
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Biochemistry and Molecular 
Biology Faculty Papers 

Department of Biochemistry and Molecular 
Biology 

11-1-2017 

Using competition assays to quantitatively model cooperative Using competition assays to quantitatively model cooperative 

binding by transcription factors and other ligands. binding by transcription factors and other ligands. 

Jacob Peacock 
Thomas Jefferson University 

James B Jaynes 
Thomas Jefferson University 

Follow this and additional works at: https://jdc.jefferson.edu/bmpfp 

 Part of the Biochemistry Commons, Biophysics Commons, Molecular Biology Commons, and the 

Molecular Genetics Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Jacob Peacock, James B. Jaynes, Using competition assays to quantitatively model cooperative binding 
by transcription factors and other ligands, In Biochimica et Biophysica Acta (BBA) - General Subjects, 
2017, ISSN 0304-4165, https://doi.org/10.1016/j.bbagen.2017.07.024. (http://www.sciencedirect.com/
science/article/pii/S0304416517302416) 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized 
administrator of the Jefferson Digital Commons. For more information, please contact: 
JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/bmpfp
https://jdc.jefferson.edu/bmpfp
https://jdc.jefferson.edu/bmp
https://jdc.jefferson.edu/bmp
https://jdc.jefferson.edu/bmpfp?utm_source=jdc.jefferson.edu%2Fbmpfp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/2?utm_source=jdc.jefferson.edu%2Fbmpfp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/4?utm_source=jdc.jefferson.edu%2Fbmpfp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=jdc.jefferson.edu%2Fbmpfp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/31?utm_source=jdc.jefferson.edu%2Fbmpfp%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Using competition assays to quantitatively model cooperative
binding by transcription factors and other ligands

Jacob Peacock and James B. Jaynes
Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia PA
19107 United States of America

Abstract
BACKGROUND—The affinities of DNA binding proteins for target sites can be used to model
the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly
impacting their affinity and specificity. However, current methods for measuring cooperativity do
not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS—We use standard computational and mathematical methods, and develop novel
methods as described in Results.

RESULTS—We explore some complexities of cooperative binding, and develop an improved
method for relating in vitro measurements to in vivo function, based on ternary complex
formation. We derive expressions for the equilibria among the various complexes, and explore the
limitations of binding experiments that model the system using a single parameter. We describe
how to use single-ligand binding and ternary complex formation in tandem to determine
parameters that have thermodynamic relevance. We develop an improved method for finding both
single-ligand dissociation constants and concentrations simultaneously. We show how the
cooperativity factor can be found when only one of the single-protein dissociation constants can be
measured.

CONCLUSIONS—The methods that we develop constitute an optimized approach to accurately
model cooperative binding.

GENERAL SIGNIFICANCE—The expressions and methods we develop for modeling and
analyzing DNA binding and cooperativity are applicable to most cases where multiple ligands
bind to distinct sites on a common substrate. The parameters determined using these methods can
be fed into models of higher-order cooperativity to increase their predictive power.
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1. INTRODUCTION
Cooperative binding by multiple ligands to a substrate is ubiquitous in biological systems.
Methods of detecting and analyzing cooperative binding have been well developed over
time at a theoretical level. Cooperative binding occurs when the binding of a first ligand to a
substrate increases (or decreases) the complex’s affinity for subsequent ligands. The
phenomenon was first observed and modeled in the oxygen and hemoglobin system, where
the binding of one oxygen to unsaturated hemoglobin increases the affinity for the next
oxygen [1]. Hill proposed a one-step cooperative binding model,

were A is the binding substrate, in this case hemoglobin, a is the ligand, oxygen, and i is the
total number of oxygens that bind cooperatively. Using the equilibrium (association)
constant for the reaction, Ka, gives rise to the Hill equation for the fractional occupancy, θ:

Applying the logarithm gives a linearized form, and allows determination of the Hill
number, i, from measured [a] and θ. While computationally and experimentally accessible,
the Hill model has numerous pitfalls, and a Hill plot can obscure important cooperative
properties of a system (e.g., see Fig. 1 and Fig. 1C,D in Peacock and Jaynes [2]).

The shortcomings of the Hill model in describing the hemoglobin and other systems
motivated a slew of subsequent models [3], including Adair-Klotz, KNF, and MWC models
[4,5]. Generally, any binding model for a given system may be expressed as a binding
polynomial or partition function [3,6,7]. Any specific binding model can be related to the
terms and parameters of the binding polynomial. Some authors have introduced theoretically
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and pedagogically useful formalism into the binding polynomial, which aid in relating the
general parameters to specific binding models [8–11].

In recent decades, the importance of cooperativity in eukaryotic transcription regulation has
been revealed [12–21]. Cooperativity among transcription factors and cofactors is crucial for
achieving nucleic acid binding specificity in vivo, allowing a relatively small group of
transcription factors to combinatorially regulate large genomes (see e.g. [12]). Using in vitro
approaches such as gel shifts (EMSA, or electromobility shift analysis) of labeled
oligonucleotides (oligos) by purified binding proteins and surface plasmon resonance (SPR),
cooperativity has been revealed and quantified in a few cases, serving as conceptual models
[22–29]. While SPR can provide more detailed interaction information than EMSAs, it is
limited to quantitative analysis of cooperativity for multiple binding sites of a single protein
(although it can provide qualitative information on heteromultimeric binding) [30–32].
However, these practical approaches have not been integrated fully into the theoretical
framework used for other substrate-ligand interactions. There are many challenges to
elucidating cooperative interactions among transcription factors. Conditions in nuclei are
difficult to measure and reproduce. All the protein domains that affect function must be
included, sometimes making protein purification difficult. Nucleotide sequence flanking the
core binding motifs that are sufficient to capture any effects that they may have on binding
site shape should also be included [33–35]. Additional complexities are involved when
relating in vitro binding data to transcriptional readouts. For example, cooperative
interactions involving chromatin templates, which may occur through cooperative
displacement and modification of nucleosomes, are typically not measured in such studies.
Despite the inherent limitations with in vitro systems, computational and bioinformatic
approaches have had some success in describing cooperativity (see e.g. [24, 36]) using high-
throughput methods. Such approaches often continue to rely on previously analyzed,
cooperating proteins to entrain the system and provide meaningful quantitative output [37].

Models oriented toward allosteric binding such as MWC can quantify the various
conformers of the complex based on the free (unbound) concentrations of each ligand [4,5].
This is useful when measuring free ligand is relatively straightforward, as for the partial
pressure of oxygen in the hemoglobin system or the concentration of Ca2+ in the calmodulin
system. However, the analysis of transcriptional regulation may involve the measurement of
one or more cooperative complexes as a function of total added ligand. For this context,
where free ligand can be very difficult to measure, quantitative, experimentally accessible
models have not been fully developed. Further, saturation binding may require high ligand
concentrations, which are attainable for ligands like O2 and Ca2+, but can result in
aggregation and precipitation of protein ligands. When the binding substrate is DNA or
RNA, high ligand concentration may also produce significant off-target (i.e., non-specific)
binding. Finally, saturation binding measurements can require the production of large
quantities of purified protein, which can be a technical limitation.

Here, we revisit the use of Hill plots to quantify cooperativity, and illustrate key
shortcomings as a motivation to develop a more practical and descriptive approach. We
develop this approach within a broad theoretical framework applicable to any system
involving multiple ligands binding to two or more distinct sites on a substrate, while
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focusing on the practical application of cooperative binding to DNA by proteins. In that
context, we develop methods for quantifying cooperativity by two ligands binding to distinct
sites, first measuring individual binding constants and then a cooperativity factor (previously
referred to as the cooperativity parameter in, e.g., [22]). This provides the means to predict
the binding behavior of cooperating proteins over the full range of concentrations. Motivated
by recent identification and analysis of cooperative binding sites for Engrailed with its
partner complex Extradenticle/Homothorax (Exd/Hth) [38], we devise a novel method for
determining binding constants for individual ligands using competition assays [39], which
we show has significant advantages over saturation binding assays. We go on to devise a
method to find the cooperativity factor and the second equilibrium constant when only one
of the two equilibrium constants can be accurately measured using single-ligand binding.
Finally, because the cooperativity factor is thermodynamically meaningful, once it has been
determined for pairwise interactions, we show how it can be employed to model more
complex systems involving multiple components.

2. MATERIALS & METHODS
All computational methods used here broadly follow the same three steps, with different
parameters and inputs. First, a binding system is defined with equilibrium constants and total
concentrations of each component. Second, the equations relating these equilibrium
constants and total concentrations to concentrations of individual species are specified.
Third, these equations are manipulated and combined, either manually or using a computer
algebra system (Wolfram Mathematica 10.4.0), to relate the desired quantities. Lastly,
numerical values are substituted for parameters and the desired outputs computed and/or
graphed. The graphs for Figs. 1–3 were produced using the Mathematica notebooks included
as supplements. Microsoft Excel and Pacific Tech Graphing Calculator 4.0 were used to
generate graphs for Fig. 4. Inkscape and Adobe Photoshop were used to compose figures.

In Fig. 1, the Hill plots are derived for the system shown in Fig. 1A. Using the equilibrium
equations (Fig. 1A, lower) and conservation of mass equations, an expression for the total
fractional occupancy as a function of free ligand concentration ([a]) and the parameters KA,
KB and n was derived (manually in Fig. 1A of Peacock and Jaynes [2]; using Mathematica in
Fig_1.nb within Supplemental_Mathematica_notebooks). By definition, a Hill plot shows
θ/(1 − θ) as a function of [a] on a log-log plot, producing Fig. 1B. The maximum slope was
calculated by taking the derivative at the point of 1/2 occupancy (always appropriate for 2
sites, see below).

In Fig. 2, a more complex system is described with two distinct ligands, a and b. Again
using the relevant equilibrium and conservation equations, an equation describing the
concentration of ternary complex, [AaBb], as a function of total ligand concentration [a]T
and parameters was derived (by hand in Fig. 2A of Peacock and Jaynes [2]; using
Mathematica in Fig_2.nb within Supplemental_Mathematica_notebooks). Illustrative
parameter values were selected to demonstrate the relevant concepts, and each curve
calculated and plotted. Points of half-maximum occupancy were found by calculating the
limit of [AaBb] as [a]T approaches positive infinity (see Fig. 2B in Peacock and Jaynes [2]).
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In Fig. 3A,B, a competition system is treated, consisting of the Fig. 2 system plus unlabeled
competitor, UAB, with its own cooperativity and equilibrium parameters. This system is used
to describe 3 experiments [38], each with the same labeled DNA oligo (B1a), competing
with an unlabeled oligo, either A2a, B1b, or B1a itself. Each experiment uses the same set of
equations, but with different parameter values, chosen to approximate a situation
encountered experimentally [38]. For Fig. 3A, the equations were solved to find [AaBb] as a
function of added competitor [UAB]T. For Fig. 3B, the concentrations of complexes formed
on the unlabeled competitor are solved for as a function of [UAB]T. In Fig. 3C, the three
DNAs are considered without competitor, with fixed concentrations of both DNA and ligand
b, and with increasing [a]T. This system is identical to that of Fig. 2, here solved for [AaB],
[ABb] and [AaBb] in terms of [a]T. For complete methods, see Fig_3.nb within
Supplemental_Mathematica_notebooks.

In Fig. 4A, a simple competition system is considered, consisting of a substrate DNA oligo
(A) binding a ligand (a), in competition with an identical unlabeled DNA, UA. Solving the
governing equations of this system, [Aa] is plotted as a function of [UA]T for a given set of
parameters (see also Fig. 4A in Peacock and Jaynes [2]).

In Fig. 4B, the results of competition and saturation binding experiments were
computationally simulated under 7 sets of parameter values ([A]T, KA, and [a]T). To
simulate a competition experiment, the system of Fig. 4A was used, and a series of 15 points
([UA]T, [Aa]) were calculated, with simulated experimental noise added to [Aa]. For the
saturation binding experiment, the simple system of ligand a binding substrate A to form
complex Aa was simulated to produce points ([a]T, [Aa]). For comparison with competition
binding, it was assumed that [a]T was actually a dilution series from an unknown stock
[a]T0. The points generated in each simulated experiment were then fit with least squares
regression [40, 41] to the corresponding equations used to generate them, but now with [a]T0
and KA unknown, and experimental noise in [Aa]. This simulation was repeated 100 times to
produce a Monte Carlo estimate of the 95th percentile of the absolute percent error of the
parameter estimates, which is shown for each of the 7 conditions. For details, see Fig. 4B in
Peacock and Jaynes [2], which shows the same system as Fig. 4B, again solved for ternary
complex [AaBb] as a function of [a]T, plotted at a variety of parameter values, and showing
the 50th percentile as well as the 95th.

In Fig. 4C, the system of Fig. 2 is used to draw graphs for different values of the
cooperativity factor n. This is done to demonstrate how the expression derived for [AaBb] as
a function of total ligand [a]T can be used to determine n, via regression analysis, once KA
and KB have been determined (using, e.g., the method illustrated in Fig. 4A).

3. RESULTS AND DISCUSSION
3.1 One ligand binding cooperatively to two sites

In order to develop a practical, systematic approach to the problem of cooperative binding,
we begin with the simplest case. A straightforward model to describe the binding of a single
ligand to two sites is illustrated in Fig. 1A. A species with two distinct ligand binding sites
(AB) can form a ternary complex (AaBa) with free ligand (a) by first forming either of two
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single-ligand intermediates, AaB or ABa. Adding a second ligand then converts either of
these to the ternary complex. Assigning standard equilibrium binding constants (dissociation
constants, or Kd’s) to each of these reactions gives the relationships shown in Fig. 1A below
the flow chart. While there are 4 distinct Kd’s, one of them is not independent, but is
completely determined if the other 3 are fixed. Reflecting this, we use only 3 variables to
describe these Kd’s, noting that the two Kd’s governing the occupancy of site A are related
to each other by the same factor that relates the two Kd’s that govern the occupancy of site
B. We call this factor n, the cooperativity factor. It represents the fold decrease in Kd that
results from prior occupancy of the other site, or, equivalently, the fold increase in affinity
for a second ligand caused by binding of the first ligand. Thermodynamically, it is related to
the change in free energy of association (or dissociation) of one ligand that results from
binding by the other. A cooperativity factor greater than 1 indicates positive cooperativity,
where bound ligand increases the affinity for additional ligands, while a cooperativity factor
less than one means that bound ligand reduces the affinity for additional ligands. Using these
relationships, for any specified Kd’s KA and KB, cooperativity factor n, and total
concentration of AB, we can calculate the occupancy of each site, and the overall fractional
occupancy, θ, at any concentration of ligand. The fractional occupancy as a function of free
ligand concentration (both on a log scale) can then be displayed as a Hill plot [1, 42, 43], to
see how such plots vary for different sets of constants.

Fig. 1B shows several interesting cases that illustrate some of the difficulties with using such
plots for measuring cooperativity experimentally. The blue curves show two cases that
conform to the situation of equivalent sites (KA = KB, or KA/KB = 1), for which the Hill
formalism was originally derived, while the solid blue curve shows the classical case of
positive cooperativity. The maximum slope (the purple line is tangent to the curve at the
point of maximum slope) is greater than that without cooperativity, where the plot is a
straight line of slope 1 (not shown). As is well known, this maximum slope approaches the
number of cooperating sites (in this case 2) as the cooperativity becomes very large. When
the cooperativity is negative (n < 1; n = 0.04 for the dashed blue curve), the plot shows the
opposite shape, having a slope < 1 at its minimum point. (This maximum or minimum slope
always occurs at 50% occupancy for two sites, discussed further below.) These effects
depend strongly on the assumption of equivalent sites, a condition that is not often achieved
with biological molecules, particularly for protein binding sites on DNA. When the two sites
have different Kd’s and no cooperativity (n = 1), the Hill plot shows the same behavior as
with equivalent sites and negative cooperativity, illustrated for the case where the Kd’s
differ by a factor of 100 (Fig. 1B, dashed red curve).

Strikingly, positive cooperativity can be completely masked for non-equivalent sites [7],
resulting in a straight line (solid red), which is indistinguishable from equivalent sites with
no cooperativity (not shown). This, of course, occurs only for particular values of relative
Kd and cooperativity, but in all cases of non-equivalent sites, apparent cooperativity is
reduced. If the ratio of Kd’s is far enough from 1, it will look like negative cooperativity
rather than positive cooperativity (not shown). The precise conditions for these effects are
given in the legend of Fig. 1B, and derived in Fig. 1A of Peacock and Jaynes [2]. Clearly,
then, in cases where binding sites may not be equivalent, Hill plots are highly unreliable
indicators of cooperativity [44, 45].

Peacock and Jaynes Page 6

Biochim Biophys Acta. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 One ligand binding cooperatively to two or more equivalent sites

The Hill equation assumes an implausibly high-order reaction mechanism, equivalent to the
simultaneous binding of multiple ligands. However, in the special case of equivalent sites
and very high cooperativity, the Hill formalism can serve as a good approximation,
especially if the cooperativity occurs in a single step. Fig. 1C,D in Peacock and Jaynes [2]
provides an illustration of Hill plots for this case, and for the related case of progressive
cooperativity, where each additional bound ligand changes the affinity for subsequent
ligands in equal increments.

To summarize the lessons that can be gleaned from these examples (see Fig. 1 in Peacock
and Jaynes [2] for a full description), for a Hill plot to reveal either the number of
cooperating sites or the degree of cooperativity, accurate binding data must be obtained for a
wide concentration range in order to determine the point of maximum slope. This is because
the maximum slope may not occur at 50% occupancy, and slopes at either extreme of
concentration approach 1. Perhaps most unrealistically, these approaches are only effective
for equivalent ligand binding sites, which is rarely expected for natural DNA binding sites
and ligands.

3.3 Two proteins binding cooperatively to two sites: an alternative to measuring co-
complex formation as a function of one protein concentration

If the Hill formalism is not appropriate for most realistic situations involving cooperative
binding, what is the solution? The one clear advantage of the Hill equation is its simplicity,
and this is of course also the source of its limitations. To better model the complexities of
real life, it is useful to first study a relatively simple case in some detail, and then use the
results to build up to more complex situations. We therefore consider the case of two ligands
that cooperate on two distinct binding sites (here and in Sections 3.4 and 3.5). We will use
the example of DNA binding proteins cooperating on nearby DNA sites as our model
system, but the methods we describe are general. These methods apply to any case where
two different ligands bind two distinct sites on a receptor or substrate, with cooperative
interactions affecting the relevant binding constants.

This situation has been studied in some detail in a variety of contexts, and it is useful to
consider commonly used methods and their limitations. One approach models the system as
a single ligand binding to its site, by measuring an apparent Kd of one protein binding in the
presence of the other (e.g. [46]). Conceptually, the single “site” is represented by the
combination of binding sites and the ligand with constant concentration. Experimentally, we
choose a fixed concentration of double-stranded DNA oligonucleotide (oligo) containing the
cooperating pair of binding sites, along with a fixed concentration of one of the proteins, and
measure the amounts of ternary complex that form as the concentration of the second protein
is varied. Typically, the fixed concentrations are chosen based on preliminary experiments
that reveal cooperative binding. When a chosen concentration of each protein alone gives
little or no detectable binding to the oligo, while mixing all three components results in a
clearly detectable ternary complex, positive cooperativity is indicated. It is often of interest
in such cases to compare the affinities of related pairs of proteins for the same DNA sites, or
of similar (e.g., mutated) sites for the same pair of proteins. We consider here and in Section
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3.4 the methods typically used for such comparisons, along with their limitations. We use an
example from the literature in some detail, to illustrate how a more complete analysis of the
binding parameters can reveal important aspects of the underlying mechanism of binding.

First, we consider the option of measuring an apparent Kd as described above, and using it
to compare two related sets of proteins or sites. A binding scheme to describe the situation is
shown in Fig. 2A. It is very similar to that considered in Fig. 1A for a single ligand binding
cooperatively to two different sites, but here there are two ligands, each binding to only one
of the sites. As before, we assume that the binding can occur to each site independently
(binding is not ordered), which implies that the ternary complex can dissociate in either of
two ways. Also as before, the binding can be described fully using three parameters: n,
along with the two binary complex Kd’s, KA and KB. In principle, KA and KB can be
measured independently and directly, assuming that non-specific binding (including binding
of each protein to the other site) occurs only with orders of magnitude lower affinity, which
is often found to be the case. As we demonstrate later, once the individual Kd’s are known,
n can be readily determined, at least in principle. In practice, there are interesting cases
where one of the individual Kd’s is so high (i.e., the affinity is so low) as to be difficult to
measure directly. In Section 5 of Peacock and Jaynes [2], it is shown how to leverage an
individual measurement of only one of the Kd’s, along with the results of cooperative
binding, to determine all three parameters.

Strikingly, in the situation described above where total concentration of protein a ([a]T) is
varied, and total concentrations of both oligo ([AB]T) and protein b ([b]T) are fixed, a wide
variety of binding behaviors can result. When comparing the concentration of ternary
complex ([AaBb]) formed when using either of two sets of parameters, we find that [AaBb]
for one set of parameters may be lower than for the other set at low [a]T, but higher at high
[a]T. In other words, the curves of [AaBb] vs. [a]T may cross (Fig. 2B). This can occur in
either of two types of comparisons: comparing two different pairs of sites bound by the same
two cooperating proteins, or comparing two sets of proteins binding to the same pair of
binding sites. Importantly, in either case, if data from such an experiment are used to
determine an apparent Kd for each binding curve, the expectation would be that where the
apparent Kd is lower, [AaBb] would be higher at all values of [a]T. While this is, of course,
true for a single ligand binding to a single site, this expectation fails with multiple ligands.

This is illustrated in Fig. 2B for the special case where KB is the same for all the curves. This
would apply, for example, to comparisons of cooperative binding to an oligo by different
members of a DNA-binding protein family, in combination with a common DNA-binding
protein partner. The green curve gives the lowest apparent Kd, but it has the lowest [AaBb]
at high values of [a]T. The red curve gives the highest apparent Kd, but it has the highest
[AaBb] at high values of [a]T. And the blue curve gives a lower apparent Kd than does the
red curve, yet it has a lower [AaBb] at all values of [a]T. The general reason for these
“unexpected” outcomes is that the actual 3-parameter system gives more complex curves
than can be modeled using a single parameter. The specific reason is that the concentration
at which AB is saturated with ligand, which occurs at very high [a]T, can be very different
for the different curves. For curves where KB is the same, as in Fig. 2B, the curve with the
highest cooperativity factor has the highest saturation concentration of AB, regardless of KA.
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For example, the black and blue curves have different Kd’s but the same cooperativity
factor, and therefore saturate at the same level ([AaBb] = 0.75; see Fig. 2B in Peacock and
Jaynes [2] for the general formula). This is because at very high [a], KA becomes irrelevant.
Given that both [AB]T and [b]T are constant, the amount of b incorporated into AaBb, in
equilibrium with b and AaB, at very high [a] depends only on the Kd for dissociation of b
from AaBb, namely KB/n.

