Figure 1). Two obvious applications of LFP
data include: (1) spectrotopic mapping, and (2) arousal state
synchronization.

Spectrotopic mapping comprises the mapping of LFP power
along a frequency axis realized along the simulated spatial
domain of the neural model in a matter akin to auditory
tonotopic mapping where LFPs are used instead of sound
(Figure 3). In addition the frequency dimension (that may be
mapped to a single spatial or simulated spatial dimension in
the construct, much like tonotopy along the superior temporal
gyrus), another dimension would reflect the anatomical origin
of the LFP data, and could follow numerous mapping regimes
including geodesic cerebrotopy or distance along a connectivity

gradient (e.g., unimodal-to-heteromodal, or primary/concrete-
to-default-mode/abstract).

Arousal state synchronization refers to capturing the focal
and global state of the patient’s brain (awake, drowsy, slow-
wave sleep stages, rapid eye movement sleep, rotating waves,
sleep spindles) and conveying this information to the large
scale neural model so that it also “sleeps and dreams” along
with the real brain (Muller et al., 2016). At a more granular
layer, focal LFP recordings can also capture up/down states of
cortex, and based on living electrode phenotype, extracellular
concentrations of glutamate, acetylcholine and other transmitters
to define cortical and corticothalamic states. In addition to
recording neural activity from the cortex, bidirectional interfaces
could be implanted into subcortical basal ganglia and thalamic
nuclei to provide additional signals that reflect the brain’s state of
arousal and global processing (e.g., recordings from the nucleus
accumbens and ventral pallidum could index the survival salience
of a particular sensory impression).

One approach to linking the real brain to one or more
synthetic emulations is to leverage brain areas known to be
involved in synchronization of behavior between people, such as
right temporoparietal junction and dorsolateral prefrontal cortex
(Sänger et al., 2012; Tang et al., 2015). Likewise, spectrotopic
mapping in the emulation, could have output hubs positioned
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FIGURE 3 | Spectrotopy: an approach to mapping the brain’s own power

spectral data on to itself. Just as primary auditory cortex deploys a tonotopic

mapping where different sound frequencies are arranged topographically

along the cortical surface, so too power spectral features of neural activity

itself could be mapped along emulated cortex that in turn would send inputs

back into the real brain. While the brain localizes sound in three-dimensional

physical space, capturing local field potentials from multiple brain areas entails

higher dimensionality. Fortunately emulated cortex is free from the spatial

anatomical constraints of real cortex, and could extend in different dimensions

such that location along the emulated cortex would move along gradients

indexing both frequency and real brain cortical origin. Each emulated

minicolumn could represent both frequency and temporal phase features of

the recorded activity. Figure reprinted from Serruya and Kahana (2008) with

permission from Elsevier.

at emulated cortices representing temporal and lateral parietal
regions in the 6–12 Hz oscillatory range, both in terms of
covarying amplitude (Dumas et al., 2010) and precise temporal
phase synchronization (Lindenberger et al., 2009; Sänger et al.,
2013).

The WBE has the potential to gain functional attributes
beyond what were present in the patient’s brain by increasing
literal physical and emulated simulated distance (maps of maps),
extrapolating from existing principles of distributed association
networks in the human brain (Buckner and Krienen, 2013). If
global connectivity of prefrontal cortex predicts cognitive control
and intelligence (Cole et al., 2012), can one use BCI to increase
global connectivity and consequently enhance cognitive control
and intelligence?

Optimal nodes to link the real brain to the emulation
include heteromodal multisensory areas (Bizley et al., 2016)
and default mode hubs (van den Heuvel and Sporns, 2013;
Margulies et al., 2016). The default mode network (DMN)
comprises a group of brain regions (e.g., frontal gyri, retrosplenial
cingulate, etc.) that deactivate during externally oriented tasks,
and activate in introspective tasks, and that act as hubs
integrating representational information across cortex. DMN
hubs in the patient’s {brain} hence serve as ideal targets to receive
information from primary and secondary sensory and motor
areas in the emulated {brain′}; likewise, the {brain′} DMN hubs
can receive recordings from ensembles of neurons in the primary
and secondary sensorimotor areas in the patient’s {brain}.