From these examples, we can see that neither ranking the amounts of ternary complex
formed at any one [a]T nor measuring an apparent Kd in this type of experiment is predictive
of relative complex formation overall. (The criteria used to define apparent Kd’s are given in
Fig. 2B of Peacock and Jaynes [2].) Curves like these will cross each other under conditions
that we can glean from the governing equations (given in Fig. 2A in Peacock and Jaynes [2]
and described in Fig. 2C of Peacock and Jaynes [2]). Fig. 2C in Peacock and Jaynes [2] also
gives an expression for the apparent relative affinity measured in SELEX-seq experiments
of the type described in Riley et al., 2014 [47], in terms of the Kd’s and cooperativity factors
of two cooperating ligands on two composite binding sites.

Another important issue when using this assay is illustrated in Fig. 2C. Two pairs of curves
are shown, representing two different concentrations of the “fixed” ligand. As seen by
comparing the two pairs of curves, one binding site forms more ternary complex at one fixed
concentration, while the other does so at the other fixed concentration, throughout most of
the concentration range of the varying ligand. That is, the relative binding behavior reverses
in the two cases. The red curve represents a more cooperative site, and at higher
concentrations beyond the range shown, it forms more ternary complex than does the less
cooperative site, regardless of which concentration of fixed ligand is used.

Here, it is important to note that the formulae and concepts developed throughout this work
depend only on relative, not absolute, concentration units. Therefore, we have not specified
units for either concentrations or Kd’s, except for the specific example developed in Section
3.4 below. Furthermore, cooperativity factors are inherently unitless. Although the absolute
nuclear concentrations of most transcription factors have not been established, they are
generally thought to be in the range of nanomolar to micromolar [48]. This is also thought to
be the concentration range for their functional set of binding sites, and for their individual
Kd’s in binding to those sites. Therefore, it would be appropriate in applications involving
these molecules to consider our values for concentrations and Kd’s to have units in the
picomolar to nanomolar (nM) range.

Cooperativity for transcription factors has been quantified in very few cases. For λ phage
cro and cI repressors, the measured interaction free energies correspond to cooperativity
factors of <200 [49, 50]. (Each change in Kd of 10-fold corresponds to a change in
interaction free energy of about 1.37 kcal/mol). Enhanceosomes in mammalian systems
involve a number of cooperatively binding proteins [51–53]. Although in several of these
cases, synergistic increases in site occupancy were attributed to cooperative binding, no
quantitation of cooperativity was reported. However, interactions between transcription
factors whose nuclear concentrations are below about 100 nM can result in cooperativity
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factors up to about 106 without leading to much dimerization in solution. Thus, the
cooperativity factors that we have used here are all physiologically plausible.

Clearly, in order to model the system accurately, we need to measure more than one
parameter. In Section 3.5, we consider the commonly used method to measure individual
Kd’s and compare it with a novel method, then go on to show how these can then be used to
accurately determine the cooperativity factor n. Once these three parameters are known, we
can predict the binding behavior, and specifically the relative amounts of each complex, at
all concentrations of the components.

Before doing this, we consider another method commonly used to compare the affinities of
different combinations of proteins and binding sites, competition experiments, where an
unlabeled oligo competes with a labeled oligo for binding by fixed amounts of the proteins
[54]. We will consider an example of this experiment in some detail, both to illustrate its
limitations and to resolve an apparent paradox, leading to new biological insights.

3.4 A case study: insights from an analysis of competition assays

In a paper published in 2012 [38], Fujioka et al. characterized several cooperative binding
sites for the Engrailed (En) protein within the sloppy-paired (slp) locus of Drosophila. En
shows strongly cooperative binding to each of these sites with a cofactor complex, which
contains one molecule each of the proteins Exd and Hth. This cofactor complex forms in
solution and can be co-purified as a single complex when the proteins are co-expressed in
bacteria. This stable complex has therefore been treated in binding studies as a single entity,
Exd/Hth [35,37,46,54–57]. We compared the apparent affinities of four binding sites from
slp, and found that two of them showed strong binding by En-Exd/Hth, while the other two
were much weaker. These assessments were based on a combination of both direct binding
assays and competition binding experiments like those described above. In all cases, ternary
complex formation was monitored using gel shift analysis. Note that we refer to the complex
containing En, Exd/Hth, and an oligo consisting of the cooperatively bound (composite) site
as a ternary complex, because we model Exd/Hth as a single entity for the purposes of
studying its cooperativity with En. Binding by the individual proteins was found to be
relatively low, and in some cases was undetectable, consistent with a high degree of
cooperativity in the binding. However, an apparent paradox was uncovered in that the two
lower affinity sites showed distinctly different functional characteristics in vivo, despite very
similar behaviors in the binding assays. The functional assay involved repression of a
reporter transgene in En-expressing cells in the developing Drosophila embryo, which is
dependent on a functional binding site for En and Exd/Hth [38]. We speculated that the
subtle differences we observed in their apparent cooperativity might be responsible for their
distinct functional potencies: the more cooperative site gave more complete repression in
vivo. Despite this difference, which emerged from a limited set of direct binding assays, the
competition assays, considered a good way to quantify relative affinities, showed no
difference between them.

In modeling studies represented in Fig. 3, we revisit this issue by using the results from that
work [38] to estimate individual Kd’s and cooperativity factors for these sites. We model the
binding using these parameters, and make several noteworthy discoveries that may explain

Peacock and Jaynes Page 10

Biochim Biophys Acta. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both the difference in function of the low-affinity sites and why the competition assays did
not reveal a distinction between them. These results have important implications for the
limitations of these assays, and provide guidelines for their effective use. We note that these
results are based on published studies, and it is not our purpose here to establish new
biological principles. Rather, we illustrate how quantifying both Kd’s and cooperativity
factors allow exploration of binding behavior that is outside the concentration range used in
the in vitro experiments themselves. This in turn can lead to new biological insights,
including novel hypotheses that can be tested in subsequent studies. In particular, our
analysis is not meant to either test or validate the assumption that Exd and Hth function
strictly as a single unit when cooperating with En.

The competition binding assays yielded “competition curves” for each of the sites [38]. In
this assay, as mentioned above, a labeled oligo containing the highest affinity site is bound
by unlabeled proteins, with fixed concentrations. Increasing amounts of an unlabeled
competitor oligo are added, which carries either the same sites as the labeled oligo or
different sites, and the decrease in binding to the labeled oligo is quantified. Theoretical
curves that closely match the published curves are presented in Fig. 3A for three of the sites.
For simplicity, we use only one of the two high-affinity sites, which behaved similarly both
in the binding studies and in vivo. To produce these curves, we used the limited set of direct
binding studies available to estimate a range for the individual Kd’s and n for each site. We
then refined these estimates to produce competition curves that match the data well.
Although we do not consider these refined estimates to be precise, they nonetheless suggest
a novel hypothesis as to why one of the sites functions better in vivo. More generally, the
modeling results illustrate why the assays can be misleading, and provide guidance for their
effective interpretation and use.

The main conclusions from these studies are 1) the two lower affinity sites have distinct
binding behaviors that may explain their functional differences in vivo, 2) the competition
binding studies did not reveal these differences because of the particular range of
concentrations used, and 3) at those concentrations, the two lower affinity sites competed
very similarly, but for different reasons. We now describe the results in some detail, to
justify and fill out these conclusions. We then describe the lessons learned, one of which
applies specifically to the interpretation of competition assays, while another reinforces the
lesson from prior sections that in the face of the complexities of cooperative binding, even to
two sites, it is necessary to measure multiple parameters in order to model the system
effectively. This then provides the impetus to explore novel ways of measuring those
parameters, presented in Section 3.5.

Fig. 3A shows that unlabeled oligos carrying the two low-affinity sites compete very
similarly (red and blue) for binding to a labeled oligo carrying the high-affinity site. Of
course, the high-affinity site itself competes much more effectively (black). Fig. 3B shows
that the two low-affinity sites compete similarly for very different reasons, in terms of the
complexes that they form as their concentrations increase. Although they each initially form
more ternary complex (solid blue and red) than single-protein complexes, the oligo with the
lower n (blue) binds relatively more of the single-protein complexes (dotted and dashed
curves). This difference is magnified at higher concentrations, where the less cooperative
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oligo forms more of each of the single-protein complexes (blue dotted and dashed curves)
than it does the ternary complex (solid blue), while the more cooperative oligo continues to
form much more ternary complex (solid red). So, while the net result in the competition
assay appears the same, this is specific to the choice of concentrations of labeled oligo and
proteins. At other concentrations, differences would be more apparent. Rather than
illustrating this, we show in Fig. 3C the differences in direct binding by these two oligos,
which may explain their differences in function.

Fig. 3C, top, shows direct binding curves of the type in Fig. 2, [AaBb] vs. [a]T with both
[b]T and [AB]T constant. Here we see that more ternary complex is formed on the “red” site
at all [a]T, compared to the blue curve. The more cooperative low-affinity site, which forms
more ternary complex (solid red), is the one that functions better in vivo. In fact, its function
in vivo is more like that of the high-affinity site than it is the other low-affinity site [38].
This may be explained by the fact that the amounts of ternary complex formed by the two
higher-functioning sites (solid black and red) become more similar at high [a]T, and more
distinctly different from the lower-functioning site (solid blue). That is, the red curve
approaches the black curve, and separates from the blue curve, at high [a]T. This behavior is
due to the higher cooperativity of the better-functioning site, as explained above for Fig. 2:
the saturation value depends more on the cooperativity, while the relative behavior at low
[a]T is more dependent on KA.

Fig. 3C (middle and bottom graphs) illustrates the underlying reason for the “surprisingly
strong showing” by the lower-functioning site in the competition assay. At a given set of
concentrations, it forms more single-protein complexes (blue dashed and dotted) than does
either of the other two sites (red and black). The results of a competition experiment depend
on the total amount of each ligand bound by a site, rather than only the amount of ternary
complex. Thus, less ternary complex is made up for by the formation of more single-protein
complexes. This is again consistent with the lower cooperativity of the lower-functioning
site (it forms relatively less ternary complex and more of the single-protein complexes).

In the competition assays, the total amount of unlabeled, competing binding site goes well
beyond the range used in direct binding assays for the same site, typically up to hundreds of
fold more. At such high concentrations, single protein complexes can dominate, even though
very little of them form in direct binding assays. At the concentrations used in these
experiments, this was the case. Therefore, only if sites are independently known to have
either similar Kd’s for formation of each single-ligand complex, or to have similar
cooperativity factors, can we expect competition assays to reveal a simple set of “relative
affinities”.

As these examples emphasize, modeling the binding of cooperating ligands using a single
parameter can only have predictive power for occupancies of sites over a limited
concentration range. This limitation should be taken into account when interpreting
experiments based on high-throughput methodologies. An example is given in Fig. 2C of
Peacock and Jaynes [2].
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3.5 A comprehensive method for modeling relative complex formation over a wide range of
concentrations

The foregoing argues for measuring individual Kd’s and a cooperativity factor in order to
model binding by a cooperating pair of ligands. To this end, we first describe a less well-
known method that has significant advantages over standard methods for determining an
individual Kd. We then show how the cooperativity factor can be determined once both
individual Kd’s are known. In Section 5 of Peacock and Jaynes [2], this methodology is
extended to find both the cooperativity factor and the second Kd when only one of the
individual Kd’s can be accurately determined using single-ligand binding.

Standard methods have been described for determining individual Kd’s that involve simply
measuring complex formation as a function of ligand concentration (the “saturation binding”
method; see e.g. [41]). However, in cases where cooperativity is high, individual Kd’s can
be challenging to determine accurately, particularly in cases where either the available
amount of ligand or its tendency to aggregate precludes obtaining data at high ligand
concentrations. Our alternative method uses competition assays, similar to those illustrated
in Fig. 3A, except that only a single ligand is used to determine its individual Kd.

Using competition assays to determine an individual Kd has significant advantages,
particularly in the case of DNA binding proteins. Preparation of proteins for binding assays
often involves concentrating them in a way that can cause denaturation, and for this and
other reasons, the fraction of protein that is active in binding may be difficult to determine.
In such cases, directly measuring the amount of protein provides only an upper limit on its
effective concentration. Using a competition binding assay, we can straightforwardly
determine both the Kd and the active concentration of ligand from the same data set. We
note in this context that recently developed high-throughput methods for comparing DNA
affinities [58] do not always distinguish between absolute and active concentrations of
ligand. Further, it is important that these high-throughput methods include exemplars for
entrainment and validation that have been characterized by methods grounded in solution
biochemistry, such as the following.

Fig. 4A shows examples of binding curves from modeling this type of competition
experiment, in which constant total amounts of labeled oligo ([A]T) and ligand ([a]T) are
used in combination with increasing amounts of unlabeled oligo ([UA]T), and the resulting
ligand-substrate complex ([Aa]) is quantified. [Aa] decreases as [UA]T is increased, while all
other quantities are constant. [A]T is known, and [a]T and KA are determined as parameters
in a non-linear regression analysis. Values for constants were chosen to illustrate why the
approach can yield these two parameters independently. When any family of curves
representing different Kd’s and ligand concentrations start at the same point (i.e., they give
the same amount of complex without competitor oligo), they have significantly different
shapes, and so diverge from their common starting point, no matter where that starting point
is. The differences between the 3 colors is a 10% change in [a]T. The values of KA are
adjusted for each curve to give the same initial value of [Aa]. This difference in shape can be
captured during regression analysis to give the two parameters independently. Fig. 4A of
Peacock and Jaynes [2] gives a derivation of the expressions used. These expressions can
also be used in a high-throughput analysis to determine the relative affinities of related

Peacock and Jaynes Page 13

Biochim Biophys Acta. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding sites, where the highest affinity site is labeled, and measurements are made using a
panel of unlabeled sites of how well they compete for binding to a fixed amount of protein,
as described in Hallikas, et al., 2006 [59]. Fig. 4A of Peacock and Jaynes [2] gives an exact
expression for determining the relative affinity in such an experiment, and also a simple
approximation for the case where only a small fraction of labeled oligo is bound without
competitor (which is different from that given in Hallikas et al. and has the correct limit
behavior).

We tested the ability of this method to give precise values for the parameters KA and [a]T
under different conditions, and compared it to the traditional saturation binding method.
First, a few words about the latter method. It is possible, in principle, to use saturation
binding to determine both KA and [a]T simultaneously. This can be done by varying [a]T in a
systematic way (for example by diluting a stock solution) and measuring the resulting [Aa],
without initially knowing the actual values of [a]T. If we let the reference value of [a]T be
[a]T0, and each experimental value be [a]T0/Δ (Δ is the “dilution factor”, which varies for
each data point, while [a]T0 is a constant to be determined from regression analysis) then the

relevant formula is . From the data set {(Δ,
[Aa])}, and knowing [A]T, we can use regression analysis to simultaneously find the two
parameters KA and [a]T0. Although this can in principle work effectively, it requires using a
set of experimental conditions that are unknowable before the Kd is determined. The
optimal conditions are when [A]T ~ 10*KA (of course, KA is initially unknown). Even under
these optimal conditions, data that are precise to within about 10% are required to determine
KA within about 50% and [a]T within about 10% (Fig. 4B).

In contrast, using the competition method described above, it is possible to use data accurate
to within ~10% to determine KA within about 20% and [a]T within about 7% (Fig. 4B).
Importantly, the competition method provides this level of precision as long as the [A]T used
is less than or ~ KA. This contrasts with the saturation binding method, which becomes much
less effective at determining KA when [A]T is either above or below 10*KA by several-fold
or more. The flexibility and resolving power of the competition method allows us to define
an optimal approach to precisely determining both KA and [a]T: use the lowest [A]T that
allows precise quantitation of [Aa], and the highest [a]T available, up to a [a]T that gives
[Aa] ~ [A]T/2 without competitor UA. Data taken under these conditions, and with increasing
UA so that [Aa] is reduced to 1/3 or less of its initial value without UA, will give the most
precise value practicable for KA, along with a somewhat more precise value for [a]T.

These conclusions are put into context in Fig. 4B, which shows the results of a Monte Carlo
analysis of the two methods. A random error was introduced into data sets, and regression
analysis was used to find KA and [a]T as parameters from the data. The resulting errors in the
parameters are shown, as a function of the chosen value for [A]T. The value of KA was fixed
at 1. This is justified by the fact that it is only the relative values of [A]T, [a]T, and KA, and
not their absolute values, which determine the shapes of the curves, and therefore how
precisely the parameters can be determined. As Fig. 4B illustrates, when [A]T exceeds KA by
more than 10-fold ([A]T >10 in this case), determination of KA becomes increasingly
unreliable (approaching or exceeding 100% error at least 5% of the time) with both methods.
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With [A]T between KA and 10*KA, both methods provide similarly reliable estimates of both
parameters. Importantly, with [A]T < KA, the competition method becomes more reliable,
while the saturation method fails completely. These results support the strategy given in the
previous paragraph for finding the two parameters simultaneously to the best possible
precision under a wide variety of circumstances. Similar results are obtained with different
errors in the input data sets (1% and 5%, Fig. 4B of Peacock and Jaynes [2]). Errors at the
50th percentile in the error distribution (Fig. 4B of Peacock and Jaynes [2]) follow the same
qualitative pattern as those at the 95th percentile (Fig. 4B), illustrating that the overall error
distribution is similar in all cases as a function of the chosen [A]T.

For both the competition and the saturation binding methods, a more precise value for [a]T
and a less precise value for KA are obtained when higher values of [A]T are used above
~10*KA. The precision for KA achievable within an experiment never exceeds that for [a]T.
This is because in both formulae, KA is divided by ([A]T –[Aa]), whereas [a]T (or [a]T0) is
divided by [Aa], which is typically lower when averaged over the data points than is ([A]T –
[Aa]). Therefore, a smaller change in [a]T compensates for a larger change in KA. This
causes the bounds placed on [a]T by the data to be more stringent than those placed on KA.

For curve fitting to determine an individual protein’s Kd and its concentration by the above
methods, we can use freely available software (e.g., at “statpages.org/nonlin.html”), along
with the expressions given above and in Fig. 4A of Peacock and Jaynes [2] (which also
includes their derivations). Fig. 4A of Peacock and Jaynes [2] also includes equations to
provide initial guesses for the parameters from one or two data points, which are sometimes
needed for the regression algorithm to converge.

It is often useful, from an experimental point of view, to include non-specific DNA in such
binding experiments, to minimize the effects of contaminating DNA binding proteins that
may come through the purification process. Therefore, we developed an alternative
methodology which allows accurate determination of [a]T and KA, as well as the Kd for non-
specific binding, as parameters from curve fitting. The expressions used for this purpose,
along with derivations and a description of how to analyze the data, are given in Fig. 4C of
Peacock and Jaynes [2]. As an illustration of why this can work, if non-specific DNA is
included in the experiment shown in Fig. 4A, the apparent Kd’s change without a significant
change in the shapes of a curves, as long as the ratio of the non-specific Kd to each of the
specific Kd’s is much greater than 1. So, the set of curves shown there is indistinguishable
from that resulting from the inclusion of non-specific DNA with a Kd of 1000 at a
concentration of 4000, with the same values for [A]T (= 2), and [a]T (= 6, 5.4, and 6.6), but
with all of the KA’s reduced by a factor of 5.

Once individual Kd’s have been determined for both cooperating proteins, n for the
composite site can be found readily. A simple method is illustrated in Fig. 4C. Here, the
same equation used to generate curves in Figs. 3B,C and 4C is used to show how a 10%
change in n affects the amount of ternary complex that forms as one ligand increases in
concentration, while the total amount of the other is held constant. The same expression can
be used in regression analysis to determine n from data of this kind. The upper panel of Fig.
4C shows 3 families of 3 curves each. Each family has a different value for n, and within

Peacock and Jaynes Page 15

Biochim Biophys Acta. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each subfamily (those lying close together), this difference is 10%, either above (blue) or
below (red) the middle value (black). The uppermost black curve in this graph uses n = 500,
and it is the same as the black curve in Fig. 3C, upper panel. The other two subfamilies have
n reduced by 10 and 100-fold, but use the same Kd’s. The relative amount of separation
within each subfamily suggests how precisely n can be determined from data in such an
experiment. The upper panel shows that the higher n value will be relatively difficult to
determine accurately with the chosen concentrations of oligo and fixed protein. However, if
we reduce these values, the curves for n = 500 ± 10% are more widely separated, as
illustrated in the lower graph of Fig. 4C (both [AB]T and [b]T are reduced by 10-fold relative
to the upper graph). In this case, it becomes easier to accurately determine n = 500, while it
may become more difficult to determine the lower n values used here.

In order to get the most accurate determination of n, [AB]T and [b]T should be chosen to
allow ternary complex formation to approach 50% saturation, but not exceed it. However, if
this is not achievable with a [AB]T that is high enough to allow accurate quantitation of
ternary complex, it may be best to use the lowest [AB]T (and [b]T, which should be
comparable) that does allow accurate quantitation, and also results in less than 50%
saturation at the highest achievable [a]T. The latter, of course, may be limited by the amount
of available ligand. For regression analysis to determine n, we use the expression given in
Fig. 4C (and derived in Fig. 2A of Peacock and Jaynes [2]).

The method described above requires that each individual Kd be measurable. However, for
some ternary complexes, one of the ligands is not observed to bind alone, even at
concentrations much higher than those required for strong, cooperative binding. A well-
known example of this is described by Jin et al., 1999 [60], involving cooperative binding
by the yeast transcription factors a1 and α2. Binding by α2 alone was seen, and addition of
a1 resulted in much greater complex formation, suggestive of highly cooperative binding.
However, even at the highest concentrations tested, no binding by a1 alone was observed. In
order to extend our method to this type of situation, we devised equations for curve fitting to
find both the Kd of the weakly binding ligand and the cooperativity factor from gel shift
analyses similar to those presented by Jin et al. [60]. This method is described in Section 5
of Peacock and Jaynes [2].

3.6 Generalizing the methods to more than two binding sites and cooperating ligands

How can this methodology help us in understanding the functions of more complex
composite binding sites, such as those often found in higher eukaryotic genes? Once the
Kd’s and pairwise cooperativity factors have been determined for pairs of individual sites
that make up the composite site, it is straightforward to model them as an interacting
network of pairwise interactions. In a typical “Boltzmann” statistical thermodynamic version
of such a model ([24] and references therein), the free energy differences induced by each
pairwise interaction are combined to give a relative free energy, and therefore a relative
occupancy under any specified conditions, for each possible complex. The Kd’s and
cooperativity factor as defined above naturally feed into this type of model, because they can
be readily associated with free energy differences among the various complexes. Although
the behavior of such sites has been modeled without information about the pairwise
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interaction parameters (e.g., [24]), including those parameters would likely yield more
meaningful, mechanistic models with wider predictive power that extends well beyond the
range of the experimental data [61].

For DNA binding proteins in particular, it may be common for pairwise interactions to
dominate the system, mediated by separable protein-DNA and protein-protein interaction
domains. For example, in the cooperative interactions between λ phage cro and cI
repressors, pair-wise interactions between nearest neighbors appear to dominate [49, 50]. In
such cases, we can measure the individual protein-DNA Kd’s and pairwise cooperativity
factors, to fully describe the behavior of complexes involving several DNA binding proteins.
In these cases, the free energy of dissociation of each of the ligands from the 3-ligand
complex can be accounted for by the dissociation energy of the two 2-ligand complexes
which contain that ligand, so the system as a whole is solved by knowing each of the
pairwise Kd’s and cooperativity factors. We now summarize the relationships among these
quantities (which are measurable using the procedures described above) and the dissociation
constants and cooperativity factor of a 3-ligand complex. Details are provided in Fig. 6 of
Peacock and Jaynes [2].

We now need subscripts for each pairwise cooperativity factor to distinguish which pair of
ligands it is associated with, as well as another cooperativity factor associated with the 3-
ligand complex. This factor is an independent quantity in the general case where additional
free energy (positive or negative) may be associated with the formation of the 3-ligand
complex beyond that associated with the formation of each 2-ligand complex.

As derived for a 2-ligand complex containing a and b in Fig. 2A:

and, by analogy,

We can find nABC to be:

where
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Now, how is the “new” cooperativity factor for the 3-ligand complex related to those of the
2-ligand complexes? Complete dissociation of the 3-ligand complex involves the sum of 3
free energies. For one possible dissociation route, these are: the free energy change when
ligand a dissociates, that when ligand b dissociates from the 2-ligand complex, and that
when ligand c dissociates from the single-ligand complex.

Because of the basic relationship between the standard Gibbs free energy and the Kd:

, where R is the gas constant and T is the absolute temperature,
adding these 3 free energies is equivalent to multiplying together 3 dissociation constants:
that governing the dissociation of ligand a from the 3-ligand complex, that governing the
dissociation of ligand b from the 2-ligand complex containing ligands b and c, and that
governing the dissociation of ligand c to release the free DNA.

This product is:

where the last equality comes from the last expression above for nABC. So, 1/nABC
represents the “extra” free energy in the complex that is due to cooperative binding; i.e., this
“extra” ΔG0 = R * T * ln(nABC). If there is no cooperativity, nABC = 1, and the total free
energy of dissociation is just the sum of those for each ligand individually. From the
definitions above, we have, for the Kd that governs the dissociation of ligand a from the 3-
ligand complex:

and similarly for the other dissociation constants from the 3-ligand complex.

Now, what do we expect for nABC in the case where the free energies of interaction within
the complex consist solely of those found within the respective 2-ligand complexes? In this
case, as derived in Fig. 6 of Peacock and Jaynes [2],

and we already have enough information from analysis of the 2-ligand complexes to predict
the behavior of the entire 3-ligand system (see Fig. 6 of Peacock and Jaynes [2], which also
provides a straightforward method for testing whether this relationship holds in any
particular case).
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We can follow an analogous procedure to characterize a 4-ligand system. If all of the
interactions leading to cooperativity are contained within pairwise interaction domains that
are not significantly affected by higher-order complex formation, then the sum of the free
energies from the pairwise interactions equals the total cooperative free energy of the entire
complex, and:

Generally, for j ligands binding to distinct sites on a substrate and cooperating solely
through pairwise interactions, the cooperativity factor is the product of the

possible pairwise cooperativity factors, which can each be measured by studying the ternary
complex containing those two ligands, using the methods given here, and in Peacock and
Jaynes [2].

4. SUMMARY AND CONCLUSIONS
Most currently used methods for quantifying cooperative binding by transcription factors to
DNA do not provide the means to accurately predict binding behavior over a wide range of
concentrations. The Hill equation and Hill plots are only useful for quantifying cooperativity
when binding sites are equivalent, which is rarely the case for DNA binding proteins, as they
typically bind to a variety of sites with different affinities. Even in the rare cases where
cooperating sites are equivalent, different modes of cooperativity are possible, and these
have sufficiently different behaviors in Hill plots as to make quantifying the cooperativity
difficult.

In recent years, two main approaches have been used to compare cooperative binding of
either 1) two different proteins to the same sites or 2) the same two proteins to different
sites. Both of these, while they provide some useful information, have serious limitations for
predicting binding behavior over a wide concentration range. One involves holding the
concentrations of both a binding site oligo and one protein constant while varying that of the
second protein. We have shown that this can result in binding curves that cross, precluding
the general usefulness of this approach in isolation to accurately model binding behaviors of
cooperating proteins. However, this approach is useful for quantifying cooperativity once
individual proteinbinding site Kd’s have been determined.

A second approach is to compare the ability of unlabeled oligos containing different sites to
compete for binding (by two cooperating proteins) to a labeled binding site-containing oligo.
We have shown that this approach, too, provides only partial information about the system
and can therefore give misleading results. For example, two oligos can compete very
similarly under one set of conditions, while the occupancies of these sites can be very
different under different conditions.
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This analysis of existing methods argues for a more comprehensive approach that can use
experimental data obtained over a limited range of concentrations to predict binding
behavior over the full concentration range. We therefore developed two new tools to achieve
this end. The first tool is a new approach to determining individual protein-binding site
Kd’s. Active protein concentrations must be determined in order to obtain accurate Kd’s,
and our approach allows the simultaneous determination of both of these, as parameters in
non-linear regression analysis, using data from oligo competition assays. We described an
optimized approach to give maximum accuracy, which mandates using the lowest
concentration of labeled oligo which allows robust quantitation, along with an amount of
protein that gives around 50% occupancy. Holding both of these constant, increasing
amounts of unlabeled oligo identical in sequence to the labeled oligo are added. Quantifying
the resulting reduced binding to the labeled oligo gives a data set that is fed into freely
available software (e.g., at “statpages.org/nonlin.html”), along with the equation we have
derived. This can have very significant advantages over previously described methods that
involve saturation binding (increasing concentrations of protein). One advantage is that our
method typically requires lower protein concentrations, avoiding problems of precipitation
or aggregation at high concentrations. The second advantage is that both active protein
concentration and Kd can be accurately determined without prior knowledge of either
parameter.

The second new tool is the means to extract, via regression analysis, the cooperativity factor
for binding by a pair of proteins once the individual protein–site Kd’s have been determined.
This involves holding the concentrations of a labeled oligo carrying the two cooperating
binding sites and one of the proteins constant, while measuring cooperative complex
formation as the other protein concentration is varied. Armed with the cooperativity factor
and the two individual Kd’s, binding behavior can be predicted and compared over the full
concentration range of each interacting species.

We also provide modifications to these methods that extend their applicability in special
cases. First, in cases where contaminating DNA binding proteins co-purify with the specific
protein being studied, it is often advantageous to include non-specific DNA in the
experiments used to measure the Kd, which reduces significantly the inaccuracy that can
result from these contaminating proteins competing for binding to the labeled oligo. We
describe the method and give equations for regression analysis to find the specific Kd and
the non-specific Kd along with the active protein concentration. Second, we provide a means
to extract both Kd’s and the cooperativity factor (as parameters in regression analysis) for
cases where only one Kd can be measured directly, which may occur when one cooperating
protein binds very weakly on its own. This requires simultaneously measuring both ternary
complex formation and the accompanying single-protein complex as the weakly binding
protein’s concentration is varied.

We provide a summary of the main formulae used in this paper, along with their
applications in the methodology developed here, in Fig. S1.
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HIGHLIGHTS

• Hill plots remain prominent in biology, but can mask cooperativity

• Effective modeling of binding by two ligands requires the use of 3 parameters

• We develop novel ways to find these parameters for two cooperating ligands

• We show how they can be used to enhance the power of established methods

• We describe how this framework can be extended to multiple cooperating
ligands
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Fig. 1. Barriers to determining cooperativity from Hill plots
A: Model for cooperative binding to AB (substrate with two distinct binding sites) by ligand
a. The ternary complex AaBa can dissociate in two ways, losing a from either the A or the B
site first. Defining the Kd’s for the ternary complex as KA/n and KB/n reduces the number of
variables, because, from the definitions of the Kd’s (below the line), KA divided by KA/n
gives the same thing as KB divided by KB/n. B. Hill plots for two binding sites with the same
or different Kd’s. From the model in A, the ratio (fractional occupancy)/(1 − fractional
occupancy), which is (KA+KB+2n[a])[a]/{2KAKB+(KA+KB)[a]} (derived in Fig. 1A of
Peacock and Jaynes [2]), was used to generate Hill plots. Concentration units (for Kd’s and
[a]) are arbitrary. The case where KA = KB = 5 and n = 25.5 is shown as a solid blue curve,
along with a tangent line (purple) at the point of maximum slope. Also shown are: the same
equivalent sites, but with negative cooperativity (n = 0.04, dashed blue), and the case of two
non-equivalent sites (KA = 5, KB = 500), either with positive cooperativity (n = 25.5, solid
red) or with no cooperativity (n = 1, dashed red). Note the similarity in shape of the plots for
equivalent sites with negative cooperativity and for non-equivalent sites without
cooperativity. Also note that for two non-equivalent sites, when n approaches the value
(KA+KB)^2/4KAKB (derived in Fig. 1A of Peacock and Jaynes [2]), the plot approaches a
straight line of slope 1, which is indistinguishable from equivalent sites with no
cooperativity. Thus, without prior knowledge that sites are equivalent, Hill plots are at best
ambiguous for identifying cooperativity.
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Fig. 2. Two cooperating proteins binding to two different sites
A: schematic of binding equilibria. Either protein can bind first. The upper path from left to
right represents initial binding by protein b. The equilibrium concentration of the ABb
single-protein complex is governed by its Kd, KB. It can then bind protein a to form the
ternary complex AaBb. The alternative pathway to the ternary complex is similarly
diagrammed on the left. As the definitions of the various dissociation constants below show,
not all 4 are independent. If we divide KB by the Kd that governs the dissociation of b from
AaBb, we get the same quantity that we get if we divide KA by the Kd that governs the
dissociation of a from AaBb. It is therefore convenient to define this ratio as the
cooperativity factor n. B: graphs of [AaBb] as a function of increasing [a]T, holding [b]T
constant. For all graphs, [AB]T = 1, [b]T = 2, and KB = 500, while KA’s and cooperativity
factors vary. The apparent Kd (based on a single-site model, see Fig. 2B in Peacock and
Jaynes [2]) is the [a] at the point of half-maximal [AaBb], which is marked by a dot for each
curve. Note that the relative amounts of ternary complex depend strongly on [a]T. The green
curve, which has the lowest apparent Kd (0.68), actually shows the lowest [AaBb] at high
[a]T. This is due to its relatively low n, which determines the [AaBb] at saturation with
protein a, independent of KA. The black curve crosses the red curve, and also shows less
binding at high [a]T due to a lower n. The blue curve does not cross the red curve, and has a
lower [AaBb] at all values of [a]T, despite having a lower apparent Kd! So, a ranking of
apparent Kd’s from this type of experiment is not predictive of relative ternary complex
formation overall. Derivations of expressions relating [AaBb] to [a]T (and to [a], [AaB], and
[AB]) are given in Fig. 2A of Peacock and Jaynes [2]. Derivations of expressions for
[AaBb]max and for finding the apparent Kd are given in Fig. 2B of Peacock and Jaynes [2].
C: relative ternary complex formation can be qualitatively different depending on the fixed
[b]T chosen for the experiment. The two pairs of curves (upper and lower) represent [AaBb]
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formed on two sites (red and dark blue) as a function of increasing [a]T, differing only in the
fixed [b]T. Note that at the lower [b]T, the site represented by the dark blue curve (KA =
5975, KB = 400, n = 113) forms more ternary complex throughout most of the experimental
range, while at the higher [b]T, the site represented by the red curve (KA = 90,000, KB =
2808, n = 7000) forms more over the entire range. This illustrates another limitation of
modeling cooperative binding using a single parameter. NOTE: Concentration units are not
specified, because in all cases, these units (which includes the concentrations of ligands and
substrate, as well as Kd’s) can be factored out of the governing equations, and do not affect
the shapes of curves, or any of the conclusions.
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Fig. 3. Competition curves measuring ternary complex have limited predictive power
Concentrations and Kd’s are in nM. A: Ternary complex as a function of competitor. For
each curve, the [AaBb], labeled ternary complex, is graphed as a function of an unlabeled
competitor. The lower (black) curve is self-competition by the high-affinity site (B1a [38]),
where the unlabeled competitor, UAB, is the same DNA sequence as the labeled binding site,
AB. The other two curves show competition with two binding site oligos that have very
different Kd’s and cooperativity factors (n), yet compete similarly for ternary complex
formation by labeled B1a oligo. Note that self-competition is much more effective at all
concentrations shown than is competition by either of the other oligos, while the other two
oligos compete very similarly over a wide concentration range.
B: Forms of competitor oligo in the competition experiment. Each graph shows the 3 bound
forms for one of the competitor oligos. In each case, the solid line shows [AaBb], the dashed
line shows [AaB], and the dotted line shows [ABb]. The upper panel shows the less
cooperative low-affinity site (B1b, blue), the middle panel shows the more cooperative low-
affinity site (A2a, red), and the lower panel shows the high-affinity site (B1a, black). The
left and right sections of each curve show two different ranges of [a]T, on two different
scales. Note that at the higher concentrations of competitor, B1b forms mostly single-protein
complexes, while A2a forms mostly ternary complex, reflecting its much higher
cooperativity. At concentrations well beyond the range shown, all of each protein is
incorporated into single-protein complexes, as the proteins are distributed over a vast excess
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of oligo. For oligo B1b (blue), we see the approach to this limit, while for oligo A2a (red),
this approach is beyond the range shown.
C: Concentrations of complexes as a function of [a]T, holding [b]T constant (no competitor).
Using the same oligos as in A (and B), the concentrations of the various protein-containing
forms are graphed for a similar experiment as in Fig. 2. The left and right sections of each
curve show two different ranges of [a]T, on two different scales. The top graph shows
[AaBb] for each oligo, color-coded as in A and B. Note that despite the similarity of the blue
and red competition curves in A, the oligo with the higher value of n (red) forms more
ternary complex at all [a]T, and the red curve approaches the black curve at high [a]T. This
provides a plausible explanation for the in vivo behavior of the binding sites represented by
the blue and red curve: the one with the higher n (red) is more potent. It is more similar to
the black curve than to the blue curve at high [a]T, suggesting that the ability to form ternary
complexes at high [a]T may explain the relative functionality of these binding sites in vivo.
The middle and bottom graphs show [AaB] (dashed) and [ABb] (dotted), respectively, for
each oligo, color coded as above. As seen in the competition experiment in B, the less
cooperative oligo forms more binary complexes (blue) than does the more cooperative oligo
(red), especially AaB at high [a]T, due to its having a lower Kd for binding each of the
proteins. A similar phenomenon occurs at high concentrations of these oligos in the
competition experiment: the less cooperative site sequesters more of each protein
individually, while it forms less ternary complex than does the more cooperative site. These
complexes are invisible in a competition assay, because the competitor oligo is unlabeled.
For derivations of equations that can be used to generate these graphs, see Fig. 3A in
Peacock and Jaynes [2]. For derivations of equations for graphing the total occupancy by
each protein as a function of [a]T, see Fig. 3B in Peacock and Jaynes [2].
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Fig. 4. Illustrations of curve-fitting equations and error comparison
A: Families of competition curves with different values of [a]T and KA. Labeled binary
complex, [Aa], is graphed as a function of increasing total unlabeled binding site, [UA]T,
with constant amounts of both labeled binding site, [A]T, and total ligand, [a]T. The

applicable formula is . Sets of data points
{([UA]T, [Aa])} along with known [A]T can be used to find both KA and [a]T as parameters
using freely available curve fitting software (see text). The values used here are: [A]T = 2 for
all curves; [a]T = 6, 5.4, and 6.6, and KA = {1.5, 5, 16.5}, {1.3, 4.4, 14.7}, {1.7, 5.6, 18.3},
for the black, red, and blue curves, respectively. The values of KA were adjusted to give 3
sets of 3 curves each with the same 3 initial values (without competitor), 0.5, 1.0, and 1.5.
Note that each set of curves with the same starting value diverges significantly as competitor
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increases. B: Performance of competition and saturation binding methods for simultaneously
finding [a]T and KA. Monte Carlo analysis (100 trials are represented by each data point) of
the accuracy of curve fitting to find both [a]T and KA as parameters was run with 15-point
data sets at 7 different [A]T using either competition (fixed [a]T, varying [UA]T, as illustrated
in A) or standard saturation binding (varying [a]T, no competitor). Data sets were generated
by introducing random errors into calculated values of [Aa]. These errors were randomly
drawn from a normal distribution (centered on zero) such that 95% of the errors were within
±10% of the actual value (standard deviation = 5%, mean error = 4.0%, median error =
3.4%). Percent errors are shown in the values found for each parameter ([a]T and KA) using
least-squares non-linear regression. These percent errors were ranked by increasing absolute
value, and the 95th largest (out of 100) plotted, with errors bars extending between the 90th

and 99th largest. These error bars represent a 95% confidence interval for the true value of
the 95th error percentile, based on standard statistical analysis. Note that the best estimate for
KA is provided by the competition method at low [A]T, which simultaneously provides a
precise estimate for [a]T. See text for further explanation. C: Family of curves with different
values of n. [AaBb] is graphed as a function of [a]T, holding constant [b]T and [AB]T, for 3
different values of the cooperativity factor (n). KA = 3000, KB = 600, n = {5, 50, 500} for the
black curves, n = {4.5, 45, 450} for the red curves, and n = {5.5, 55, 550} for the blue
curves. The uppermost black curve corresponds to the black curve in Fig. 3C, top. Once KA,
KB, and [b]T are determined, the formula used to draw these curves can be used to find n
from sets of data points {([AaBb], [a]T)} using freely available software (see text). The
formula is

Note that the upper set of curves in the upper graph (which differ among themselves only by
a change in n of 10%, like each set of 3 closely situated curves) are very close together,
making it difficult to determine this n (= 500) using these values of [AB]T and [b]T.
However, when both are reduced by a factor of 10 (as shown in the lower graph), the upper
set of curves (again representing n = 500) diverge more. Thus, n values that result in
saturation of the probe (AB) can be more precisely determined by reducing its concentration,
along with that of the fixed [b]T (which is optimal for determining n when it is similar to
[AB]).
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Peacock and Jaynes, 2017 
Fig. S1.   
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Fig. 1: 
For constructing a Hill plot for two sites (details given in Fig. 1A of Peacock and Jaynes [2]), 
first, fractional occupancy / (1 – fractional occupancy) is: 

 
where k and L are the two individual site Kd's,  
n is the cooperativity factor, and  
f is the [free ligand]. 
 
Specializing this to two equivalent sites: 

 
The Hill plot is a straight line when: 

in which case the apparent Kd is: 

 
That is, the plot is the same as one with Kd = k' and n = 1 (no cooperativity). 
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Fig. 1B-I of Peacock and Jaynes [2]: 
The fractional occupancy of a set of Z equivalent sites with 1-step cooperativity is: 

 
where s = fr/k, which is the free concentration of ligand divided by the equilibrium dissociation constant without cooperativity (k/r), and 
f is the free [ligand], 
r is the (microscopic) forward rate constant for binding of a ligand molecule to the complex, 
k is the (microscopic) dissociation rate constant for the singly bound complex, 
k/n is the (microscopic) dissociation rate constant for any ligand molecule from the complex except the first. 
So, 

 
The slope of the resulting Hill plot is: 

 
The condition for maximum slope of the Hill plot is: 

 
This expression can be solved explicitly for the variable s only for Z = 2, 3, or 4.   
However, it can be used to get a simple formula for the maximum slope of a Hill plot with 1-step cooperativity  
in terms of the value of s where the slope is maximum, by incorporating the condition for max. slope into the formula for max. slope. 
 
The slope then reduces to the following (s here = the value of s which satisfies the condition for max. slope): 

The limit of this, as n goes to infinity, is Z.   
This is because (ns) also goes to infinity as n goes to infinity (even though s goes to zero as n goes to infinity). 
 
The fractional occupancy at the point of max. slope is 1 / (# of sites): 
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The slope of a Hill plot with progressive cooperativity  
(where the cooperativity increases at each binding step by the same factor, up to a maximum of n) is: 

 
This is a maximum at 50% occupancy, which is also where s = n^(–1/2). 
So, the maximum slope is: 

 
 
 
Fig. 2: 
 
Definitions of variables: 
h = [free probe DNA, "hot" probe] 
H = total ["hot" DNA] 
f = [free protein] 
a = [protein –  site 1 complex] = [(fh)] 
b = [site 2 – protein complex] = [(hf)] 
A = [ternary complex] = [(fhf)] 
 
Dissociation (equilibrium) constants, including cooperativity factor n: 
k = dissociation constant of (fh), site 1 binary complex 
L = dissociation constant of (hf), site 2 binary complex 
k/n = dissociation constant of protein from site 1 of ternary complex (fhf) 
L/n = dissociation constant of protein from site 2 of ternary complex (fhf) 
 
In order to get an expression connecting A and p, with q constant, given H, k, L, and n, we can use the fact that 
p = A + a + f.  So, from expressions for a and f that involve only the known quantities, we get the desired connection. 
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Such an expression for a is (from Fig. 2A of Peacock and Jaynes [2]): 

and for f is: 

 
Since f goes to infinity as p goes to infinity, the saturation value of A (as p goes to infinity) occurs when the denominator of this expression is 0: 

or 

 
Substituting the expressions for a and f above into p = A + a + f gives: 

 
This can be used to graph A as a function of p, at constant q and H, given k, L, and n. 
It can also be used to find n from data points (A, p) once the other variables have been determined, using curve fitting procedures. 
 