An outstanding question is how the brain’s own principles
of connectivity and computation (Steyn-Ross et al., 2009; Moon
et al., 2015; Turkheimer et al., 2015) can be distilled and
then applied for (1) the design of the {brain′} itself and (2)
the optimal linkage between {brain} and {brain′}. The optimal
linkage includes both the input/output mapping between {brain}
and {brain′} and also the temporal lags: the real human {brain}
is already optimized to use geodesic distance for coincidence
detection and various scales of temporal integration (Chapman
et al., 2002; Rodgers et al., 2006; Seidl, 2014; Bastos et al., 2015;
Zhang and Jacobs, 2015). Hence there may be cases where a
temporal lag should be purposefully introduced in the {brain}-
{brain′} linkage (in either direction). In addition to time lags,
there may be other techniques of pre-processing data streams as
they move back and forth between {brain} and {brain′}, such as
being assembled explicitly into synfire chains (Wang et al., 2016).

EMULATION ARCHITECTURE

Given the selection of a particular substrate, the optimal
architecture within the emulation must be identified.
“Architecture” includes number of neurons, type of neuron
model, number of compartments per model, number of
synapses, synapse learning rule, circuitry within an area,
connectivity between areas, inclusion of non-neural elements,
and nonlinear dynamical components (Soriano et al., 2015).

Any given emulation architecture must balance the
granularity of its modeling scale with processing speed.
Even though a single pyramidal neuron, when modeled with
thousands of synaptic inputs, can by itself exhibit sequence
memory (Hawkins and Ahmad, 2015), the time to simulate
multiple neurons at that level of detail would render the
emulation too slow to meaningfully interface with the real
brain. Simpler single-neuron models are more amenable to
being scaled up and the resulting emulations manifest useful
emergent properties: a 2.5 million spiking neuron model with
three hierarchies modeled on simplified visual, motor, basal
ganglia, and thalamocortical circuits, was able to select actions
when given visual sequences as input and a modeled arm as
output (Stewart et al., 2012). An alternative to simplifying the
software-rendered model of individual neurons is to render
the emulation in firmware: a neuromorphic model with sparse
connections between simulated neurons, was able to perform
real-time context-dependent classification of motion patterns
observed by a silicon retina (Neftci et al., 2013).

Imaging, anatomical and modeling studies suggest the brain
has a modular architecture at the scale of cubic centimeter
regions and WBEs, with nearly two hundred distinct cortical
“parcels” in each hemisphere (Brodmann, 1909; Economo and
Koskinas, 1925; Bertolero et al., 2015; Glasser et al., 2016;
Wang et al., 2016). To design an emulation architecture, the
modeler must decide how many of these regions to emulate,
in what detail to model each region, and how to connect
them all to each other. There is likely some minimal level
of detail to emulate a given region to recapitulate its unique
processing abilities. Simply naming nodes in the emulation
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model “middle frontal gyrus” and “inferior frontal junction”
will not magically endow the modeled region the structural and
functional features of their intended eponymous region. The
general design of all emulated “parcels” could be based upon a
basic wiring diagram fundamentally unaltered across mammals
and all cortical regions (Nelson, 2002). This putative “canonical”
cortical microcircuit contains 400,000 neurons across six layers
with a particular connectivity pattern between the excitatory
pyramidal and inhibitory interneurons. This canonical circuit
gives rise to computational operations including feedforward
selectivity, divided normalization, recurrent gain, gain control,
signed-like response, gaussian convolution, pattern recognition,
and hierarchical temporal memory (Kouh and Poggio, 2008;
George and Hawkins, 2009; Miller, 2016). The unique function of
each cortical “parcel” likely arises from details of how its circuitry
varies slightly from the canonical circuit, and the parcel’s pattern
of connectivity to subcortical structures other cortical regions.

The normal function of neocortex relies on its connections
to subcortical structures including the basal ganglia, thalamic
nuclei, amygdalae, hippocampal formations, the cerebellum
and brainstem nuclei. To truly emulate the “whole” brain,
a WBE should include these subcortical areas, and emulate
the connectivity patterns they exhibit between each other and
with cortex. Just as there appears to be a canonical circuit
within neocortex, so too there appears to be stereotyped
connectivity patterns within and between these subcortical
structures, including cortico-basal-ganglionic (Lanciego et al.,
2012) and thalamocortical loops (Llinás and Ribary, 1993).