Similar expressions for other variables are: 
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When do two binding curves of [ternary complex] (A) as a function of [protein1] (p) cross each other? 
From Fig. 2C of Peacock and Jaynes [2]: 
A more cooperative site always saturates at a higher [protein1], so when the curves cross, the more cooperative site will usually have a lower initial 
slope.  If k and L are the two Kd's for the site with cooperativity factor n, and 𝕜 and 𝕃 are the two Kd's for the site with cooperativity factor 𝕟, then  
n must be < : 

 
 
Fig. 3: 
From Fig. 3A of Peacock and Jaynes [2]: 
 
Definitions of variables: 
A = ["hot" ternary complex] 
H = total ["hot" DNA] 
U = total [unlabeled DNA] 
f = [free protein1] 
p = total [protein1] 
q = total [protein2] 
 
Dissociation (equilibrium) constants: 
for "hot" complexes, including cooperativity factor n: 
k = dissociation constant protein1 –  site1 binary complex 
L = dissociation constant of site2 – protein2 binary complex 
k/n = dissociation constant of protein1 from site1 of ternary complex 
L/n = dissociation constant of protein2 from site2 of ternary complex 
 

for unlabeled complexes, including cooperativity factor m: 
Q = dissociation constant of protein1 –  site1 binary complex 
R = dissociation constant of site2 – protein2 binary complex 
Q/m = dissociation constant of protein1 from site1 of ternary complex 
R/m = dissociation constant of protein2 from site2 of ternary complex 
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In order to graph the various species as a function of U (total [specific competitor]) parametrically, using f as the parameter, 
we need each species as a function of f and constants (H, p, q, k, L, n, Q, R, and m).  First, we get A as a function of f and these constants,  
by "turning around" the expression originally derived to get f as a function of A and constants (given below).  
 

The expression connecting A and f is cubic in A;  see Fig. 3A of Peacock and Jaynes [2] for the explicit solution for A as a function of f  
from the following expression, which = 0: 

 

We plug that solution for A as a function of f into the following formulae, for each species as a function of A and f, then  
graph each of them vs. U parametrically (with f as parameter).  The solution to the cubic, A as a function of f,  
is substituted for A in each case, and the parametric variable (such as t, in "Graphing Calculator")  
is substituted for f (in the following and in the solution to the cubic, so that A(f) becomes A(t)). 
 
From Fig. 3A of Peacock and Jaynes [2]: 

 

similar expressions for the other variables (in terms of A, f, and constants) are: 
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When the competitor is the same as probe (except for being unlabeled), the cubic solution fails, because the coefficient of A-cubed in the  
expression above vanishes (Q, R, and m become k, L, and n, respectively), and a simpler set of formulae are both necessary and easier to use.   
The quadratic in A as a function of f is: 
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Derivations of the following specialized forms (when competitor is simply unlabeled probe) are available on request; 

 

a, b, g, and h are the same as above, since they don't contain Q, R, or m, while: 
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An alternate approach to graphing A as a function of U is to do this non-parametrically,  
but this requires the solution of a quartic expression in A (as a function of f and constants) rather than "merely" a cubic one,  
which some software packages cannot handle, or cannot do so over the full range of the constants;   
this solution is given in Fig. 3A of Peacock and Jaynes [2]. 
 
 
 
 
 
From Fig 3B of Peacock and Jaynes [2]: 
T = total [bound protein1] = a + A  
S = total [bound protein2] = b + A  
To graph total occupancy by proteins 1 or 2 (S or T becomes y) as a function of total [protein1] (p becomes x): 

 
and reversing the roles of proteins 1 and 2 gives an implicit expression for T as a function of p: 
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Fig. 4: 
(Details are given in Fig. 4A of Peacock and Jaynes [2]:) 
Using data of [single-protein complex] (= a) formed on labeled "hot" oligo (total concentration = H)  
as a function of increasing amounts of competitor oligo of the same sequence as the "hot" oligo, where 
V = total [unlabeled DNA, Kd = k, the same as that of the labeled DNA] 
 
key for single-character notation used here: 
below main text  description 
    H    [A]T  total concentration of labeled substrate 
    V    total concentration of specific unlabeled substrate with same dissociation constant as that of labeled substrate 
    p    [a]T  total concentration of ligand 
    k      KA  dissociation constant of ligand from labeled complex 
    a    [Aa]  concentration of labeled complex 
 
Formula for curve fitting using data points (a, V), with constants H (known), and p and k (to be determined as parameters in curve fitting): 

 
In order to get initial estimates for curve fitting for p and k,  
use the value of a when V = 0, called Z, and one other data point (a, V) in the formulae: 

and 

 
To do the same thing as the above but in the presence of a constant amount of non-specific competitor DNA of known concentration (D) 
(we assume that this is in large excess over the ligand, so that cooperativity on this DNA is not relevant;   
details are given in Fig. 4C of Peacock and Jaynes [2]): 
 
D = total [unlabeled DNA, non-specific] of dissociation constant Q 
Z = [labeled binary complex] in the absence of specific competitor (that is, when V = 0). 
This is just the data point (V, a) = (0, Z), but in practice, it should be determined from multiple trials for maximum accuracy.  
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For curve fitting with data points (V, a), to determine p and k as parameters, knowing D, H, and Z: 

 
and using the following to get an initial estimate for k, from (V=0, Z) and some other point (V≠0, a);   
use as the initial estimate for p the measured [total protein] (e.g., Bradford assay). 
k = : 

 
Once p and k are determined from this curve fit, they can sometimes be optimized, by first estimating Q using p and k in: 

 
then doing a 3-parameter curve fit to find p, k, and Q using the following, along with the same  
data set {(V, a)} used initially to get p and k: 

 
[As an aside, it is worth noting that when Q/k >> 1, this is closely approximated by: 

 
So, when Q/k >> 1, adding non-specific competitor has the same effect on the competition curve as increasing k by the factor 1 + D/Q.] 
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However, the 3-parameter curve fit may fail to converge to accurate values with imprecise data. 
In fact, from trial runs that we have done, unless the data are very precise, especially the value of Z,  
the initial curve fitting to find p and k will likely fail. 
 
A much more robust method involves taking two sets of data, one data set using increasing amounts of  
cold competitor oligo that is the same sequence as the probe DNA (V),  
and the other data set using increasing amounts of extra added non-specific competitor DNA (W;  the total concentration is now D + W),  
and measuring the amount of labeled complex formed (a or å, respectively).   
If we call these data sets {(V, a)} and {(W, å)}, respectively, then we can combine the two data sets to generate the data set  
{(W, å, V, a)}, assuming that there are the same number of data points in each. 

 
Curve fitting with this expression to find p and Q/k as parameters using such data is quite robust  
(as long as the values of a and å are not all identical in the two data sets, in which case the formula collapses, eliminating p). 
 
It works best to generate the data set {(W, å, V, a)} by combining the lower values for å with the higher values for a.   
Alternatively, we can generate a larger data set by combining the two sets {(V, a)} and {(W, å)} combinatorially  
(each point of one set combined with all the points of the other set).  In the trials we have done, this does not generally  
give better results than using the smaller data set, but it may do so in some circumstances. 
 
Once Q/k is determined, we can use the above equation to find p and k by curve fitting, or, alternatively,  
use the value of p found in the first step and do single-parameter curve fitting to find k, using the same data set {(V, a)}: 
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Once the two binary complex Kd's and the two active protein concentrations are determined by one of the above methods  
(either without or with non-specific competitor), n can be found by curve fitting using the formula for p as a function of A  
given above under "Fig. 2", which is: 

A set of data points {(A, p)} (in the absence of competitor DNA) can be used in the above with the constants H, q, k, and L known,  
and n as the parameter to be determined. 
An initial estimate for n can be obtained by plugging values from one or two data points into the above equation,  
and finding the corresponding n as the variable, using a graphing calculator or other means  
(n cannot be solved for explicitly due to the complexity of the expression). 
 
 
 
 
Section 5 of Peacock and Jaynes [2]: 
 

For the case where the single-protein dissociation constant (L) and protein concentration (q) are known for  
only one protein, finding first n, from a set of data points {(b, A)}, where 
 

b = [single-protein complex] containing the protein with known Kd (= L) and total concentration (q), and  
A = [ternary complex], both of which vary as the other protein concentration is varied  
   (p varies but is not yet known, and has been eliminated from the system of equations),  
 

use the following formulae, derived in Section 5B of Peacock and Jaynes [2]: 

 
All constants are known except n, which is determined as the parameter in curve fitting. 
An initial estimate for n can be obtained from any data point (or several) using the equation: 

 
Another way to obtain a minimum estimate for n comes from the simple relationship between n and the  
various forms of oligo, with A, h, and b measurable: 
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Assuming that a is not detectable in the experiment, we estimate what the minimum detectable [oligo] is.  This  
gives us an upper limit for a.  This, inserted into the above expression, gives us a minimum estimate for n. 
 
After n is determined, the unknowns k and p can be found from the same data set. 
Starting with the general formula: 

we keep track of the set of dilution factors {∆} used (relative to the highest amount of p used, which 
should ideally be enough to "chase" most of H into the ternary complex A), to get the data set {(b, A)}. 
This gives us the data set {(∆, b, A)}, which is used in 2-parameter curve fitting with the formula: 

 

where p0 is the highest amount of p used in the experiment.   
k and p0 are determined as parameters, knowing H and n. 
 
 
 
 
For an initial estimate for p, we can use the measured concentration (which should represent a maximum estimate). 
For an initial estimate for k, we can use that estimate for p, and then k from one or more points (b, A) using 
the rearranged version of the above: 

 
Once n, k, and p0 are thus obtained, their values can sometimes be refined further by doing a 3-parameter curve fit  
to the above equation for ∆, using the values obtained above as starting values, and the same data set {(∆, b, A)}.   
This refinement, if successful, also gives an indication of the overall goodness of fit.   
However, in practice (based on our trials using initially precise data sets rounded to either 2 or 3 significant figures),  
the 3-parameter curve fit either does not converge,  
or converges to values that are much less precise than those obtained from the 2-step method above. 
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Abstract	
	
We	derive	mathematical	expressions	for	quantitative	analysis	of	cooperative	binding	
covering	the	following	cases:		1)	a	single	ligand	binds	to	either	two	non-equivalent	sites,	
or	an	arbitrary	number	of	equivalent	sites,	on	a	substrate	(Fig.	1),	and	2)	two	different	
ligands	bind	distinct	sites	on	a	substrate	(Figs.	2,	3).		We	show	how	to	analyze	
"competition	experiments"	using	non-linear	regression,	where	a	ligand	binds	to	a	single	
site	on	a	labeled	substrate	in	the	presence	of	increasing	amounts	of	identical	but	
unlabeled	competitor	substrate,	to	simultaneously	determine	the	Kd	and	active	ligand	
concentration	(Fig.	4A).		We	compare	the	performance	of	this	competition	method	with	
the	commonly	used	saturation	binding	method	(Fig.	4B).		We	also	provide	methods	to	
analyze	such	experiments	that	include	a	second	competitor	substrate	with	non-specific	
binding	sites.		We	show	how	to	build	on	results	from	single-ligand	competition	
experiments	to	fully	characterize	cooperative	binding	in	systems	with	two	distinct	
ligands	and	binding	sites	(Fig.	4C	and	Section	5).		We	generalize	the	methodology	to	
more	than	two	cooperating	ligands,	such	as	an	array	of	DNA	binding	proteins	(Fig.	6).		
See	Peacock	and	Jaynes	[1]	for	discussion	of	the	various	ways	these	tools	can	be	used,	
and	results	using	them.	
	
• Visualize	characteristics	and	limitations	of	Hill	plots	applied	to	more	realistic	binding	
models	than	those	described	by	the	Hill	equation,	which	implies	multiple	
simultaneous	ligand	binding.	

	

• Efficiently	find	individual	ligand-substrate	Kd’s	and	active	ligand	concentrations	(Fig.	
4A),	and	from	this	determine	the	cooperativity	factor	(Fig.	4C).	

	

• Connect	ternary	complex	formation	with	varying	total	concentration	of	one	ligand,	
and	find	the	cooperativity	factor,	even	if	only	one	individual	Kd	can	be	determined	by	
the	method	of	Fig.	4	(Section	5).	
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Specifications	Table	
Subject	area	 Biochemistry,	Genetics,	and	Molecular	Biology	
More	specific	subject	
area	

Cooperative	ligand	binding	to	multiple	sites	on	a	substrate	(such	as	
DNA)	

Method	name	 Quantitation	of	cooperativity	among	multiple	ligands	for	a	substrate	
Name	and	reference	of	
original	method	

Does	not	modify	a	specific	original	method,	but	does	reference	and	
compare	to	several	general	methodologies	(see	Jaynes	&	Peacock	[1])	

Resource	availability		 N/A	
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Method	Details	
	
LIST	OF	CONTENTS	 page	#	
	
Fig.	1A.		One	ligand	binding	to	two	non-equivalent	sites.		
	
Expressions	are	given	for:	 S1	–	p.	1	
1)		fractional	occupancy	as	a	function	of	[free	ligand],	Kd's	for	each	site,	and	

the	cooperativity	factor	 S1	–	p.	1	
2)		condition	when	the	binding	curve	is	identical	to	that	for	two	equivalent	

sites	without	cooperativity	 S1	–	p.	4	
3)		relationships	between	macroscopic	and	microscopic	Kd's	 S1	–	p.	5	
	
	
	
Fig.	1B-E.		Two	simple	modes	of	positive	cooperativity	and	corresponding	

Hill	plots,	for	one	ligand	binding	to	two	or	more	equivalent	sites.	 S1	–	p.	7	
	
	
	
Fig.	1F-I.		One	ligand	binding	cooperatively	to	an	arbitrary	number	of	

equivalent	sites.			 S1	–	p.	9	
	
F:		schematic	of	the	binding	equilibrium	for	one-step	cooperativity,	where	

cooperativity	becomes	maximum	(max.)	as	soon	as	one	ligand	is	bound	to	
any	site,	and	derivation	of	an	expression	for	the	concentration	of	the	ith	
complex	ai,	which	contains	i	ligand	molecules	 S1	–	p.	10	

	
G:		one	ligand	binding	cooperatively	to	an	arbitrary	number	of	equivalent	sites	

(one-step	cooperativity);		contains	expressions	for	fractional	occupancy	
and	Hill	plot	formulae,	including	conditions	for	points	of	maximum	slope,	
and	slopes	of	Hill	plots	at	their	points	of	max.	slope	(which	is	where	the	
fractional	occupancy	=	1/Z).	 S1	–	p.	10	

	
H:		schematic	of	the	binding	equilibrium	for	progressive	cooperativity,	where	

cooperativity	increases	by	an	equal	factor	as	each	ligand	is	added,	and	
derivation	of	an	expression	for	the	concentration	of	the	ith	complex	ai,	
which	contains	i	ligand	molecules	 S1	–	p.	21	

	
I:		one	ligand	binding	cooperatively	to	an	arbitrary	number	of	equivalent	sites	

(progressive	cooperativity);		contains	expressions	for	fractional	occupancy	
and	Hill	plot	formulae,	including	the	condition	for	the	point	of	maximum	
slope,	and	slopes	of	Hill	plots	at	their	point	of	max.	slope	(which	is	always	
where	the	fractional	occupancy	=	½).	 S1	–	p.	22	

	
	
Table	1	–	Slopes	of	Hill	plots	at	points	of	maximum	slope	and	at	50%	occupancy,	for	

one	ligand	binding	to	2	–	10	equivalent	sites.	 Table	1	–	p.	1	
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Fig.	2.		Two	ligands	binding	cooperatively	to	two	distinct	sites.			 S2	–	p.	1	

• Illuminates	complications	inherent	in	a	ligand-substrate	system	involving	
cooperativity:		why	relative	complex	formation	in	one	concentration	range	
may	reverse	at	other	concentrations,	and	how	to	identify	such	situations.	
	

A:		An	expression	connecting	[ternary	complex]	to	the	total	[ligand-1]	

added	to	the	mixture,	which	includes	fixed	total	[ligand-2]	and	total	

[substrate],	given	the	single-ligand-binding	site	dissociation	constants	and	the	

cooperativity	factor,	which	can	be	used	to	graph	[ternary	complex]	as	a	

function	of	[ligand-1],	and	also	to	find	the	cooperativity	factor	n	from	data	

points	(A,	p)	once	the	other	variables	have	been	determined,	using	freely	

available	curve	fitting	software.	 S2	–	p.	4	

Expressions	are	also	given	for	each	[single-ligand	complex],	each	free	

[ligand],	and	the	free	[substrate]	as	functions	of	the	total	[ligand-2],	the	total	

[substrate],	the	[ternary	complex],	the	single-ligand-binding	site	dissociation	

constants	and	the	cooperativity	factor.			The	binding	polynomial	in	terms	of	

free	ligand	concentrations	(f,	g),	Kd’s	(k,	L),	and	the	cooperativity	factor	(n)	is	

given	at	the	end.			 S2	–	p.	3-6	

Expressions	are	also	given	for	a	SINGLE	protein	binding	to	2	distinct	

binding	sites	on	a	substrate.		The	formulae	are	somewhat	simpler	here,	and	we	

can	obtain	an	explicit	formula	for	n	in	terms	of	constants	and	a	measured	

amount	of	ternary	complex	as	the	total	[ligand]	is	varied.	 S2	–	p.	5-6	

	

	

B:		Modeling	the	graph	of	[ternary	complex]	as	a	function	of	the	total	

concentration	of	one	ligand	(while	both	the	total	concentrations	of	the	other	

ligand	and	of	the	substrate	are	held	constant)	as	a	single	ligand	binding	to	a	

single	site.		This	model	is	based	on	the	saturation	concentration	of	ternary	

complex	and	the	apparent	Kd.			 S2	–	p.	7	

	

	

C:		An	expression	for	where	two	such	binding	curves	cross,	as	a	way	of	

determining	the	range	of	values	where	they	cross	and	where	they	don't.	 S2	–	p.	9	
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Fig.	3.			 S3	–	p.	1	

Derives	expressions:	

• for	graphing	concentrations	of	ternary	complex,	free	ligand,	substrate,	
competitor,	and	other	complexes	as	a	function	of	added	total	[unlabeled	
competitor	substrate]	using	simple	equation-graphing	software,	in	a	
system	where	two	distinct	ligands	bind	cooperatively	to	two	distinct	
binding	sites	on	a	substrate	(in	A)	

	

• for	total	occupancy	of	such	a	substrate	by	each	of	two	ligands,	as	a	function	
of	total	[ligand-1]	(without	unlabeled	competitor)	(in	B)	

	

• for	the	saturation	value	of	each	total	[bound	ligand]	as	the	total	[ligand-1]	
increases	(in	B)	

	

details	for	A:			

Derivation	of	an	expression	for	total	[specific	unlabeled	competitor	

substrate]	(=	U)	as	a	function	of	[labeled	ternary	complex]	(=	A)	and	[free	

ligand1]	(=	f).	 S3	–	p.	1-5	

An	expression	for	f	as	a	function	of	A	is	given.		(The	original	expression	is	

quartic	in	f,	and	so	it	uses	the	general	solution	for	a	quartic	equation.)		This	can	

be	substituted	into	the	expression	for	U	(as	a	function	of	A	and	f)	to	get	U	as	a	

function	of	A	for	graphing,	using	simple	software.	 S3	–	p.	5	

The	original	expression	involving	f	and	A	is	cubic	in	A,	and	can	be	solved	

for	A	as	a	function	of	f	using	the	general	cubic	solution,	which	is	simpler	and	

easier	for	software	packages	to	handle	than	the	quartic	solution.		So,	this	

solution	is	given,	along	with	expressions	for	the	other	variables	in	the	system	

as	a	function	of	A	and	f.			 S3	–	p.	7-8	

Together,	these	allow	graphing	of	each	of	the	varying	forms	involved	in	the	

experiment	as	a	function	of	any	other	one	of	these	forms	(most	usefully,	A	as	a	

function	of	U),	using	f	as	a	parameter	along	with	the	cubic	solution	for	A	as	a	

function	of	f.		For	example,	we	can	graph	y	vs.	x	where	y	=	A(f)	and	x	=	U[A(f),	f].	 S3	–	p.	7-8	
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Fig.	4A.		Using	competition	to	simultaneously	determine	the	single-ligand	
dissociation	constant	and	[ligand].		Formulae	are	given	for	using	curve	fitting	to	
find	both	of	these	as	parameters	from	experimental	data	in	which	known	amounts	
of	specific,	unlabeled	substrate	(such	as	a	DNA	oligo)	compete	with	a	known	
amount	of	specific,	labeled	substrate	(such	as	a	labeled	DNA	oligo)	for	binding	to	a	
fixed	amount	of	ligand	(such	as	a	DNA	binding	protein),	and	the	amount	of	bound,	
labeled	substrate	is	measured	as	competitor	substrate	is	varied.	 S4	–	p.	1	
	

For	a	single	ligand	(e.g.,	protein)	binding	to	a	specific	site	on	a	labeled	substrate	
(e.g.,	DNA)	either	with	or	without	unlabeled	substrate	present:	

1)	the	equation	describing	the	relationship	between	total	[unlabeled	
competitor	substrate]	(=	U)	and	the	[labeled	complex]	(=	a),	in	terms	of	the	total	
[ligand]	(=	p),	the	total	[labeled	substrate]	(=	H),	and	the	dissociation	constants	(q	
and	k);	 S4	–	p.	3	

2)	the	equation	describing	the	relationship	between	the	total	[ligand]	(=	p)	and	
[labeled	complex]	(=	a),	in	terms	of	the	total	[labeled	substrate]	(=	H),	and	the	
dissociation	constant	k,	and	the	expression	which	can	be	used	for	curve	fitting	to	
find	both	p	and	k	from	data	points	(∆,	a),	where	∆	is	the	dilution	factor	for	a	stock	
solution;	 S4	–	p.	4	

3)	the	above	expression	for	U,	specialized	to	the	case	where	unlabeled	
substrate	has	the	same	Kd	as	that	of	labeled	substrate,	in	which	case	U	is	changed	
to	V;	 S4	–	p.	5	

4)	Then,	in	order	to	get	an	initial	estimate	of	p	and	k	as	a	starting	point	for	
curve	fitting,	an	equation	for	each	of	them	independent	of	the	other	is	given	based	
on	the	initial	value	of	a	without	competitor	(Z	=	a	when	U	=	0),	along	with	a	second	
value	of	a	for	any	U	≠	0;	 S4	–	p.	7	

The	main	equations	are	summarized	at	the	end.	 S4	–	p.	8	
	
	
Fig.	4B.		Performance	of	competition	and	saturation	binding	methods	for	
simultaneously	finding	[a]T	and	KA	with	different	input	errors.		 S4	–	p.	9	
	
	
Fig.	4B	Methods.		Detailed	methods	for	this	figure.		 S4	–	p.	10-11	
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Fig.	4C.		Using	competition	to	simultaneously	determine	the	single-ligand	
dissociation	constant	and	[ligand]	in	the	presence	of	non-specific	competitor	
substrate.			 S4	–	p.	12	

Formulae	are	derived	for	using	curve	fitting	to	find	both	of	these	as	parameters	
from	experimental	data	in	which	known	amounts	of	specific,	unlabeled	substrate	
(such	as	a	DNA	oligo)	compete	with	a	known	amount	of	specific,	labeled	substrate	
(such	as	a	labeled	DNA	oligo)	and	a	known	amount	of	non-specific,	unlabeled	
substrate	(such	as	poly-dA/dT)	for	binding	to	a	fixed	amount	of	ligand	(such	as	a	
DNA	binding	protein),	and	the	amount	of	bound,	labeled	substrate	is	measured	as	
competitor	substrate	is	varied.			 S4	–	p.	15	

The	formula	to	find	n	from	curve	fitting,	after	the	individual	ligand	
concentrations	and	Kd's	(k	and	L)	have	been	determined	from	single-ligand	
experiments,	derived	in	Fig.	2A,	is	given	at	the	end.	 S4	–	p.	16	
	
	
	
Section	5	 	
• Provides	the	means	to	analyze	cooperativity	and	complex	formation	quantitatively	
where	only	one	of	two	cooperating	ligands	binds	well	enough	on	its	own	for	
determination	of	an	accurate	Kd	(Section	5A,B	and	Fig.	5).	

	
• Describes	method	to	estimate	Kd’s	and	cooperativity	factors	for	yeast	a1-α2	binding	
to	a	specific	DNA	site,	and	for	a	Drosophila	Engrailed–Extradenticle-Homothorax	
complex	on	several	specific	DNA	sites	(Section	5C).	

	
Section	5A.		Accurate	Kd’s	and	the	cooperativity	factor	can	be	determined	

even	when	one	Kd	is	too	high	to	measure	directly.	 S5	–	p.	1	
Here,	two	ligands	bind	to	two	distinct	sites	on	the	"probe"	(labeled)	substrate.	
	

Fig.	5A-D.		Graphs	of	equations	used	for	curve	fitting	to	find	cooperativity	factor	
and	2nd	Kd	when	one	protein	binds	weakly	alone.			 S5	–	p.	2	

	
Section	5B.	 S5	–	p.	6	

How	to	find	the	cooperativity	factor	(=	n)	as	a	parameter	in	curve	fitting,	using	
data	for	how	[protein2-substrate	complex]	(=	b)	and	[ternary	complex]	(=	A)	co-
vary	as	[protein1]	(=	p)	is	changed,	given	the	(constant)	[protein2]	(=	q),	[total	
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probe]	(=	H),	and	the	dissociation	constant	of	the	protein2-substrate	complex	(=	
L).		Then	how	to	get	p	and	k	as	parameters	in	curve	fitting	using	the	data	set	{(b,	A,	
∆)},		knowing	n	and	the	dilution	factors	(=	∆)	for	a	stock	solution	of	protein1,	of	
unknown	concentration.	 S5	–	p.	8-9	

Given	the	(constant)	[protein2]	(=	q),	[total	probe]	(=	H),	and	the	dissociation	
constant	of	the	protein2-substrate	complex	(=	L),	we	first	find	the	cooperativity	
factor	(=	n)	as	a	parameter	in	curve	fitting,	using	data	for	how	[protein2-substrate	
complex]	(=	b)	and	[ternary	complex]	(=	A)	co-vary	as	[protein1]	(=	p)	is	changed.		
We	keep	track	of	the	dilution	factors	used	for	p,	for	use	below.		(The	Kd	of	protein2	
dissociating	from	the	ternary	complex,	L/n,	is	then	known).			 S5	–	p.	8-9	

Knowing	n	and	the	dilution	factors	(=	∆)	for	a	stock	solution	of	protein1,	of	
unknown	concentration	p,	we	can	then	get	p	and	k	as	parameters	in	curve	fitting	
using	the	data	set	{(b,	A,	∆)}	using	a	different	expression,	derived	here.		The	
[strongly	binding	protein]	(=	q)	is	kept	constant,	as	the	weakly	binding	one	(p)	is	
varied.		We	assume	q	and	L	are	known	from	single-protein	binding	experiments.	 S5	–	p.	8-9	
	
Section	5C.	 S5	–	p.	10	

Contains	a	summary	of	our	curve	fitting	trials	to	find	first	n,	then	p	and	k	using	
the	equations	derived	in	Section	5A.	

Provides	a	summary	of	curve	fitting	trials	to	find	parameter	values	for	yeast	a1	
and	α2,	based	on	the	Vershon	lab	paper	Jin	et	al.,	1999	[7],	and	for	the	three	En	
binding	sites	studied	in	Fujioka	et	al.,	2012	[8]	that	we	focused	on	in	Peacock	and	
Jaynes	[1],	which	provides	the	related	results	and	discussion.	 S5	–	p.	10	
	

	
	
	

Fig.	6.	 S6	–	p.	1	
Approaches	and	expressions	are	given	for	generalizing	the	determination	of	

cooperativity	factors	to	more	than	two	binding	sites	and	cooperating	ligands,	
including	a	method	for	testing	whether	multi-ligand	cooperativity	is	due	to	a	series	
of	pairwise	interactions,	or	is	more	complex.	
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Peacock	  and	  Jaynes,	  2017	  
Fig.	  1A.	  	  One	  ligand	  binding	  to	  two	  non-‐equivalent	  sites.	  	  Expressions	  are	  given	  for	  	  
1)	  fractional	  occupancy	  as	  a	  function	  of	  [free	  ligand],	  for	  a	  given	  Kd	  and	  cooperativity	  factor,	  	  
2)	  the	  condition	  where	  the	  binding	  curve	  is	  identical	  to	  that	  for	  two	  equivalent	  sites	  without	  cooperativity,	  and	  	  
3)	  relationships	  between	  macroscopic	  and	  microscopic	  Kd's.	  
	  
Refer	  to	  Fig.	  1	  of	  Peacock	  and	  Jaynes	  [1]	  for	  illustrations	  of	  how	  these	  tools	  can	  be	  used.	  
	  
	  
CONTENTS:	  
	  
Expressions	  for:	  
1)	  	  fractional	  occupancy	  as	  a	  function	  of	  [free	  ligand],	  Kd's	  for	  each	  site,	  and	  cooperativity	  factor;	  
2)	  	  condition	  when	  the	  binding	  curve	  is	  identical	  to	  that	  for	  two	  equivalent	  sites	  without	  cooperativity.	  
3)	  	  Relationships	  between	  macroscopic	  and	  microscopic	  Kd's.	  
	  
	  
Definitions	  of	  variables:	  
h	  =	  [free	  probe	  DNA,	  "hot"	  probe]	  
H	  =	  total	  ["hot"	  DNA]	  
f	  =	  [free	  protein]	  
a	  =	  [protein	  –	  	  site	  1	  complex]	  =	  [(fh)]	  
b	  =	  [site	  2	  –	  protein	  complex]	  =	  [(hf)]	  
A	  =	  [ternary	  complex]	  =	  [(fhf)]	  
	  
Dissociation	  (equilibrium)	  constants,	  including	  cooperativity	  factor	  n:	  
k	  =	  dissociation	  constant	  of	  (fh),	  site	  1	  binary	  complex	  
L	  =	  dissociation	  constant	  of	  (hf),	  site	  2	  binary	  complex	  
k/n	  =	  dissociation	  constant	  of	  protein	  from	  site	  1	  of	  ternary	  complex	  (fhf)	  
L/n	  =	  dissociation	  constant	  of	  protein	  from	  site	  2	  of	  ternary	  complex	  (fhf)	  
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Equations	  governing	  equilibrium	  concentrations:	  
	  
equation	  1:	  

equation	  2:	  

equation	  3:	  

equation	  4:	  

	  
The	  binding	  polynomial	  P	  is	  H/h	  (as	  in	  Freire,	  et	  al.,	  2009	  [2]):	  

This	  form	  shows	  that	  k	  and	  L	  are	  1/(microscopic	  association	  constants)	  while	  n	  is	  kappa,	  the	  "cooperativity	  constant"	  of	  	  
Freire,	  et	  al.,	  2009	  [2].	  
	  
	  
1)	  	  To	  get	  a	  in	  terms	  of	  f	  and	  constants,	  get	  A,	  h,	  and	  b	  in	  terms	  of	  f	  and	  constants,	  and	  substitute	  into	  eq'n	  3,	  which	  gives:	  
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Now,	  since	  b	  =	  k/L	  *	  a	  (above,	  from	  eq'ns	  1	  and	  2):	  

	  
and	  since	  A	  =	  nf/L	  *	  a	  (above,	  from	  eq'n	  4):	  

	  
This	  allows	  us	  to	  express	  fractional	  occupancy,	  ø,	  in	  terms	  of	  f	  and	  constants:	  

	  
For	  a	  Hill	  plot,	  we	  need	  this	  over	  (1	  –	  fractional	  occupancy)	  which	  is:	  

	  
and	  ø	  /	  (1	  –	  ø)	  is:	  

For	  a	  Hill	  plot,	  we	  graph	  the	  natural	  logarithm	  (ln)	  of	  this	  vs.	  ln	  f.	  
Rather	  than	  using	  a	  double	  ln	  scale,	  it	  is	  often	  easier	  to	  substitute	  x	  =	  ln	  f,	  
which	  means	  that	  	  

and	  graph	  the	  ln	  of	  the	  above,	  with	  this	  substitution,	  as	  a	  function	  of	  x.	  
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2)	  	  Next,	  specialize	  this	  to	  the	  case	  of	  two	  equivalent	  binding	  sites,	  for	  which	  L	  =	  k:	  

	  
Then	  graph	  it	  as	  a	  Hill	  plot	  (below).	  
	  
Aside:	  
(Note	  that	  when	  n	  =	  1,	  this	  is	  just	  f	  /	  k,	  the	  same	  as	  for	  a	  single	  site,	  where	  f	  /	  k	  =	  a	  /	  h	  =	  (a/H)	  /	  (1	  –	  a/H).)	  
	  
When	  does	  this	  without	  cooperativity	  (n	  =	  1)	  look	  the	  same	  as	  two	  non-‐equivalent	  sites	  with	  cooperativity?	  
When	  2n	  /	  (k+L)	  =	  (k+L)	  /	  2kL,	  because	  then	  ø	  /	  (1	  –	  ø)	  becomes	  a	  constant	  times	  f	  (specifically,	  (k+L)/2kL	  =	  1/k'),	  	  
as	  it	  is	  without	  cooperativity	  for	  equivalent	  sites	  (it	  then	  =	  f	  /	  k,	  as	  stated	  above,	  but	  call	  it	  k'	  to	  distinguish	  it):	  

	  
When	  2n	  /	  (k+L)	  =	  (k+L)	  /	  2kL:	  

	  
or,	  

and	  from	  the	  assumption	  that,	  
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If	  k	  and	  L	  differ	  by	  a	  factor	  of	  R:	  

and	  if	  R	  >>	  1,	  this	  is	  approximated	  by	  R/4.	  	  Specifically,	  the	  value	  of	  n	  for	  which	  the	  Hill	  plot	  is	  linear	  is	  always	  >	  R/4,	  	  

and	  approaches	  R/4	  (if	  R	  is	  defined	  so	  that	  R	  >	  1;	  	  if	  R	  <	  1,	  this	  is	  1/4R	  instead)	  as	  R	  goes	  to	  infinity.	  	  	  

This	  means	  that	  as	  long	  as	  n	  <	  R/4,	  positive	  cooperativity	  cannot	  produce	  a	  max.	  Hill	  plot	  slope	  that	  is	  >	  1.	  
	  
The	  Hill	  plot	  is	  linear	  when	  R	  =	  100	  and	  n	  is	  exactly:	  

or	  when	  R	  =	  4	  and	  n	  is:	  

	  
3)	  	  It	  is	  interesting	  to	  relate	  the	  above	  to	  the	  macroscopic	  dissociation	  constants:	  
For	  the	  singly	  bound	  complex,	  the	  macroscopic	  dissociation	  constant	  is:	  

while	  for	  the	  ternary	  complex,	  it	  is:	  
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The	  ratio	  of	  these	  is:	  

	  
We	  saw	  above	  that	  the	  Hill	  plot	  slope	  goes	  above	  1	  when	  n	  >	  	  

	  
When	  this	  is	  the	  case,	  then	  the	  ratio	  of	  the	  macroscopic	  dissociation	  constants	  is	  >	  	  

	  
This	  is	  the	  ratio	  of	  the	  association	  (or	  dissociation)	  constants	  required	  in	  order	  for	  two	  non-‐equivalent	  sites	  to	  always	  appear	  cooperative,	  
as	  stated	  in	  the	  introductory	  summary	  in	  Bardsley,	  1977	  [3].	  
(Rho	  is	  defined	  as	  4	  *	  this	  ratio	  in	  equation	  5.19	  of	  Freire,	  et	  al.,	  2009	  [2],	  and	  it	  must	  exceed	  1	  in	  order	  to	  get	  unambiguously	  cooperative	  
behavior,	  which	  is	  equivalent	  to	  the	  ratio	  exceeding	  1/4).	  
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Fig.	  1B-‐E.	  	  Two	  simple	  modes	  of	  
positive	  cooperativity	  and	  
corresponding	  Hill	  plots.	  	  B:	  models,	  
two	  modes	  of	  cooperativity.	  	  One-‐step,	  
upper	  path:	  When	  any	  one	  site	  is	  bound	  
(of	  the	  Z	  equivalent	  sites),	  the	  Kd	  for	  all	  
subsequent	  binding	  events	  is	  decreased	  
to	  the	  initial	  Kd	  /	  n	  (n	  >	  1).	  	  Progressive,	  
lower	  path:	  	  the	  Kd	  decreases	  
multiplicatively	  in	  (Z	  –	  1)	  equal	  steps	  
from	  the	  initial	  binding	  event’s	  Kd	  down	  
to	  1/n	  times	  that	  starting	  value.	  	  	  	  C:	  	  Hill	  
plots	  for	  one-‐step	  cooperativity,	  showing	  
how	  the	  shape	  of	  the	  plot	  changes	  with	  
the	  number	  of	  sites	  (2,	  4	  and	  10	  sites,	  
fine-‐dashed,	  coarse-‐dashed,	  and	  solid,	  
respectively,	  with	  n	  =	  50,	  initial	  Kd	  =	  0.1),	  
where	  the	  maximum	  slope	  occurs	  
(purple	  dots	  and	  tangent	  line),	  and	  what	  
happens	  if	  slopes	  are	  measured	  at	  50%	  
occupancy	  instead	  (orange	  dots	  and	  
tangent	  line).	  	  Note	  that	  the	  points	  of	  
maximum	  slope	  shift	  to	  lower	  
occupancies	  for	  increasing	  numbers	  of	  
sites.	  	  Thus,	  the	  maximum	  slopes	  are	  1.75	  
for	  2	  sites,	  2.37	  for	  4	  sites,	  and	  2.81	  for	  
10	  sites,	  while	  the	  slope	  at	  50%	  
occupancy	  for	  10	  sites	  is	  only	  1.31,	  less	  
than	  it	  is	  for	  either	  2	  or	  4	  sites.	  	  See	  Fig.	  
1F,G	  for	  expressions	  used	  to	  generate	  
these	  graphs,	  and	  their	  derivations.	  
D:	  	  Hill	  plots	  for	  progressive	  
cooperativity,	  showing	  how	  shapes	  
change	  with	  the	  number	  of	  sites	  (2,	  4	  and	  
10	  sites,	  fine-‐dashed,	  coarse-‐dashed,	  and	  
solid	  curves,	  respectively,	  with	  initial	  Kd	  
=	  10)	  and	  with	  n	  (maximum	  
cooperativity);	  	  the	  two	  sets	  of	  curves	  
show	  two	  different	  values	  of	  n	  (5000	  on	  
the	  left,	  and	  50	  on	  the	  right).	  	  The	  



	   Fig.	  1	  –	  p.	  8	  

bicolored	  line	  is	  tangent	  to	  the	  10-‐site	  curve	  at	  the	  point	  of	  maximum	  slope,	  which	  occurs	  at	  50%	  occupancy	  for	  all	  curves.	  	  Note	  that	  the	  slopes	  at	  50%	  
occupancy	  for	  n	  =	  5000	  (1.97,	  3.80,	  and	  9.37,	  for	  2,	  4,	  and	  10	  sites,	  respectively)	  approximate	  the	  number	  of	  sites,	  while	  for	  n	  =	  50,	  this	  it	  true	  only	  for	  
the	  2-‐site	  curve	  (slopes	  are	  1.75,	  2.56,	  and	  3.93,	  respectively).	  	  See	  Table	  1	  for	  more	  examples;	  	  see	  Fig.	  1H,I	  for	  derivations	  of	  expressions	  used	  here.	  
E:	  	  graphs	  of	  maximum	  slopes	  of	  Hill	  plots	  as	  a	  function	  of	  cooperativity	  factor	  (n),	  for	  one-‐step	  cooperativity	  (blue	  curves)	  and	  progressive	  
cooperativity	  (red	  curves),	  and	  for	  2,	  4	  and	  10	  sites,	  (dotted,	  dashed,	  and	  solid	  curves,	  respectively).	  	  Note	  that	  the	  maximum	  slopes	  approach	  the	  
number	  of	  sites	  as	  n	  increases,	  but	  that	  this	  approach	  is	  slower	  as	  the	  number	  of	  sites	  increases.	  	  See	  Fig.	  1G,I	  for	  a	  derivation	  of	  expressions	  used	  here.	  
	  

In the case of one-step cooperativity (illustrated in Fig. 1B, upper path), occupancy of any single site causes a decrease in the Kd of all other 

sites by a factor of n (assuming positive cooperativity, i.e., n > 1).  As expected, the maximum slope (at very high cooperativity) of a Hill plot 

approaches the number of sites, Z (Table 1).  However, surprisingly, this maximum slope occurs when the fractional occupancy is 1/Z (not ½, as 

might be expected, Fig. 1G).  Hill plots for one-step cooperativity with 2, 4, and 10 equivalent sites are shown in Fig. 1C.  It is noteworthy that in 

all cases, the slope at each extreme of ligand concentration approaches 1, not Z. 

With one-step cooperativity, measuring the slope at 50% occupancy leads to an underestimate of the number of sites (in fact, the slope at 

this point can decrease with increasing number of binding sites, depending on n).  Furthermore, very high cooperativity is required for the 

maximum slope to approach Z.  For example, with 50-fold cooperativity, the maximum slope is between 2 and 3 for 3-10 binding sites (Table 1).  

Even with 5000-fold cooperativity, the slope at 50% occupancy peaks at 3.81 for 7 sites, and the maximum slope is only 5.1 for 10 sites (Table 1). 

To round out the consideration of Hill plots as a way to quantify cooperativity, we consider the case of progressive cooperativity, where 

each additional bound ligand changes the affinity for subsequent ligands in equal increments.  Here, the maximum slope occurs at 50% occupancy 

for any number of sites (Figs. 1D, 1I), and approaches Z as n increases (Table 1, Figs. 1E, 1I).  However, with 50-fold cooperativity, the maximum 

slope is ~3 for 5 sites, and ~4 for 10 sites (Table 1). 

One of the under-appreciated aspects of the Hill formalism is just how unrealistic the Hill equation can be relative to more plausible 

biophysical models.  A Hill plot of the basic Hill equation is simply a straight line of slope Z.  In particular, the slope does not approach 1 at very 

low and high occupancies.  This gives the impression that to determine the number of sites, data can be obtained anywhere in the occupancy range, 

when in fact, precise data must be obtained bracketing the point of maximum slope.  Furthermore, because this point can shift as the number of sites 

changes, it is not sufficient to obtain data near 50% occupancy.  The difficulty of accurately estimating the number of cooperating sites from Hill 

plots has been noted previously, even for the classic case of hemoglobin.  Our analysis shows some of the general reasons behind such observations.	  
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Fig. 1F-I.  One ligand binding cooperatively to an arbitrary number of equivalent sites.   
 
F:  schematic of the binding equilibrium for one-step cooperativity, where cooperativity becomes maximum (max.) as soon as one 

ligand is bound to any site, and derivation of an expression for the concentration of the ith complex ai, which contains i ligand 
molecules, where: 

Z = the total number of sites on the substrate 
f = [free ligand], 
r = forward rate constant for binding of a ligand molecule to the complex (or to the unliganded substrate h, free "hot" probe), 
k = dissociation rate constant for the singly bound complex, 
k/n = dissociation rate constant for each ligand molecule except the first from the complex; 

to simplify some of the expressions (here and later on), s is defined as: 
s = fr/k;  free ligand concentration divided by the equilibrium dissociation constant without cooperativity (k/r). 
 

G:  one ligand binding cooperatively to an arbitrary number (Z) of equivalent sites (one-step cooperativity);  contains expressions for 
fractional occupancy and Hill plot formulae, including conditions for points of maximum slope, and slopes of Hill plots at their 
points of max. slope (which is where the fractional occupancy = 1/Z). 

 
H:  schematic of the binding equilibrium for progressive cooperativity, where cooperativity increases by an equal factor as each 

ligand is added, and derivation of an expression for the concentration of the ith complex ai, which contains i ligand molecules, 
where: 

Z = the total number of sites on the substrate 
f = [free ligand], 
r = forward rate constant for binding of a ligand molecule to the complex (or to the unliganded substrate h, free "hot" probe), 
k = dissociation rate constant for the singly bound complex, 
k / n(i-1)/(Z-1) = dissociation rate constant for a ligand molecule from the ith complex 
k / n = dissociation rate constant for a ligand molecule from the fully liganded (the Zth) complex. 

to simplify some of the expressions, s is defined as: 
s = fr/k;  free ligand concentration divided by the equilibrium dissociation constant without cooperativity (k/r). 
 

I:  one ligand binding cooperatively to an arbitrary number of equivalent sites (progressive cooperativity);  contains expressions for 
fractional occupancy and Hill plot formulae, including the condition for the point of maximum slope, and slopes of Hill plots at their 
point of max. slope (which is always where the fractional occupancy = ½). 
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F:  one-step cooperativity 

 
G 
Starting with the formula for the concentration of each complex containing i bound ligand molecules for 1-step cooperativity, 
derived in F above: 

The fractional occupancy is the total number of occupied sites divided by the total number of sites;  therefore: 

where 
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This can be converted to an analytic form that is easier to work with by first changing the summation limits to start at 0;  
when we do this, i-1 becomes i: 

This summation is a standard form that can be recognized as the binomial expansion of 

which makes the original summation: 

This, in turn, makes the fractional occupancy: 

This can be further modified to eliminate h by noticing that: 

and then converting this summation to an analytic form by noticing that it contains a standard binomial expansion, except that 
it is missing the first term: 
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and using the analytic form that this summation corresponds to: 

 
This gives: 

Now we can see that  

so that 

which then gives us an analytic form for the fractional occupancy in terms 
of only n, s, and Z:  

For a Hill plot, we need  

so we need 
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which simplifies to: 

which gives 

 
A Hill plot is the natural logarithm (ln) of this as a function of ln(f). 
Since s = fr/k, 

Taking the ln of both sides, 

 
One way to generate a ln plot is to substitute x for ln(f), then graph as a function of x;  x = ln(f) means that: 
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So, using these substitutions, 

 
The Hill plot is then a plot of the following y vs. x: 

 
In order to determine and plot the slope of this curve, we need the derivative of the above y with respect to x (which is the 
slope of the Hill plot).  This is: 

 
This is used below to find a simple expression for the max. slopes of Hill plots.   
However, to do this, the point where the max. slope occurs must first be found. 
 