The connectivity pattern directly between cortical regions can
be based on large repositories of openly shared connectivity
maps (Laird et al., 2011; Van Essen et al., 2013)1For the WBE
to recapitulate and improve higher-order cognitive abilities,
patterns of connectivity between emulated and real brain
regions are expected to be crucial. The ability of an emulated
lateral prefrontal cortex to recreate a gradient ranging from
future-abstract goals to concrete-present-context needs (Nee and
D’Esposito, 2016), will rely on the pattern by which it were
connected to other emulated cortical regions and to numerous
sites in the participant’s real brain.

CALIBRATION AND CONVERGENCE

In the scenario that a human brain were reciprocally linked to
a synthetic model, with thousands to hundreds of thousands
of firing rate data streams flowing continuously between them,
ensuring that the synthetic system converged on a behaviorally
useful activity state would mark the next challenge. While
spontaneous endogenous activity may suffice in certain cases, it
is reasonable to hypothesize that calibration would be needed
to march the brain through numerous tasks and space states
in order to pull the synthetic system along with it so that
the synthetic system could update its synaptic weights and
connectivity patterns accordingly. This calibration phase may

1brain-map.org.2017,∼“brain-map.org.” Available online at: www.brain-map.org
SFN Brain Map, 2017 “SFN Brain Map.”
INCF, 2017 “INCF.” Available online at: www.incf.org

involve canonical tasks known to activate well-known discrete
human brain activity patterns/behaviors, andmay also be tailored
to the particular deficits a given patient sought to overcome.
By linking the WBE to an awake, behaving human being, the
systemic identification of the emulation subcomponents (Koene
and Deca, 2013) can include behavioral and psychophysics
measurements.

Using canonical “sentinel tasks” investigators can also
explore which synthetic brain model architectures (in terms of
substrate digital/analog/biological, synaptic learning rules, circuit
pathways, etc.) were most helpful. A “sentinel task” is defined
as one in which an objective change in the person’s behavior, or
a consistent reported subjective change, were causally linked to
the connectivity and intact functionality of the synthetic neural
model system. For example, the delayed match to sample task has
been deployed in rodent and non-human primates to assess the
utility of implanted microelectrodes arrays reciprocally linked to
a digital massive-input massive-output program (Hampson et al.,
2012). A large suite of validated neuropsychological tests, each
with available normative performance data, is available to probe
different aspects of cognition (e.g., color-word interference,
verbal learning tasks, line orientation). The clinician-investigator
could compare the patient’s performance at baseline and then
with various parameters set in the linked WBE (e.g., to see if
performance would rise from <0.1 percentile to 50th percentile
or higher).

In addition to resting state (“non-task”), active tasks should
be selected to ensure all of the known, consistent networks were
activated (sensorimotor, visual, auditory, dorsal attention, ventral
attention, alertness, salience, executive control, reward emotion,
and language) (Damoiseaux et al., 2006; Cataldi et al., 2013).
Orthogonal task design can be used to help how data variance
can be explained by one variable vs. another (Courtney, 2012).
Double dissociation and working at threshold (i.e., asymptotic
performance of full engagement) can be used to deal with
confounds of attention, motivation and difficulty. Block designs,
m-sequences, and temporally independent components of tasks
can be contrasted with one another (Ginsberg et al., 1987;
Fetsch, 2016). Genetic algorithms can be used to generate task
designs that are optimal for linear estimation in the presence
of uncertainty in the noise autocorrelation structure (Liu, 2012),
and naturalistic videos and tasks can evoke endogenous cortical
ensemble sequences (Jones et al., 2007).