To find where this is maximum, we need to find where its derivative = 0.   
The derivative of the slope with respect to x, which = ln(f), is N / D where: 

and 
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D is not relevant for finding where the slope is max., except for ruling out where it = 0 as a possible solution. 
 

This maximum occurs where N = 0, which occurs where the second factor in N = 0.  So the condition for maximum slope is: 

 
To simplify the expressions, as above, use s = fr/k, the free ligand concentration divided by the equilibrium dissociation 
constant without cooperativity, k/r. 

This makes the condition for max. slope: 

or 

 
This expression can be solved explicitly for the variable s or x only for Z = 2, 3, or 4 (see below).  However, it can be solved 
graphically, and the value thus obtained used to get the max. slope using the formula above.   
 
This was done to draw lines of slope equal to the max. slope, at the points of max. slope, for the Hill plots in Fig. 1C.  It was 
also used to obtain the values for max. slopes shown in Table 1 for one-step cooperativity. 
 
Although finding the point of max. slope is somewhat complicated, it can be seen to have a simple relationship to the 
fractional occupancy, as follows.   
From above: 
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At the point of max. slope, this is: 

This is used to draw horizontal lines that cross the Hill plots at their points of maximum slope in Fig. 1C. 
Rearranging this to find the fractional occupancy at the point of maximum slope: 

 
So, the fractional occupancy at the point of max. slope is: 

What is the slope at this point, where the slope is maximum? 
The slope is, from above, incorporating the variable s: 

 
The condition for max. slope tells us that: 

 
Substituting this for the denominator in the expression for the max. slope gives: 

Another form of the condition for max. slope is:  
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so that the expression for max. slope can also be written: 

which simplifies to the following; 
maximum slope of a Hill plot with 1-step cooperativity n: 

where 

AND must satisfy the condition for maximum slope. 
This is used to graph lines of max. slope at the points of max. slope in Fig. 1C, after determining the appropriate value of s  
for each value of Z from the condition for max. slope (see below for examples). 
 
The limit of the maximum slope as n goes to infinity can be seen to be Z from this, because ns goes to infinity as n goes to 
infinity.  This can be seen from the following argument.   
If the limit of ns were < infinity, then the condition for maximum slope  

 
could not hold, since the left side would blow up while the right side did not. 
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For Z = 2, the condition for max. slope: 

 

becomes: 

 
Using this, the slope at its maximum for Z = 2 is: 
 

  



 Fig. 1 – p. 19 

For Z = 3, the condition for max. slope is: 

 
This is a cubic equation in the variable s that can be solved by standard methods to give: 

 
the slope at its max. is then: 
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For Z = 4, the condition for max. slope is: 

 
This is a quartic equation in s that can be solved by standard methods.  The solution is easier to give in parts.  Defining: 
 

The single positive, real root of the quartic in this case gives, for the value of ns where the max. slope occurs: 

and the corresponding slope is given by 

The above expressions for the max. slope for Z = 2, 3, and 4 are used in Fig. 1C and Table 1. 
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H progressive cooperativity   
schematic of the binding equilibrium for progressive cooperativity, where cooperativity increases by an equal factor as each 
ligand is added, and derivation of an expression for the concentration of the ith complex ai, which contains i ligand molecules, 
where: 

Z = the total number of sites on the substrate 
f = [free ligand], 
r = forward rate constant for binding of a ligand molecule to the complex (or to the unliganded substrate h, free "hot" probe), 
k = dissociation rate constant for the singly bound complex, 
k / n(i-1)/(Z-1) = dissociation rate constant for a ligand molecule from the ith complex 
k / n = dissociation rate constant for a ligand molecule from the fully liganded (the Zth) complex. 

to simplify some of the expressions, s is defined as: 
s = fr/k;  free ligand concentration divided by the equilibrium dissociation constant without cooperativity (k/r). 
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I  one ligand binding cooperatively to an arbitrary number of equivalent sites (progressive cooperativity);  expressions for fractional 
occupancy and Hill plot formulae, including the condition for the point of maximum slope, and slopes of Hill plots at their point of max. 
slope (which is always where the fractional occupancy = ½). 
Starting with the formula for the concentration of each complex containing i bound ligand molecules for progressive 
cooperativity, as show in H above: 

The fractional occupancy is the total number of occupied sites divided by the total number of sites;  therefore: 

We will also need: 

where 

and 
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For a Hill plot, we need  

 (cancelling out the common factors hZ! in the last step) 
 
A Hill plot is the logarithm (ln) of this as a function of ln(f). 
Since s = fr/k, if we substitute x = ln(f), then  

and 

The slope of our Hill plot is: 

 
 
The max. slope occurs at 50% occupancy for all Z, and this occurs where s = 1/√n: 
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After making this substitution, the slope at maximum is: 

 

Each power of n in both summations occurs twice, since it is the same for i and Z – i, except for the middle term if Z is even, 
which = 0 in the numerator, because i = Z/2, so 2i – Z = 0;  however, in the denominator, this term is non-zero and occurs 
only once, so, if we want to combine equal powers in the summation, we have to separate it out.   
Combining them gives a form that is easier to use to write out the terms for a given Z.   
For Z odd, the upper limit in the summations is (Z – 1)/2, giving a total of (Z+1)/2 terms (including i = 0). 
For Z even, the upper limit in the summations is (Z/2 – 1), giving a total of Z/2 terms. 
So, the maximum slope of a Hill plot with progressive cooperativity is, 
for Z odd: 

 
 
 
For Z even, the same manipulations within the summation apply, except that the middle term in the denominator,  
where i = Z/2, occurs only once, and so we have to separate it out.  The corresponding term in the numerator equals zero,  
giving the sums in the numerator and denominator the same summation limits. 
  



 Fig. 1 – p. 25 

So, the maximum slope of a Hill plot with progressive cooperativity is,  
for Z even: 

 
 
To see that the limit, as n goes to infinity, of the maximum slope is Z, we can note that all the powers of n are negative, 
except when i = 0.  This gives a constant term, which in the numerator is: 

while in the denominator it is: 

So, as n goes to infinity, all the powers of n go to 0, except for these constant terms, so that the slope in this limit is Z.   
 
In fact, we can write the expression for the maximum slope to give terms that have coefficients of the powers of n that are all 
> 1, by multiplying both numerator and denominator by (Z – 1)!. 
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Peacock and Jaynes, 2017 
 

Table 1.  Slopes of Hill plots at points of maximum slope and at 50% occupancy,	  for	  one	  
ligand	  binding	  to	  two	  or	  more	  equivalent	  sites	  

   

1-step 
cooperativity 

 

progressive 
cooperativity 

cooperativity 
factor 

# of 
sites 

% 
occupancy 
at max. 
slope slope at max. 

slope 
at 50% 

occu. 
slope at max. 
(50% occupancy) 

5 2 50% 1.38 1.38 1.38 
5 3 33% 1.50 1.46 1.47 
5 4 25% 1.56 1.41 1.52 
5 5 20% 1.59 1.33 1.55 
5 10 10% 1.66 1.03 1.60 

50 2 50% 1.75 1.75 1.75 
50 3 33% 2.14 2.10 2.21 
50 4 25% 2.37 2.20 2.56 
50 5 20% 2.51 2.14 2.85 
50 10 10% 2.81 1.31 3.93 

500 2 50% 1.91 1.91 1.91 
500 3 33% 2.56 2.54 2.68 
500 4 25% 2.99 2.87 3.41 
500 5 20% 3.30 2.99 4.11 
500 10 10% 4.00 2.14 7.65 

5000 2 50% 1.97 1.97 1.97 
5000 3 33% 2.79 2.78 2.89 
5000 4 25% 3.41 3.33 3.80 
5000 5 20% 3.88 3.66 4.72 
5000 10 10% 5.09 3.30 9.37 

5.00E+08 2 50% 2.00 2.00 2.00 
5.00E+08 3 33% 3.00 2.99 3.00 
5.00E+08 4 25% 3.96 3.96 4.00 
5.00E+08 5 20% 4.88 4.86 5.00 
5.00E+08 10 10% 8.35 7.64 10.00 

5.00E+13 2 50% 2.00 2.00 2.00 
5.00E+13 3 33% 3.00 3.00 3.00 
5.00E+13 4 25% 4.00 4.00 4.00 
5.00E+13 5 20% 4.99 4.99 5.00 
5.00E+13 10 10% 9.47 9.24 10.00 
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Fig. 2.  Two ligands binding cooperatively to two distinct sites.  A:  Expression connecting [ternary complex] to the total [ligand-1] added to the mixture, which includes fixed total 
[ligand-2] and total [substrate], given the single-ligand binding site dissociation constants and the cooperativity factor.  Expressions are also given for each [single-ligand complex], each 
free [ligand], and the free [substrate] as functions of the total [ligand-2], the total [substrate], the [ternary complex], the single-ligand binding site dissociation constants, and the 
cooperativity factor.  Formulae are also given for the case of a single ligand binding to two distinct sites on a substrate.  B:  Modeling the graph of [ternary complex] as a function of the 
total concentration of one ligand (while both the total concentrations of the other ligand and of the substrate are held constant) as a single ligand binding to a single site.  This model is 
based on the saturation concentration of ternary complex and the apparent Kd.  C:  An expression for where two such binding curves cross, as a way of determining the range of values 
where they cross and where they don't. 
 
key for single-character notation used here: 
below Peacock &   description 
  Jaynes [1] 
    H     [AB]T  total concentration of labeled substrate 
    h     [AB]  free concentration of labeled substrate 
    p     [a]T  total concentration of protein1 
    f     [a]  free concentration of protein1 
    q     [b]T   total concentration of protein2 
    g     [b]  free concentration of protein2 
    k      KA  dissociation constant of protein1 from its single-protein complex 
    L      KB   dissociation constant of protein2 from its single-protein complex 
    n      n   cooperativity factor 
    a     [AaB]  concentration of single-protein1 complex 
    b     [ABb]  concentration of single-protein2 complex 
    A    [AaBb]  concentration of ternary complex 
 
A 
Contents: 
 
Expression connecting the [ternary complex] (A) and the total [ligand-1] (p), with fixed total [ligand-2] (q) and total [substrate] (H), given the single-ligand dissociation constants (k and L) 
and the cooperativity factor (n). 
 
Included are expressions for a, b, f, g, and h in terms of q, A, k, L, n, and H.   
The binding polynomial in terms of f, g, k, L and n is given at the end. 
 
Definitions of variables: 
h = [free probe DNA, "hot" probe] 
a = [protein1 –  site1 complex] = [(fh)] 
b = [site2 – protein2 complex] = [(hg)] 
A = [ternary complex] = [(fhg)] 
H = total ["hot" DNA] = h + a + b + A 
f = [free protein1] 
p = total [protein1] = f + a + A 
g = [free protein2] 
q = total [protein2] = g + b + A 
 
Dissociation (equilibrium) constants, including cooperativity factor n: 
k = dissociation constant of (fh), protein1 –  site1 binary complex 
L = dissociation constant of (hg), site2 – protein2 binary complex 
k/n = dissociation constant of protein1 from site1 of ternary complex (fhg) 
L/n = dissociation constant of protein2 from site2 of ternary complex (fhg) 
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Equations governing equilibrium concentrations: 
equation 1: 

 
equation 2: 

 
equation 3: 

 
equation 4: 

 
equation 5 (from either L/n = ga / A combined with eq'n 1, OR, k/n = fb / A combined with eq'n 2): 

 
 
In order to get an expression connecting A and p, with q constant, given H, k, L, and n, we can use the fact that p = f + a + A.  If we first get expressions for f and a that involve only the 
known quantities, this will give the desired connection. 
 
First, to get a in terms of A and constants, do the following. 
 
Summary of derivation: 
Eliminate g using 1 and 4. 
Solve this for h to get eq'n 14.  
Eliminate h using 5 and 14 and solve this for b to get eq'n 145. 
Eliminate h using 3 and 5 and solve this for b to get eq'n 35. 
Eliminate b using 145 and 35 to get eq'n 1345. 
Manipulate this to get a quadratic in a in terms of only the starting amounts of total protein2 (q) and DNA (H), the ternary complex A,  
and the constants L and n. 
 
Detailed derivation available on request. 
 
Applying the quadratic formula gives this expression for a: 

from which A/n can be factored out.  For a > 0, the + sign applies when the denominator 
is > 0, and the – sign applies when the denominator is < 0;   
however, from equation 4, q–A = g+b, which is always > 0, so the latter is never true, and 
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a = : 

 
 
To get f in terms of A and constants:  
 
Summary of derivation: 
eliminate h using 3 and 5 and solve this for b to get eq'n 35;  
eliminate both a and h (h/a) using 2 and 5;  solve this for f to get eq'n 25;  
substitute for b in 25 using 35 to get eq'n 235; 
eliminate both b and h (h/b) using 1 and 5;  solve this for a to get eq'n 15;  
substitute this for a in 235 to get eq'n 1235; 
eliminate b using 25 and 4 and solve this for g to get eq'n 245;  
use this to substitute into 1235 to get a quadratic in f in terms of only the starting amounts of total protein2 (q) and DNA (H), the ternary complex A, and the constants k, L, and n. 
 
Detailed derivation available on request. 
Applying the quadratic formula gives: 

 
For very small p, A is very small, and the denominator of f is > 0.  As p becomes very large, it occupies all of the free DNA, and both b and h go to 0.  The only forms of the DNA are then 
a and A, so a = H – A.  Similarly, since b = 0, q = g + A, so g = q – A.  Now, since L/n = ga/A, AL/n = ga = (q – A)(H – A).  This means that the denominator of f goes to 0.  So, for all 
positive values of p, the denominator of f > 0, and the + sign in front of the radical applies.   
 
Because the denominator of f goes to zero as p goes to infinity, this gives us an implicit expression for A as p goes to infinity, in terms of H, q, L, and n:   
(H – A)(q – A) = LA/n. 
 
The radicands in the formulae for a and f are equal (derivation available on request), and substituting the simpler version from the expression for a gives the following form for f: 
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Now, because p = A + a + f, we can combine the above expressions for a and f to get: 
 

 
Graphing A vs. p at constant q and H based on the above: 
 
By setting x = p and y = A in the expression above, we obtain an expression that can be used in a variety of graphing applications to graph A as a function of p. 
 
For a given p and A, it also gives an implicit expression for n (see below for others). 
 
 
Expressions for the other variables in terms of the same constants and A are as follows: 

 
The + sign in front of the radical is appropriate for g > 0, because the numerator is always > 0, and the magnitude of the square root is greater than that of the terms that precede it in the 
denominator. 
 
h: 

 
The + sign in front of the radical is always appropriate for h > 0, because the magnitude of the square root is greater than that of the preceding terms in the numerator, and the denominator 
is always > 0. 
So, with the – sign, the numerator would be < 0, making h < 0. 
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b: 

 
The – sign in front of the radical is always appropriate for b > 0, because with a + sign, b + a + h would be greater than H – A, rather than = H – A, as it should be.  This is consistent with 
the signs that are appropriate for a and h, as explained above. 
 
We can also get the following two independent expression for h (derivations available on request): 
 

 
The binding polynomial, after e.g., Haiech et al, 2014 [4], is 
P(x,y) = 1 + k1*x + k2*y + c1,1*k1*k2*x*y 

Is P = H/h?   
Using expressions for f, g, and n from equations 1, 2, and 5: 

 
Yes, P = H/h since, from equation 3: 

 
Formulae for a SINGLE protein binding to 2 distinct binding sites on a substrate. 
The formulae are somewhat simpler here, and we can obtain an explicit formula for n in terms of constants and a measured amount of ternary complex  
as the total [ligand] is varied. 
 
The variables used are similar to those used above, except that now there is no second ligand: 
[2-ligand complex] = A 
 total [substrate] = H 
 free [substrate] = h 
 total [ligand] = p  
 free [ligand] = f 
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dissociation constants: 
 k, L, for ligand + each site on the substrate (the corresponding complexes are a and b, respectively). 

 
Derivations of the following are available on request: 
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B  Modeling the graph of [ternary complex] as a function of the total concentration of one ligand (while both the total concentrations of the other ligand and of the substrate are held 
constant) as a single ligand binding to a single site.  This model is based on the saturation concentration of ternary complex and the apparent Kd.   
 
Contents: 
 
"Modeling" the graph of A vs. p as a single protein binding to a single site based on A-max and  
the apparent Kd, which is the concentration of "unbound" protein1 where A = 1/2 A-max. 
 
Note:  For a binary complex, when the concentration of complex is at half-maximum, the concentration  
of free ligand equals the Kd.  Also, for a binary complex, the binding curve saturates at 100% of probe bound,  
whereas here, this is not the case.  However, the apparent Kd and saturation value are typically found by  
curve fitting to a theoretical curve that best approximates the data, so that the saturation value found is  
not necessarily at 100% of probe bound.  Thus, what is derived below is a theoretical binary binding curve 
that gives an apparent Kd that is similar to what is typically found when this procedure is applied to  
binding data of this kind. 
 
Definitions of variables: 
h = [free probe DNA, "hot" probe] 
a = [protein1 –  site1 complex] = [(fh)] 
b = [site2 – protein2 complex] = [(hg)] 
A = [ternary complex] = [(fhg)] 
H = total ["hot" DNA] = h + a + b + A 
f = [free protein1] 
p = total [protein1] = f + a + A 
g = [free protein2] 
q = total [protein2] = g + b + A 
 
Dissociation (equilibrium) constants, including cooperativity factor n: 
k = dissociation constant of (fh), protein1 –  site1 binary complex 
L = dissociation constant of (hg), site2 – protein2 binary complex 
k/n = dissociation constant of protein1 from site1 of ternary complex (fhg) 
L/n = dissociation constant of protein2 from site2 of ternary complex (fhg) 
 
From Fig. 2A, f is: 

 
Maximum A (A-max) as p approaches infinity (and therefore f approaches infinity) occurs when the denominator of f goes to 0: 
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So, A-max is: 

Define B as A-max / 2: 

 
The apparent Kd in a single protein – site model, based on the [free ligand] where A is at 50% of its maximum, is found by substituting A-max/2 for A in the formula for p derived in Fig. 
2A, then subtracting B (= A-max/2) from this to get the expected [free ligand] in a binary model.  
In the binary model, there is no complex that corresponds to a.  So, in the binary model, total ligand is simply the sum of bound ligand and free ligand, which means that free ligand is the 
difference between total ligand (p) and bound ligand (A). 
Therefore, the [free ligand] in the binary model corresponds to a+f here, which = p–A. 
 
From Fig. 2A, p–A = a+f: 

The value of p–A = f+a, with B substituted for A, is the apparent Kd, which we call S: 

 
Now, a graph of the expected saturation curve with this Kd, in a single-protein – site model, is obtained by putting k = S into the formula p = A + f = A + kA / h, or  p / A = 1 + k / (H – A);  
here, H is replaced by A-max, which = 2B: 
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C 
Contents: 
 
An expression for where two binding curves cross (the concentration of one ligand is varied, while the total concentration of the other, and that of the substrate, are held constant),  
as a way of determining the range of values where they cross and where they don't: 
 
Binding reaction:   
two proteins (or complexes) bind to 2 sites on the "probe" (labeled) substrate (e.g., DNA); 
 
The following are the variables: 
 
 [ternary complex] = A 
 total [labeled substrate] = H 
 total [each ligand] = p, q 
dissociation constants are k, L, for each ligand + probe (= labeled substrate;  single ligand-substrate complexes are a and b); 
 n = cooperativity factor; 
 
H = total [labeled DNA], which includes both bound (a+b+A) and free (h; 
a and b are the labeled single-protein complexes, A is the ternary complex); 
 
the dissociation constants of the labeled DNA – protein complexes are k and L; 
 
dissociation constants of 2-protein complexes with probe (ternary complex) are k/n and L/n. 
 
H = h + a + b + A 
 
concentrations of free proteins in terms of concentrations of single-protein complexes and free probe: 
f = ka / h;  g = Lb / h;  the two total proteins: 
p = f + a + A  (graphed as a function of A, with axes reversed, so A as a function of p) 
q = g + b + A (here given, so g and b are not explicit, but have been eliminated as variables) 
 
We can graph total protein1 concentration (x), in 2 forms for comparison of how it varies with A (y) 
 at two different values of k (𝕜), L (𝕃), and n (𝕟): 
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To find where these curves cross (and to see if it occurs for any relevant values of A=y and H=x below), solve these simultaneously, by setting them = to each other and cancelling terms, 
after substituting x for H and y for A.  Since we want only values of A that are < H and also < q, we can use the conditions y < x and y < q to limit the search for solutions. 
 
This graph then tells us the range of values of H (and A) where the curves cross, given the assigned variables. 
 
If we also assign H, then the values of A = y where the curves cross is the intersection between the above curve and x = H. 
This intersection may consist of 0, 1, or 2 points. 
If there is no point of intersection, then, of course, the curves do not cross. 
If there are two points of intersection, then the curves generally are close together throughout their range. 
If there is one point of intersection, then there is a range of possible behaviors, as illustrated in Fig. 2 of Peacock and Jaynes [1]. 

 
The curve with the higher value of (probe-protein2 Kd / cooperativity factor) (here, L/n or 𝕃/𝕟) saturates at a lower value,  
which means that the curves will necessarily cross if its initial slope is greater. 
We can use this to obtain an estimate for when two curves will cross. 
 
Initial slopes (reciprocals of the derivatives of the above expressions w.r.t. y when A = y = 0): 

When H and q are both much smaller than k and L, this can be approximated by: 

 
The initial slope in the equivalent single-site experiment (the plot of a vs. p) is (K = single-ligand Kd): 
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so the apparent Kd at very low [ligand] for this type of 2-site experiment is (approximately, when H and q are both much smaller than k and L): 

and the ratio of apparent Kd's for the two sites is, therefore (approximately, when H and q are both much smaller than k and L): 

 
This would likely approximate the "relative affinity" found in a SELEX-seq experiment of the type described in Riley et al., 2014 [5], 
where the protein concentrations are assumed to be much less than the "Kd", and the concentrations of the oligonucleotides 
containing the binding sites are also very low.  Such determinations made at very low concentrations generally underestimate the affinity  
of sites for pairs of ligands with high cooperativity relative to sites with lower individual Kd's (and lower cooperativity).  Such sites that  
support high cooperativity are also those that have the highest occupancy when one ligand concentration (e.g., [En]) is high while the other  
(e.g., [Exd/Hth]) is limiting, as illustrated in Figs. 2B and 3C of Peacock & Jaynes [1]. 
 
The initial slope with the second set of Kd's and cooperativity factor is: 

 
when initial slopes are equal: 

To graph as q (= y) vs. H (= x) where this condition is met: 

Values of x (= H) and y (= q) that are to the left of this curve are in the range where the curves (of A vs. p) will cross. 
However, the converse is not always true, because if the curves cross twice,  
the initial slope of the curve with the higher saturation value of A will be higher, not lower, than the initial slope of the other curve. 
 
If H and q are both negligibly small relative to k, 𝕜, L, and 𝕃, the above simplifies to: 

So: 
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Peacock and Jaynes, 2017 
Fig. 3.  A:  expressions that allow graphing of [ternary complex] (as well as free ligand, substrate, competitor, and other complexes) as a function of added total [unlabeled competitor substrate] 
using simple equation-graphing software.  B:  total occupancy of substrate by each of two ligands, as a function of total [ligand-1] (without unlabeled competitor), and the maximum value of 
each total [bound ligand] as the total [ligand-1] goes to infinity. 
 
key for single-character notation used here: 
below Peacock &   description 
  Jaynes [1] 
    H     [AB]T  total concentration of labeled substrate 
    h     [AB]  free concentration of labeled substrate 
    p     [a]T  total concentration of protein1 
    f     [a]  free concentration of protein1 
    q     [b]T   total concentration of protein2 
    g     [b]  free concentration of protein2 
    k      KA  dissociation constant of protein1 from its single-protein complex 
    L      KB   dissociation constant of protein2 from its single-protein complex 
    n      n   cooperativity factor 
    a     [AaB]  concentration of single-protein1 complex 

    b     [ABb]  concentration of single-protein2 complex 
    A    [AaBb]  concentration of ternary complex 
 
Other variables not used in Peacock and Jaynes [1] are described below. 
 
A. 
Contents:  An expression for U (= total [specific unlabeled competitor substrate]) as a function of  
A (= [labeled ternary complex]) and f (= [free ligand1]). 
 
An expression for f as a function of A.   
(The original expression is quartic in f, and so it uses the general solution for a quartic equation.) 
This can be substituted into the expression for U (as a function of A and f) to get U as a function of A for graphing, using simple software. 
 
The original expression involving f and A is cubic in A, and so it can be solved for A as a function of f using the general cubic solution,  
which is simpler and easier for software packages to handle than the quartic solution.   
So, this solution is given, along with expressions for the other variables in the system as a function of A and f.   
Together, these allow graphing of each of the varying forms involved in the experiment  
as a function of any other one of these forms (most usefully, A as a function of U), using f as a parameter   
along with the cubic solution for A as a function of f.  For example, we can graph y vs. x where y = A(f) and x = U[A(f), f]. 
 
Definitions of variables: 
h = free [labeled substrate = "hot" DNA] 
a = [protein1 –  site1 complex] = [(fh)] 
b = [site2 – protein2 complex] = [(hg)] 
A = ["hot" ternary complex] = [(fhg)] 
H = total [labeled substrate = "hot" DNA] = h + a + b + A 
 
u = free [competitor substrate, "unlabeled"] 
c = [protein1 –  site1 complex] = [(fu)] 
d = [site2 – protein2 complex] = [(ug)] 
B = [unlabeled ternary complex] = [(fug)] 
U = total [unlabeled substrate = competitor DNA] = u + c + d + B 
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f = free [protein1] 
p = total [protein1] = f + a + c + A + B 
g = free [protein2] 
q = total [protein2] = g + b + d + A + B 
 
Dissociation (equilibrium) constants, including cooperativity factor n: 
for labeled complexes: 
k = dissociation constant of (fh), protein1 –  site1 binary complex 
L = dissociation constant of (hg), site2 – protein2 binary complex 
k/n = dissociation constant of protein1 from site1 of ternary complex (fhg) 
L/n = dissociation constant of protein2 from site2 of ternary complex (fhg) 
 
for unlabeled complexes: 
Q = dissociation constant of (fu), protein1 –  site1 binary complex 
R = dissociation constant of (ug), site2 – protein2 binary complex 
Q/m = dissociation constant of protein1 from site1 of ternary complex (fug) 
R/m = dissociation constant of protein2 from site2 of ternary complex (fug) 
 
equation 0: 

 
equation 1: 

 
equation 2: 

 
equation 3: 

 
equation 4: 

 
equation 5: 

 
equation 6: 

 
equation 7: 
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equation 8: 

 
equation 9: 

 
equation 10: 

 
equation 11: 

 
To get U as a function of A, f, g, p, H, k, L, n, Q, R, and m: 
starting with equation 9,  
eliminate u using equation 7, 
then d using equation 10, 
then B using equation 11, 
then c using equation 0', which is 0 with B eliminated using equation 11, to yield equation 9'; 
eliminate a using equation 6 to yield equation 9''.  
Eliminate g from this (see below) to get equation 9'''. 
 
equation 9': 

 
equation 9''': 

 
To get g in terms of f and only A, k, L, n, and H: 
starting with equation 3,  
eliminate h using equation 2 to yield equation 3'; 
eliminate b using equation 5, 
then a using 6 to yield equation 3''; 
solve for g. 
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equation 3'': 

 
to be used in the final equation for U: 

 

 
Substituting these for LA/ng (= c) and g in U from above gives: 

After rearranging: 

This is the same form as that used for graphing with the quartic solution (below) for f as a function of A. 
 
Rearranging terms to get a more consistent-looking form: 

 
 
To get what will become a quartic in f after g and U are eliminated (and q is reintroduced in the process) 
containing only the other variables A, f, g, p, q, k, L, n, Q, R, and m: 
starting with equation 4, 
eliminate d using equation 10, 
then B using equation 11, 
then c using equation 0' to yield equation 4'; 
eliminate b using equation 5 and a using equation 6 to yield equation 4'': 
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equation 4'': 

 
where the last equality uses the expression for U from above, equation 9'''. 
 
The first two of these equalities give a quartic in f (containing only constants and A)  
when g is expressed in terms of f using the above formula, along with: 

 
and 

 
Making these substitutions in the first two equalities of the above: 

 
and rearranging to eliminate negative powers of f, then collecting powers of f, resolving the fractions, and expanding and collecting powers of f gives: 

 
Applying the general solution of a quartic equation using these coefficients gives f as a function of A and  
other quantities that are all constant in an experiment where U is varied and A is measured. 
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Start with the expression for U that is quartic in f, given above, and simplify it to get fewer explicit A's (because A will be substituted for using the solution to the cubic given below): 

 
This can be used to graph A as a function of U (or vice versa), using the cubic solution for A(f), and f as the parameter, starting with the same expression as above,  
and solving it for A as a function of f, instead of vice versa.  This expression is: 

 
First, before giving the general solution for A as a function of f and constants: 
 
For self competition, where m = n, Q = k, and R = L, the solution is simpler (and the cubic solution given below fails). 
So, here is the correct expression in that special case; 
substituting m = n, Q = q, and R = L: 

so, 

which gives a quadratic in A: 

= 0. 
 
This expression can be used to model self-competition (by graphing any of the variables as a function of any other variable)  
using the quadratic solution to this for A as a function of f, and f as a parameter, along with expressions for each of the variables  
as a function of A and f given below, as described below for the cubic solution. 
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For non-self competition, rearranging the above to give the cubic in A 
0 = : 

 
The 4 parts are: 

 

 

 

 
From this, construct the cubic solution for A as a function of f. 
From the general solution to the cubic equation: 

 
The 3 solutions are: 

 

 

 
where 
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and 

 
Assigning coefficients from above (with f changed to t): 

 

 

 

 
At least for the values tested, the first solution is the correct one. 
 
 
 
The formulae for the variables are as follows: 
Note:  to graph these parametrically (the parameter is t) as a function of A, substitute the cubic solution above for A, and t for f. 
For example, to graph A as a function of U, graph A(t) vs. U(t), as t ranges from 0 to its maximum value (when U = 0),  
where A(t) is the cubic solution above, and U is the following  
(replace A with the cubic solution above and replace f with t): 
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B.  Contents: 
An expression for total occupancy (= A + a, and A + b) as a function of p. 
Graphing of total occupancy vs. p based on that. 
 
The maximum value of each total [bound protein] as p goes to infinity: 
for protein1, this is H, because as f goes to infinity, all of the DNA  
becomes saturated with protein1 (h goes to 0, a becomes H – A);   
for protein2, this is the same as the max. value of A, 
since all single protein2–DNA complex is driven into the ternary complex 
(that is, b goes to zero). 
 
Variables used: 
h = free [labeled DNA] ("hot" probe) 
f = [free protein1] 
g = [free protein2] 
a = [DNA – protein1 complex] 
b = [DNA – protein2 complex] 
A = [ternary complex] 
H = total [labeled DNA], which includes both bound (a+b+A) and free (h) 
p = total [protein1], which includes both bound (a + A) and free (f) 
q = total [protein1], which includes both bound (b + A) and free (g) 
k = dissociation constant of a into h and f 
L = dissociation constant of b into h and g 
n = cooperativity factor 
r = total [bound protein1] = a + A 
s = total [bound protein2] = b + A 
 
Governing equations: 
 
equation 0:   
H = h + a + b + A 
 
equation 1: 

 
equation 2: 

 
equation 3: 

 
equation 4: 
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equation 5: 

 
Summary of derivation of total [bound protein2] (s = b + A) as a function of  
total [protein1] (p): 
 
Eliminate g using equations 1 and 4 to give equation 14; 
eliminate h using equations 14 and 3 to give equation 134; 
eliminate h using equations 14 and 5 to give equation 145; 
eliminate A using equations 134 and 145 to give equation 1345, and solve this for a. 
This is a in terms of L, H, q, n, and s. 
 
Solve equation 145 for A in terms of a; 
use this to get an expression for A from equation 1345. 
This is A in terms of L, H, q, n, and s. 
 
Eliminate h using equations 14 and 2 to give equation 124; 
solve this for f; 
substitute the expressions derived above for a and A into this to get equation 12345. 
This is f in terms of k, L, H, q, n, and s. 
 
Adding the above expressions for f, A, and a 
gives p in terms of k, L, H, q, n, and s. 
 
s can then be graphed as a function of p by  
substituting x for p and y for s in that expression. 
 
Total [bound protein2] (s = b + A) as a function of total [protein1] (p): 

where n ≠ 1.   
(Note:  if n = 1, protein1 and protein2 bind independently, so each of their total occupancies  
is independent of the concentration of the other.) 
 
Substitute y for s, and x for p to graph 
total [bound protein2] as a function of total [protein1]: 
p (= x) vs. s (= b+A = y): 

The constraint prevents drawing a solution where the first denominator is negative;  this occurs where n(H–s)(q–s), the first term in the first denominator, which = n(h+a)g, < L(b+A) = Ls. 
Since hg=Lb and nga=LA, this means that (n–1)Lb < 0, which means that n < 1.  So for n > 1, both denominators are positive, and the first factor is also positive, as can be seen from the 
following: 
As above, Ls = L(b+A) and (H–s)(q–s) = (h+a)g = Lb+LA/n.  Therefore, Ls–(H–s)(q–s) = LA–LA/n, which is positive as long as n > 1. 
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Total [bound protein1] can be obtained implicitly by exchanging the roles of p and q, which means x becomes q, 
(p becomes q), q becomes x (q becomes p), and L becomes k, k becomes L. 

Total [bound protein1] as a function of total [protein1]: 
 
To graph p (= x) vs. (r = A+a = y): 
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Peacock and Jaynes, 2017 
Fig. 4A.  Using competition to simultaneously determine the single-ligand dissociation constant and [ligand].  Formulae are given for using curve fitting to find both of these as parameters 
from experimental data in which known amounts of specific, unlabeled substrate (such as a DNA oligo) compete with a known amount of specific, labeled substrate (such as a labeled  
oligonucleotide) for binding to a fixed amount of ligand (such as a DNA binding protein), and the amount of bound, labeled substrate is measured as competitor substrate is varied. 
 
key for single-character notation used here: 
below Peacock &   description 
  Jaynes [1]* 
    H     [A]T  total concentration of labeled substrate 
    h     [A]  free concentration of labeled substrate 
    U     [U]T  total concentration of specific unlabeled substrate 
    V     total concentration of specific unlabeled substrate with same dissociation constant as that of labeled substrate 
    u     [U]  free concentration of specific unlabeled substrate 
    p     [a]T  total concentration of ligand 
    f     [a]  free concentration of ligand 
    k      KA  dissociation constant of ligand from labeled complex 
    q         dissociation constant of ligand from unlabeled complex 
    Q         dissociation constant of ligand from non-specific unlabeled complex 
    a     [Aa]  concentration of labeled complex 
    b     [Ua]  concentration of specific unlabeled complex 
    c      concentration of non-specific unlabeled complex 
    n      n   cooperativity factor 
 

*  also used in Fig. 4B below 
 
 
Contents: 
For a single ligand (e.g., protein) binding to a specific site on a labeled substrate (e.g., DNA) either with or without  
unlabeled substrate present: 
 
1) the equation describing the relationship between total [unlabeled competitor substrate] (= U) and  
the [labeled complex] (= a), in terms of the total [ligand] (= p), the total [labeled substrate] (= H), and the  
dissociation constants (q and k); 
 
2) the equation describing the relationship between the total [ligand] (= p) and [labeled complex] (= a),  
in terms of the total [labeled substrate] (= H), and the dissociation constant k, and the expression which can be used for  
curve fitting to find both p and k from data points (∆, a), where ∆  is the dilution factor for a stock solution; 
 
3) the above expression for U, specialized to the case where unlabeled substrate has the same Kd as that of labeled substrate,  
in which case U is changed to V; 
 
4) Then, in order to get an initial estimate of p and k as a starting point for curve fitting, an equation for  
each of them independent of the other is given based on the initial value of a without competitor (Z = a when U = 0),  
along with a second value of a for any U ≠ 0; 
 
The main equations are summarized at the end. 
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1) the equation describing the relationship between total [unlabeled competitor substrate] (= U) and  
the [labeled complex] (= a), in terms of the total [ligand] (= p), the total [labeled substrate] (= H), and the  
dissociation constants (q and k): 
 
Competitive Equilibrium binding reaction; 
a single protein (or complex) binds to a single site on each DNA (labeled and unlabeled); 
 
forms of labeled DNA: 
  total,  H 
bound,  a 
  free,  h 
 
forms of unlabeled DNA: 
  total,  U  (U becomes V when q = k.) 
bound,  b 
  free,  u 
 
forms of protein: 
         total,       p 
         free,      f 
  labeled complex,     a 
unlabeled complex,   b 
 
dissociation constants: 
  labeled DNA,     k = fh / a 
unlabeled DNA,   q = fu / b 
 
 
p = total [protein], which includes both bound (a + b) and free (f); 
H = total [labeled DNA], which includes both bound (a) and free (h); 
U = total [unlabeled DNA], which includes both bound (b) and free (u); 
 
Z = (a when U = 0) = [labeled complex] without unlabeled competitor DNA; 
 
V = (U when q = k), the [unlabeled competitor] when it has the same dissociation constant as the labeled DNA 
 

 
Labeled DNA equilibrium equation: 
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Total protein in the absence of competitor (U = 0 = b , so a becomes Z) as a function of k and measurable quantities: 

 
Solving for k in terms of p, H, and Z (however, since the fraction of p that is active is unknown, we should use competition data to determine p and k, see below): 

 
Unlabeled DNA equilibrium equation: 

 
Total unlabeled DNA = unlabeled complex (b) + free unlabeled DNA (u = bq / f);  substituting for f  from above in the second step: 

 
Substituting for b from above: 

 
"Transferring" the term (H/a – 1) from the right factor to the left factor gives: 
total [competitor DNA] as a function of total protein (p), total [labeled DNA] (H), the 
[labeled DNA bound] (a), and the dissociation constants of the unlabeled (q) and labeled (k) complexes: 
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2)  the equation describing the relationship between the total [ligand] (= p) and [labeled complex] (= a),  
in terms of the total [labeled substrate] (= H), and the dissociation constant k, and the expression which can be used for  
curve fitting to find both p and k from data points (∆, a), where ∆  is the dilution factor for a stock solution: 
When U = 0 above, the first factor = 0, and we have the basic relationship between p, a, H, and k without unlabeled competitor: 

 
We can, in principle, use this to find both p and k from data points (∆, a), where ∆  is the dilution factor for a stock solution of concentration P, so: 

 
For curve fitting, we can thus use: 
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3) The above expression for U, specialized to the case where unlabeled substrate has the same Kd as that of labeled substrate, in which case U is changed to V: 
 
To find the dissociation constant k, we can use unlabeled competitor oligo of the same sequence as the labeled probe.   
When q = k (competitor DNA has same dissociation constant as labeled DNA), U becomes V, and q/k becomes 1, so the above equation for U becomes: 

 
which simplifies to: 

 
or, more compactly, 

 
 
 
 
The above can be used in a high-throughput analysis to determine the relative affinities of related binding sites, where the highest affinity site is tagged,  
and measurements are made using a panel of untagged sites of how well they compete for binding to a fixed amount of protein, as described in  
Hallikas, et al., 2006 [6].  In that work, an approximate expression is given for relative affinity that does not have the correct limit behavior when the  
affinity approaches that of the tagged oligo.  One remedy for this is to use the exact expression given below for q/k.  Another is to use the  
approximation for q/k given below, which is both simpler than that in Hallikas et al. [6] and has the correct limit behaviors. 
Let Z = [labeled complex] without competitor (or in the presence of a reference amount of a non-specific competitor, in which case the final expression,  
given below, for the ratio of dissociation constants is the same;  derivation available on request),  
 å = [labeled complex] in the presence of a reference concentration (V) of untagged site oligo with the same sequence as the tagged site, and 
 a = [labeled complex] in the presence of the reference concentration (U) of untagged site oligo with the experimental sequence. 
From above, the expression for p in terms of Z, which we will use to eliminate p from the equation, is: 

 
Equating the above expressions for U and V (because the same amount of the two competitors is used in parallel experiments): 
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And substituting for p in terms of Z, k, and H: 

 
Solving this for q/k gives: 

 
If the experiment is done under conditions where Z << H, that is, where only a small fraction of the tagged oligo is bound without competitor,  
then we can approximate this expression by the following (dropping the 1 from H/a–1, H/å–1, and H/Z–1, and replacing 1–å/H with 1); 
q/k ~ : 

 
where the a/H was dropped in the last step because it is assumed to be << 1 < q/k (because k is assumed to be the Kd of our highest affinity site).   
So, q/k ~ : 
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4) In order to get an initial estimate of p and k as a starting point for curve fitting, an equation for  
each of them independent of the other is derived based on the initial value of a without competitor (Z = a when U = 0),  
along with a second value of a for any U ≠ 0: 
 
Substituting for p in terms of k, H, and Z from above, we get an expression that can be solved for k in terms of measurable quantities: 

 
Rearranging: 

 
solving this for k in terms of measurable quantities: 

 
Now, we can get an expression for p (the total [active protein]) by substituting this expression for k into the expression for p in terms of k, H, and Z from above: 

 

 
This is p (total active protein concentration) in terms of the [labeled DNA] bound in the absence of competitor (Z), the total concentration of labeled DNA (H),  
and the concentration of competitor with the same dissociation constant as the labeled DNA (V) that is required to reduce the [labeled DNA] bound from its initial value (Z) to a: 
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Summary: 
For curve fitting, the above equations for p and k can be used to estimate their values from  
the two data points (a, V) and (Z, 0), and these then used to optimize p and k for all data points (a and V) in: 

 
In terms of a,  Z, and H, the formulae for k and p take the forms: 

 

 
The forms that are easiest to compare to those derived for the case where non-specific competitor is also present (Fig. 4C, below) are as follows: 

With p substituted for its value that is necessary to get any given Z: 

we get V in terms of Z, a, H, and k: 

 
The expression which can be used for curve fitting to find both p (initial value = P) and k from data points (∆, a),  
where ∆  is the dilution factor for a stock solution of concentration P: 
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Fig. 4B: Performance of 
competition and saturation binding 
methods for simultaneously finding 
[a]T and KA with different input 
errors.  Monte Carlo analysis (100 
runs for each data point) of the 
effectiveness of curve fitting to find 
[a]T and KA as parameters was run 
with 15-point data sets at 7 
different [A]T using either 
competition (fixed [a]T, varying 
[UA]T) or standard saturation 
binding (varying [a]T, no 
competitor).  Data sets were 
generated by introducing random 
errors into calculated values of [Aa] 
(ligand-substrate complex).  These 
input values were randomly chosen 
from a normal distribution such that 
95% of the errors were within the 
specified % of the actual value:  
1% for the top two graphs 
(standard deviation = 0.5%, mean 
error = 0.40%, median error = 
0.34%), 5% for the middle two 
(standard deviation = 2.5%, mean 
error = 2.0%, median error = 1.7%), 
and 10% for the bottom two 
(standard deviation = 5%, mean 
error = 4.0%, median error = 3.4%).  
Percent errors are shown in the 
values found for each parameter 
([a]T and KA) using least-squares 
curve fitting.  These errors were 
ranked by increasing absolute 
value and plotted: either the 95th 
largest (left column, with errors 
bars extending from the 90th to the 
99th largest) or the 50th largest 
(right column, with error bars 
extending from the 40th to the 60th 
largest).  In each case, the error 
bars represent a 95% confidence 
interval for the true value of the 
specified error percentile, based on 
standard statistical analysis.  Note 
that the best estimate for KA is 
provided by the competition 
method at low [A]T, which 
simultaneously provides a precise 
estimate for [a]T.  
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Detailed methods for Fig. 4B 
 
Competition Binding 

Competition	  binding	  simulations	  used	  a	  system	  of	  labeled	  substrate	  𝐴	  (e.g.,	  a	  DNA	  oligo),	  identical	  (but	  unlabelled)	  competitor	  substrate	  𝑈,	  and	  ligand	  𝑎	  (e.g.,	  protein)	  
forming	  complexes	  𝐴𝑎	  and	  𝑈𝑎:	  
𝑎 + 𝑈 + 𝐴 ↔ 𝑈𝑎 + 𝐴𝑎	  
Experiments	  were	  simulated	  using	  a	  statistical	  model	  of	  the	  form,	  
𝐀𝐚 = 𝐹(𝐔𝐓;   𝐾!, 𝑎! ,𝐴!) + 𝛜	  
where	  
• 𝐀𝐚	  is	  the	  list	  (i.e.,	  vector)	  of	  concentrations	  of	  complex	  𝐴𝑎,	  measured	  as	  the	  dependent	  variable	  for	  each	  value	  of	  𝑈! .	  