The ability to simultaneously record the activity of thousands
to tens of thousands of individual neurons in a living human
brain presents an enormous functional identification challenge.
This investigator posits that the identification procedure must
consider each neuron both as an individual and as node in an
ensemble and that either approach alone risks missing crucial
information. A trade-off exists between precision and the time
required to map a receptive field for a given neuron. Manual,
qualitative methods are fast yet impose a variable degree of
imprecision, while quantitative methods are more precise and
require more time. A rapid quantitative method for mapping
visual receptive fields, named back-projection, could be adapted
for other sensory modalities (Fiorani et al., 2014). A firing
rate map, also termed a tuning curve, describes the nonlinear
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relationship between a neuron’s spike rate and a low-dimensional
stimulus (e.g., orientation, head direction, contrast, color). The
closed-loop nature of BCI investigation, affords an opportunity to
use Bayesian active learning methods, including a utility function
that selects stimuli to minimize the average posterior variance
of the firing rate map and analyze the relationship between
prior parameterization, stimulus selection, and active learning
performance (Park et al., 2014). Other approaches include the
“model deterioration excluding stimulus test,” that identifies the
contribution of stimulus to spiking activity while taking into
account task-irrelevant intrinsic dynamics that affect firing rates
(Kahn et al., 2015), stochastic gradient descent and generalized
linear classification schemes (Meyer et al., 2015), and the use of
non-Gaussian stimuli that facilitates the discrimination of spike-
eliciting from non-spike-eliciting stimuli (Meyer et al., 2014).

Investigators can purposefully leverage the patient’s brain’s
ability to learn novel tasks to dramatically constrain the
convergence process from a combinatorial morass to a tractable
calibration session. For neuromotor decoding, patients could
be taught “neural gestures,” or “neural sign language” imagined
or attempted discrete movements that could be assigned to
effectors and could be multiplexed (e.g., an imagined lifting of
a supine arm could be mapped to raising the volume, moving a
scrollbar or cursor up, or increasing the amplitude of any abstract
process). This may be construed as an analog to the stenographic
“graffiti” used for the precursors of contemporary mobile
smart phones (Butter and Pogue, 2002). Patterned stimulation
contingent on neural activity and behavior can leverage innate
plasticity to purposefully steer function to the anatomical sites
where implanted recording-stimulating devices link to the WBE
(Jackson et al., 2006; Rivera-Rivera et al., 2017). The full benefit
of this reciprocal brain-WBE linkage may only be recognized in
the setting of real-time evidence-based rehabilitation approaches,
including adaptive cognitive remediation computer games,
biobehavioral environmental home-based interventions with
both the patient and caregivers, and iterative direct skill and
cognitive training with a therapist (Gitlin et al., 2010; Tacchino
et al., 2015; Winter et al., 2016; Charvet et al., 2017; Skidmore
et al., 2017; Train the Brain Consortium, 2017).

AIMING THE ATTENTIONAL SPOTLIGHT
ACROSS MORE THAN ONE BRAIN

Attention can be defined as the ability to select information
relevant to current task and filter out the rest (Buschman and
Miller, 2010). Just as attention serves to organize behavior and
coordinate activity within a single human brain, so too attention
systems should coordinate activity across the one or more
emulations that the real brain were reciprocally connected to, and
between the emulations and the real brain.

Optimal brain-emulation hybrid function may rely on literally
linking theWBE to key attentional nodes in the real brain and on
explicitly emulating the connectivity of hubs known to be crucial
for attention. Potential approaches include:

• The WBE could be modulated by the bottom-up content-
encoding driving system of the ascending reticular activating

system, and the top-down contextual salience modulation
from higher order prefrontal, parietal and limbic cortices
(Mesulam, 2010; Kanai et al., 2015).

• Signatures of attentional modulation in the real brain could be
used to increase the connectivity to nodes within theWBE that
are active and relevant to the task, and decrease connectivity
to nodes that are not (Alnæs et al., 2015).

• The tonic alertness of wakeful arousal could be “spread” from
activity recorded from a right hemispheric fronto-parietal
thalamobulbar network the real brain to diffuse one-to-many
stimulation in the WBE (Sturm and Willmes, 2001).

• The WBE could have its own “simulated attention” function
semi-autonomously such that cues derived from external
sensors could induce a type of phasic alertness stimulating a
left hemispheric frontoparietal network both in the WBE and
the real brain (Sturm and Willmes, 2001).

• The WBE could derive attentional and arousal signals in the
real brain from lateral prefrontal cortex to index midbrain
dopamine input (Bahlmann et al., 2015), anterior cingulate to
reflect salience (“search value,” “choice value”) (Kolling et al.,
2016), and the pulvinar nucleus to flexibly link sensory stimuli
to context-specific motor responses (Arend et al., 2008; Leh
et al., 2008; Padmala et al., 2010; Wilke et al., 2010; Zhou et al.,
2016) and counter inter-representational interference (Arcaro
et al., 2015).

• The WBE could use signatures of alpha-band oscillations
in the real brain sensory cortex, to toggle between multiple

FIGURE 4 | Whole brain emulation to mediate digital information exchange.

Instead of using the existing sensorimotor apparatus for internet browsing

(eyes to see the screen, hands to control mouse/keyboard), in principle digital

information, including abstract data structures that have no obvious sensory

correlate, could be navigated via a customized “internet organ” (akin to the

retina or organ of Corti) leveraging the numerous pattern recognition

computational abilities of neocortex. The emulated {thalamocortical’} circuit

processing this digital data could be reciprocally linked with real thalamic and

cortical areas known to already process multi-modality sensory information,

such as the pulvinar, angular gyrus, and tempoparietal junction. Figure

reprinted from Serruya and Kahana (2008) with permission from Elsevier.
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low-level perceptual representations streaming from external
devices, and unified, broad attention (McMains and Somers,
2004).

The brain selects appropriate sensory inputs and suppresses
distractors through a top-down prefrontal cortical (PFC)
modulation of the thalamic reticular nucleus (TRN). One
conception of attention derives from Crick’s observation that, “if
the thalamus is the gateway to the cortex, the reticular complex
might be described as the guardian of the gateway” (McAlonan
et al., 2006, 2008). This idea led to the metaphor of a “spotlight”
of attention as a mechanism for behaviors such as the targeting
reaction in which the eyes and head are moved so that an external
target falls on the fovea (Sokolov et al., 2002; Frey et al., 2014).
This behavior relies on coordinated activity of neurons in the
premotor nuclei, superior colliculi and the reticular nucleus of
the thalamus, and is accompanied by unique local field spectral
signatures including correlated gamma activity in prefrontal and
TRN (Buschman and Miller, 2010). With an interface implanted
into the PFC, the range of this “spotlight” could be extended to
the WBE’s modeled TRN, either directly ({PFC} : {TRN′}) or
indirectly ({PFC}: {PFC′}: {TRN′}) (Zikopoulos and Barbas,
2006; Wimmer et al., 2015; Phillips et al., 2016).

STRONG ARTIFICIAL INTELLIGENCE

Intelligence comprises the ability to acquire and apply
knowledge. Artificial intelligence signifies human-built artifacts
that exhibit this ability. In “strong” artificial intelligence, the
system transitions from merely “simulating” a mind to actually
“having” a mind, in the same sense human beings have minds
(Searle, 1999). This distinction appears to rely on whether
consciousness emerges, and may be irrelevant if the only metric
were that a particular AI program functioned as intended
(Russell and Peter, 2003). A WBE in a {brain↔brain′} poses
a unique situation where the consciousness of the person
({brain}) could in principle “expand” to include the synthetic
WBE ({brain′}) and where this person would be able to provide
a report of the subjective experience of being linked to the
emulation. While deep brain stimulators, cochlear implants and
neuromotor prosthetics are such purpose-driven tools that the
idea that their actual inert hardware would have a “mind” can be
disregarded, WBEs could reach a level of complexity that they
enter a qualitatively distinct regime.

The rationale why the coupled system could promote strong
AI asserts that by having the synthetic model continuously
“seeded” by actual neural data from a human brain that

FIGURE 5 | Linking the brain to one or more whole-brain emulations. Through recording/stimulation devices implanted into key primary, heteromodal and higher order

cortical targets, the patient’s brain can be linked to homologous counterparts in a parallel whole brain emulation that can function as an auxiliary, parallel system. This

“primary homologous emulation” can also function as an intermediary to secondary emulations, such as an “interface homologous mapping” explicitly designed to link

to its own artificial sensors and effectors, and to ectopic biological modules, including organoids that could be implanted into the patient’s peritoneum. In addition to

brain-inspired architectures, the primary homologous mapping could be linked to novel artificial architectures derived from other natural organization principles. MFG,

middle frotal gyrus; IFG, inferior frontal gyrus; TP, temporal pole, A1, primary auditory cortex, V1, primary visual cortex, S1, primary sensory cortex, M1, primary motor

cortex, AG, angular gyrus, PM, premotor cortex.
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were already “embodied”(Yamada et al., 2016)—especially if
the patient were engaged in a variety of quasi-orthogonal
canonical tasks- will coax the model into state spaces that
could never be achieved if the model resided in isolation and
even if the model were trained using a contrived and quite
circumscribed input/output arrangement (e.g., a single planar
array of pixels for “visual” input and a simplified multi-jointed
limb model for motor output). The reciprocal connection to
the brain of an awake, behaving human being is expected to
steer the parameters of the brain emulation into a more stable
regime.

The “seeding” hypothesis posits that the WBE, once fully
trained and updated via its ongoing reciprocal connectivity to
a living, real brain, would be able to function independently
(via its own external sensors and effectors) even after being
disconnected to that living brain. The WBE thus would
transform from only being an “auxiliary brain” medical device
for a patient, and would become a potentially autonomous
agent when evaluated in isolation, independent of the
patient. The potential consciousness of the WBE would
not be necessary for the WBE to be clinically useful to
a person whose brain were reciprocally linked to treat a
neurological condition, and instead might be an unintended
emergent property. The consciousness of the WBE, upon
disconnection from a real, human being, could serve useful
simulation functions to serve the person’s rehabilitation upon
reconnection, and would likewise raise questions of autonomy
and other ethical quandaries that are beyond the scope of this
paper.

BEYOND A SINGLE EMULATION

The ability to link the human brain to an external construct,
opens the possibility of linking the brain to more than one
WBE and to more than one type of architecture. To determine
the optimal approach to linking the real human brain to one
or more brain emulations, a larger question of what direct
brain-computer interfaces could afford must be addressed.
This question at its heart asks how to merge the best of
computers and to the best of the brain. To restore and augment
human function, is it better to link it to a brain-like synthetic
emulation, or is it better to link it to the computer more
directly?

One direct linkage can be conceived as a “brains-up display,”
playing on the analogy of “heads-up displays” where images are
displayed close to the eyes. In principle, a BCI could be used
to induce perception of sound, images and tactile sensation by
directly stimulating auditory, visual and somatosensory areas
to replace audio speakers, display screens and haptic gloves,
and could record from motor and language areas to derive
motor commands and enter text to replace mouse, keyboard
and voice recognition. Beyond this “surface brains-up” using
cortices “one-synapse-in” from the periphery, a “deep brains-up”
system could in principle afford a more intuitive experience by
interfacing with higher-order areas. Hence instead of entering
input text through a motor cortical derived cursor/keyboard, one

could decode words and their meanings from ensembles in left
inferior frontal and posterior superior temporal gyri (Wang et al.,
2011).

While this approach could certainly afford a more immersive,
dynamic user experience, it does not axiomatically provide any
computational benefit. It is unclear if the ability to silently
use web browsing and texting features, and to receive vivid
audiovisual reminders, would compensate for the fundamental
memory, executive function and other deficits that afflict certain
people with neurological injury. An outstanding question for
the WBE is whether it could provide a better intermediary
between the ensemble spiking “neural-ese” of the brain and the
digital language of computers. Could the canonical neocortical
circuit be altered to create new cortical “parcels” to optimize
data exchange with artificial processors (e.g., neural-to-binary
or neural-to-qubit)? This highlights the need to identify the
relative strengths and weaknesses of brains and computers
so to identify what should be built into the WBE. Does it
make sense to make the biological brain more computer-
like and the computer-based system more brain-like, and
is there a happy medium that can be bridged by a WBE
that has features of both (Figure 4)? Computers are better at
sequential logic operations and deep search in unstructured
data, while biological brains are better learning structure from
sensory data within their context and at generalization with
dimensionality reduction (Cauwenberghs, 2013). Perhaps one
approach to merging the two systems is to explore where
the brain attempts tasks more akin to digital computation,
for example in numerical representation (Damarla and Just,
2013).

In addition to the architecture of the “primary emulated
brain,” the architecture of secondary, tertiary and numerous
other emulations must be considered, and the interconnectivity
of these emulations to each other and the real brain (Figure 5).
For example, a semi-autonomous drone could be reciprocally
linked to an emulation of a fruit fly or other nervous system,
and that emulation in turn linked to the human brain
emulation (McMains and Somers, 2004; Silver et al., 2007;
Haberkern and Jayaraman, 2016). The “mini-emulation”
of each drone could drive orienting reflexes within the
{midbrain colliculi’} and could interface with real and emulated
sensory, prefrontal and cingulo-opercular cortices (Coste
and Kleinschmidt, 2016; Zhaoping, 2016). The deployment
of multiple emulations may require new “supra-cerebral”
constructs to coordinate activity among the emulations and
with the “primary real brain.” These “trans-frontal” modeled
or bioconstruct cortices would take on a role analogous of
the prefrontal cortex within a single human brain: rather
than integrating information streams from multiple cortical
areas, this “trans-frontal circuit” would need to integrate
streams coming from multiple emulations (Figure 6). A WBE
offers the possibility of expanding the real estate footprint
of cortex beyond the constraints imposed by embryological
development and anatomy. If the canonical computational
motifs seen throughout mammalian neocortex can be distilled
(Turkheimer et al., 2015), could they be replicated in an
expanded “sheet” of emulated neocortex itself mapping
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FIGURE 6 | Integrating multiple emulations. Multiple whole brain emulations can be linked together. In this scheme, the patient is linked reciprocally to a homologous

emulation (as in Figure 5). An ectopic cerebroid (an organoid construct), itself instrumented with sensor/actuator interfaces, could be implanted into the patient, and

could have its own dedicated homologous emulation. A clinician or therapist could guide calibration and rehabilitation through their own BCI interfaces and dedicated

homologous. External robotics, such as semi-autonomous drones, could have simpler emulations (here shown as a model on a rodent brain). To coordinate all these

emulations, a higher-order “meta-emulation” or “group meta-map integrator” could be forged with input/output connectivity based on principles of how single brains

integrate information. Lavender arrows indicate inputs streaming into the “sensory” areas of the integrator, while green arrows indicate outputs streaming from the

“motor” areas. Unitary homologs are reciprocally linked to “ventral what stream” temporal cortices, indicated by black arrows. Rainbow arrows indicate connectivity to

software/firmware to mediate computer resource use and to explore novel computational architectures.

multiple emulations, and what concrete functions would this
provide?

SUMMARY

The development of novel multi-electrode, optical fiber and
biological construct sensor-actuator technologies could allow for
the ability to record and stimulate tens of thousands of individual
neurons in the human brain across a lifetime. This would in
turn present an immediate challenge of how to leverage this
massive bandwidth recording/stimulation ability in a clinically
meaningful way to benefit children and adults with neurological
disease. While simple reconnection strategies that use external
electronics to reconnect brain regions may be a starting point
(Figure 2), ultimately it may be possible to connect the human
brain to itself via a sophisticated, whole-brain emulation,
or to multiple such emulations with each one tailored to
restoring distinct functions (Figure 5). Along this development
pathway, pilot human clinical trials offer an opportunity to
begin exploring the parameters of external emulations. Awake,
engaged participants can rapidly master new tasks and report
subjective experiences, and investigators can likewise leverage
machine-learning algorithms and advanced neuroimaging to

accelerate the emulation parameter optimization. The whole
brain emulation could provide patients an auxiliary, parallel
mirror brain system that could intrinsically compensate for
dysfunction within their own original brain. Likewise, the whole
brain emulation could give rise to intelligent abilities in itself
and this phenomenon could depend on its entrainment to a
real human being. “Whole brain emulations” could hence move
from being large-scale brain models designed as a facsimile of
reality, into advanced medical devices and engineering tools
that are part of a new reality to benefit human health and
wellbeing.
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