• 𝐔𝐓	  is	  the	  list	  of	  total	  concentrations	  of	  𝑈,	  and	  is	  the	  independent	  variable	  in	  the	  experiment.	  	  𝐔𝐓	  consists	  of	  15	  points	  evenly	  distributed	  from	  0	  to	  a	  value	  of	  𝑈! 	  such	  
that	  𝐴𝑎	  is	  reduced	  to	  1/3	  its	  initial	  concentration,	  when	  𝑈! = 0.	  

• 𝐴! 	  is	  the	  total	  concentration	  of	  substrate	  𝐴.	  	  Seven	  values	  (0.01,	  0.1,	  1,	  10,	  100,	  1000	  and	  10000)	  were	  tested.	  	  For	  each	  value	  of	  𝐴! ,	  three	  values	  of	  𝑒	  (see	  below)	  
were	  tested,	  yielding	  a	  total	  of	  21	  simulated	  experiment	  conditions.	  

• 𝐾!	  is	  the	  equilibrium	  constant	  of	  ligand	  𝑎	  binding	  either	  𝐴	  or	  𝑈.	  	  Since	  all	  parameters	  have	  units	  of	  concentration,	  𝐾!	  can	  always	  be	  normalized	  to	  1.	  

• 𝑎! 	  is	  the	  total	  concentration	  of	  ligand	  𝑎,	  and	  is	  set	  such	  that	  𝐴𝑎 = 𝐴!/2	  when	  𝑈! = 0.	  

• F	  is	  a	  function	  derived	  from	  the	  governing	  equations	  of	  the	  system	  which	  relates	  each	  component	  of	  𝐀𝐚	  to	  the	  corresponding	  component	  of	  the	  independent	  variable	  
𝐔𝐓	  and	  the	  parameters	  𝐾!, 𝑎! ,𝐴!:	  	  

𝐹 =
𝑎!𝐴! + 𝐴!! + 𝐴!𝐾! + 𝐴!𝑈! − 4𝑎!𝐴!! (−𝐴! − 𝑈!) + 𝑎!𝐴! + 𝐴!! + 𝐴!𝐾! + 𝐴!𝑈! !

2(𝐴! + 𝑈!)
.	  

• 𝛜 is the list of simulated measurement errors of 𝐀𝐚.  Errors were drawn from a normal distribution with variance proportional to the concentration of 𝐴𝑎,  

𝜖 ∼ 𝑁(0, 𝑒 ⋅ 𝐴𝑎/2)	  
•  where 𝑒 is a percent error, tested at values of 1%, 5% and 10%.  In this way, the interval 𝐴𝑎 ± (𝑒 ⋅ 𝐴𝑎) will have a radius of two standard deviations centered at 
𝐴𝑎, and therefore contains 95% of observations.  Thus, we interpret “10 with a 10% error” to mean 95% of measurements fall between 9.9 and 10.1. 

For	  each	  of	  the	  21	  simulated	  experiment	  conditions,	  defined	  as	  combinations	  of	  𝑒	  and	  𝐴! ,	  100	  such	  experiments	  were	  simulated.	  	  Nonlinear	  least-‐squares	  regression,	  
weighted	  by	  the	  inverse	  of	  the	  variance	  at	  each	  point	  (4/(𝑒 ⋅ 𝐀𝐚)!),	  was	  used	  to	  produce	  estimates	  𝐾!	  and	  â! 	  from	  the	  15	  points	  (𝑈! ,𝐴𝑎),	  with	  𝐴! 	  assumed	  as	  a	  given.	  	  
The	  weighting	  is	  necessitated	  by	  the	  non-‐constant	  variance	  of	  the	  error	  at	  each	  data	  point;	  	  i.e.,	  heteroskedasticity.	  	  With	  100	  simulated	  experiments	  for	  each	  set	  of	  
conditions,	  we	  compared	  the	  performance	  of	  the	  simulated	  experiments	  in	  determining	  𝐾!	  and	  𝑎! ,	  as	  detailed	  in	  Analysis.	  
For	  complete	  details	  of	  this	  methodology,	  see	  Fig_4B_MC_competition_model.nb	  within	  the	  Supplemental_Mathematica_notebooks	  of	  Peacock	  and	  Jaynes	  [1].	  
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Saturation Binding 

Saturation	  binding	  simulations	  used	  the	  same	  system	  as	  the	  competition	  binding	  experiments,	  but	  without	  the	  competitor	  𝑈,	  
𝑎 + 𝐴 ↔ 𝐴𝑎	  
Experiments	  were	  simulated	  using	  a	  similar	  model,	  
𝐀𝐚 = 𝐺(𝐕;   𝐾!, 𝑎! ,𝐴!) + 𝛜	  
However,	  rather	  than	  an	  independent	  variable	  of	  𝐔𝐓,	  we	  use	  𝐕,	  a	  list	  of	  unitless	  scalars	  representing	  a	  dilution/concentration	  series	  of	  𝑎! .	  	  We	  treat	  𝑎! 	  as	  an	  unknown	  
initial	  concentration,	  to	  be	  found	  in	  the	  experiment.	  	  The	  unknown	  concentration	  stock	  is	  then	  diluted	  or	  concentrated	  according	  to	  𝐕	  to	  perform	  the	  experiment.	  	  As	  in	  
the	  competition	  experiment,	  𝐕	  consists	  of	  15	  points.	  	  However,	  these	  points	  are	  evenly	  distributed	  from	  𝑉!"#/15	  to	  𝑉!"#,	  where	  𝑉!"#	  represents	  a	  concentration	  of	  𝑎	  
such	  that	  𝐴𝑎 = 0.9𝐴! 	  (i.e.,	  90%	  saturation	  is	  achieved).	  	  Rather	  than	  beginning	  at	  zero,	  which	  would	  give	  zero	  complex	  and	  any	  signal	  would	  be	  subtracted	  as	  noise,	  we	  
begin	  at	  the	  next	  increment,	  𝑉!"#/15.	  
The	  following	  function,	  which	  is	  derived	  from	  the	  governing	  equations	  of	  the	  system,	  relates	  each	  componenet	  of	  𝐀𝐚	  to	  the	  corresponding	  component	  of	  the	  
independent	  variable	  𝐕	  and	  the	  parameters	  𝐾!, 𝑎! ,𝐴!:	  

𝐺 = 𝑉𝑎! + 𝐴! + 𝐾! − (−𝑉𝑎! − 𝐴! − 𝐾!)! − 4𝑉𝑎!𝐴! /2	  

The	  remaining	  parameters	  𝑎! ,𝐾!	  and	  𝐴! 	  were	  set	  to	  the	  same	  values	  as	  those	  used	  in	  the	  competition	  binding	  experiments.	  	  The	  simulated	  errors	  were	  produced	  in	  the	  
same	  way	  as	  well,	  using	  the	  same	  values	  of	  𝑒.	  
This	  design	  allows	  direct	  comparison	  of	  the	  two	  techniques	  in	  determining	  the	  unknown	  parameters	  𝐾!	  and	  𝑎! .	  	  As	  with	  the	  competition	  binding	  experiments,	  
nonlinear	  least-‐squares	  regression,	  with	  the	  same	  weighting	  scheme,	  was	  used	  to	  estimate	  𝐾!	  and	  𝑎! 	  from	  the	  15	  data	  points,	  here	  of	  the	  form	  (𝑉,𝐴𝑎).	  	  Again,	  we	  
assume	  𝐴! 	  is	  a	  known	  parameter	  of	  the	  experiment,	  and	  we	  produce	  100	  simulated	  experiments	  for	  each	  of	  the	  21	  experiment	  conditions,	  yielding	  100	  estimates	  𝐾!	  
and	  	  â! 	  for	  each	  condition.	  
For	  complete	  details	  of	  this	  experiment	  see	  Fig_4B_MC_saturation_model.nb	  within	  the	  Supplemental_Mathematica_notebooks	  of	  Peacock	  and	  Jaynes	  [1].	  

 
Analysis 

The	  competition	  binding	  and	  saturation	  binding	  experiments	  each	  generated	  100	  estimates	  of	  𝐾!	  and	  𝑎! 	  for	  the	  21	  experiment	  conditions.	  	  In	  each	  case,	  the	  100	  
estimates	  are	  treated	  as	  an	  empirical	  distribution	  of	  the	  parameter	  estimates.	  	  To	  relate	  this	  to	  common	  experimental	  metrics,	  this	  distribution	  is	  normalized	  to	  
represent	  an	  absolute	  percent	  error.	  	  For	  example,	  we	  normalize	  each	  estimate	  𝐾!	  of	  the	  actual	  value	  𝐾!	  as	  follows,	  

100%
𝐾! − 𝐾!
𝑘!

	  

Note	  that	  this	  distribution	  is	  strictly	  positive,	  starting	  at	  zero	  with	  a	  tail	  to	  the	  right.	  	  To	  compare	  the	  normalized	  parameter	  estimate	  distributions	  between	  models	  and	  
conditions,	  we	  consider	  the	  95th	  percentile	  of	  the	  distribution.	  	  This	  value	  is	  easily	  interpreted	  as	  the	  maximum	  percent	  error	  in	  95%	  of	  experiments,	  and	  is	  easily	  
estimated	  by	  the	  95th	  order	  statistic	  of	  the	  100	  estimates.	  
A	  95%	  confidence	  interval	  for	  the	  95th	  percentile	  is	  produced	  by	  considering	  a	  symmetric	  interval	  centered	  on	  the	  95th	  order	  statistic.	  	  This	  interval	  is	  expanded	  until	  the	  
expected	  probability	  of	  the	  95th	  percentile	  lying	  in	  the	  interval	  is	  greater	  than	  0.95.	  	  In	  this	  case,	  the	  interval	  spans	  from	  the	  91st	  to	  the	  99th	  order	  statistic,	  

0.9659 =
100
𝑗

!!

!!!"

(0.95)!(1 − 0.95)!!! 	  

Thus,	  the	  91st	  and	  99th	  order	  statistics	  conservatively	  bound	  a	  95%	  confidence	  interval	  (96.6%	  more	  exactly)	  for	  the	  95th	  percentile.	  
An	  analogous	  procedure	  was	  followed	  for	  the	  50th	  percentile	  analysis,	  illustrated	  in	  the	  right	  column	  of	  Fig.	  4B.	   	  
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Fig. 4C.  Using competition to simultaneously determine the single-ligand dissociation constant and [ligand] in the presence of non-specific competitor substrate.  Formulae are given for using 
curve fitting to find both of these as parameters from experimental data in which known amounts of specific, unlabeled substrate (such as a DNA oligo) compete with a known amount of 
specific, labeled substrate (such as a labeled DNA oligo) and a known amount of non-specific, unlabeled substrate (such as poly-dA/dT) for binding to a fixed amount of ligand (such as a DNA 
binding protein), and the amount of bound, labeled substrate is measured as competitor substrate is varied. 
 
key for single-character notation used here: 
below Peacock &   description 
  Jaynes [1] 
    H     [A]T  total concentration of labeled substrate 
    h     [A]  free concentration of labeled substrate 
    U     [U]T  total concentration of specific unlabeled substrate 
    V     total concentration of specific unlabeled substrate with same dissociation constant as that of labeled substrate 
    u     [U]  free concentration of specific unlabeled substrate 
    p     [a]T  total concentration of ligand 
    f     [a]  free concentration of ligand 
    k      KA  dissociation constant of ligand from labeled complex 
    q         dissociation constant of ligand from unlabeled complex 
    Q         dissociation constant of ligand from non-specific unlabeled complex 
    a     [Aa]  concentration of labeled complex 
    b     [Ua]  concentration of specific unlabeled complex 
    c      concentration of non-specific unlabeled complex 
    n      n   cooperativity factor 
 
Contents: 
an expression useful for curve fitting to find p and k as parameters, by adding known amounts of unlabeled substrate having the same Kd as that of labeled substrate, when non-specific 
competitor substrate is included in the reaction, along with a description of how to analyze the data; 
the formula to find n from curve fitting, after the individual ligand concentrations (p and q) and Kd's (k and L) have been determined from single-ligand experiments, derived in Fig. 2A, is 
given at the end: 
 

Competitive equilibrium binding reaction;  Assumptions: 
a single protein (or complex) binds to a single site on each "specific" DNA; 
non-specific competitor DNA is also present:  its concentration (D) is based on the total # of  
potential binding sites, approximately one per bp if [protein] is far below saturation, ignoring end effects; 
 

H = total [labeled DNA], which includes both bound (a) and free (h); 
U = total [unlabeled DNA, specific], which includes both bound (b) and free (u); 
D = total [unlabeled DNA, non-specific], which includes both bound (c) and free (d); 
k, q, Q = the dissociation constants of the protein with probe, specific competitor, and non-specific  
   competitor, respectively; 
p = total [protein], which includes both bound (a + b + c) and free (f); 
 
D, H, and U (which becomes V when it has the same Kd for ligand as does H) are assumed to be known (or directly measurable);   
p, k, q, and Q are to be determined. 
The dissociation constant of the labeled DNA – protein complex is: 

From which we can get [free protein], since h = H – a: 



  Fig. 4 – p. 13 

total protein: 

unlabeled complex (specific): 

 
dissociation constant of specific competitor (since u = U – b): 

dissociation constant of non-specific competitor (since d = D – c): 

 
non-specific competitor complex as a function of measurable quantities  
(k/Q becomes "measurable" below), substituting for f from above: 

 
specific competitor complex as a function of "measurable" quantities, 
substituting for c in the expression for p from above: 

Note that the above expression for b is independent of its dissociation constant q. 
(The amount of specific competitor bound when it has reduced the amount of probe bound 
from its initial value without competitor to a is independent of its dissociation constant.   
This makes sense because this corresponds to how much protein it has removed from solution,  
which is how it affects the amount of probe bound.) 
Therefore, in a competition experiment, for a given value of a, b is fixed (independent of q),  
and U/b varies rather simply with q/k: 

 
Therefore, at the same value of a for different competitors, b is the same, while U and q are different.   
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The ratio of the amounts of competitors (U and X) of dissociation constants q and ķ that are required to reduce  
the bound labeled DNA (a) to a given value is independent of p, H, D and Q: 

 

 
So, the ratio of these amounts of competitor is  

 
This ratio has this form at all points along the two competition curves (X and U as a function of a).   
It varies from its initial value to q/ķ as a goes to 0. 
 
The ratio depends on k still, which is unknown, but if ķ = k (competitor oligo V is the same as probe, H), 
then the ratio is simpler: 

 
Solving this for q/k: 

 
However, we can't fit the two curves independently to get parameters for comparison, because b varies with a  
in a complex way.  We have to compare the two curves simultaneously.  
From above,  

 
Now,  
substituting q = k in the expression for U from above (U becomes V when q = k): 
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If we use additional non-specific competitor as our competitor, then q = Q, and U becomes W (W = [added competitor] when q = Q): 

 

 
The following works well: 
 
If we use the V equation to eliminate k (changing a to å to distinguish the data sets), then we can get an expression for curve  
fitting using a combination of each data point (å,V) with each data point (a,W), and use these composite data points (å,V, a,W)  
to get the 2 parameters p and Q/k: 

 

 
So, solving for k: 

 
Substituting this for k in W from above, we get the final curve fitting equation: 
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Once we have found Q/k from curve fitting with the above, we can use the following to get k and p (again) from the same data, (å, V); 
it generally works better to take only Q/k from the first curve fitting, and, using it, find k and p using the second curve fitting:   

 
 
 
Once each of the individual ligand concentrations (p and q) and Kd's (k and L) have been determined, we can use data on  
ternary complex formation as a function of one of the [ligand] (= p), at a fixed [the other ligand] (= q) and a fixed [labeled substrate] (= H)  
to find the cooperativity factor as a parameter, using the formula for p vs. A (= [ternary complex]) derived in Fig. 2A;   
curve fit data points (p, A), given H, L, k, and q, to find n as the parameter: 
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Peacock and Jaynes, 2017 

Section 5.  Accurate Kd’s and the cooperativity factor can be determined even when one Kd is too 
high to measure directly 

A.  Note:  Section 5A and Fig. 5 use the terminology of Peacock and Jaynes [1] for substate, ligands, Kd’s, and complexes (see 

Section 5B for a list).  The methods described above and used in Peacock and Jaynes [1] require that each individual Kd be measurable.  

However, for some ternary complexes, one of the ligands is not observed to bind alone, even at concentrations much higher than those 

required for strong, cooperative binding.  A classic example of this was described by Jin et al., 1999 [7], involving cooperative binding by the 

yeast transcription factors a1 and α2.  Binding by α2 alone was seen, and addition of a1 gave much greater complex formation, suggestive of 

highly cooperative binding.  Even at the highest concentrations tested, no binding by a1 alone was observed.  We modeled binding by these 

proteins based on a rough quantitation of the published data.  Our purpose was not to derive precise parameters for this particular case, but to 

illustrate and test our ability to obtain quantitative information in such cases more generally.  Specifically, we show here that it is possible to 

obtain from binding data on the two visible complexes, ABb and AaBb, via curve fitting, the Kd of the weakly binding protein (KA), its 

concentration ([a]T), and n, knowing only the concentration and Kd of the other protein ([b]T and KB).  The approach involves first 

determining KB and [b]T (in this case for α2) by the method described above (or by any other method).  Armed with these constants, we can 

conduct an experiment where [b]T and [AB]T are fixed, under conditions where ABb is clearly visible and quantifiable without added ligand a.  

Ligand a is then added at increasing concentrations, and the formation of AaBb, along with the simultaneous decrease in [ABb], is quantified.  

The situation is modeled in Fig. 5A.  The procedure “starts”, as just described, where the curves all intersect the horizontal axis.  This point 

represents the starting [ABb] without added ligand a (there is no AaBb).  As [a]T increases, we move up the curve of [AaBb] vs. [ABb] from 

right to left.  The intersection of the curve with the vertical axis represents the theoretical maximum [AaBb] when [a]T becomes infinite, 

chasing all of the ABb into AaBb, and so the [ABb] goes to zero.  This maximum [AaBb] is sensitive to n, and the graph shows a family of 

curves with different n values. 
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Fig.	  5.	  	  Graphs	  of	  
equations	  used	  for	  
curve	  fitting	  to	  find	  
cooperativity	  factor	  
and	  2nd	  Kd	  when	  one	  
protein	  binds	  
weakly	  alone.	  	  A:	  
Family	  of	  curves	  of	  
[AaBb]	  vs.	  [ABb]	  with	  
different	  cooperativity	  
factors.	  	  The	  
concentration	  of	  
ternary	  complex,	  
[AaBb],	  is	  graphed	  as	  a	  
function	  of	  increasing	  
concentrations	  of	  the	  
binary	  complex	  [ABb]	  
containing	  the	  ligand	  
that	  binds	  detectably	  
on	  its	  own	  (b),	  with	  
constant	  total	  
amounts	  of	  both	  
labeled	  binding	  site,	  
[AB]T,	  and	  b,	  [b]T.	  	  
Although	  not	  
displayed	  on	  the	  
graph,	  [a]T	  is	  the	  
experimentally	  
varying	  quantity,	  and	  
it	  decreases	  from	  
infinity	  at	  the	  vertical	  
axis,	  to	  zero	  at	  the	  

horizontal	  axis,	  which	  is	  the	  point	  of	  maximum	  [ABb].	  	  Constants	  used	  are	  [AB]T	  =	  10,	  [b]T	  =	  10,	  KA	  =	  80,000,	  and	  KB	  =	  500,	  estimated	  from	  data	  in	  
Jin	  et	  al.,	  1999	  [7],	  as	  described	  in	  the	  Section	  5A	  text.	  	  Curves	  are	  graphed	  for	  7	  different	  values	  of	  n,	  but	  the	  four	  with	  n	  >=	  80,000	  are	  
indistinguishable	  (black)	  with	  these	  values	  of	  [AB]T	  and	  [b]T.	  	  Only	  those	  where	  n	  is	  reduced	  by	  1000x	  or	  100x	  from	  80,000	  are	  clearly	  separated	  
(red;	  	  the	  curve	  where	  n	  is	  reduced	  by	  10x	  shows	  barely	  detectable	  separation).	  	  Filled	  circles,	  one	  set	  red,	  the	  other	  set	  blue,	  mark	  our	  estimated	  
bracketing	  values	  for	  the	  published	  data	  points:	  	  the	  parameters	  were	  adjusted	  so	  that	  the	  black	  curve	  lies	  between	  these	  two	  sets	  of	  points.	  	  	  
B:	  Family	  of	  curves	  of	  [AaBb]	  vs.	  [ABb]	  with	  the	  same	  set	  of	  cooperativity	  factors	  as	  in	  A,	  but	  with	  lower	  amounts	  of	  total	  binding	  site	  and	  total	  
ligand	  b,	  allowing	  a	  minimum	  estimate	  for	  n.	  	  Here,	  KA	  and	  KB,	  as	  well	  as	  the	  set	  of	  values	  for	  n,	  are	  the	  same	  as	  in	  A,	  but	  both	  [AB]T	  and	  [b]T	  are	  
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reduced	  by	  a	  factor	  of	  10	  (now	  [AB]T	  =	  [b]T	  =	  1).	  	  Note	  that	  the	  3	  lower	  curves	  (red,	  n	  =	  80,	  800,	  and	  8000)	  are	  better	  separated	  from	  the	  others,	  
while	  the	  black	  curve	  is	  barely	  distinguishable	  from	  the	  3	  blue	  curves,	  which	  still	  lie	  on	  top	  of	  each	  other	  (n	  >=	  800,000).	  	  Thus,	  data	  represented	  
by	  this	  black	  curve	  can	  provide	  a	  good	  minimum	  estimate	  for	  n	  (within	  a	  factor	  of	  10	  or	  less,	  see	  Section	  5A	  text).	  	  	  
C:	  Family	  of	  curves	  of	  [AaBb]	  vs.	  [ABb]	  with	  the	  same	  set	  of	  cooperativity	  factors	  as	  in	  A	  and	  B,	  but	  even	  lower	  amounts	  of	  total	  binding	  site	  and	  
total	  ligand	  b,	  allowing	  a	  better	  estimate	  for	  n.	  	  Here,	  KA	  and	  KB,	  as	  well	  as	  the	  values	  for	  n,	  are	  the	  same	  as	  in	  A,	  but	  both	  [AB]T	  and	  [b]T	  are	  now	  
reduced	  by	  a	  factor	  of	  100	  ([AB]T	  =	  [b]T	  =	  0.1).	  	  Note	  that	  the	  three	  lower	  curves	  (red),	  as	  well	  as	  the	  blue	  curves	  as	  a	  group	  (n	  =	  8	  x	  105,	  8	  x	  106,	  8	  x	  
107),	  are	  well	  separated	  from	  the	  black	  curve	  (n	  =	  8	  x	  104).	  	  Thus,	  data	  represented	  by	  the	  black	  curve	  can	  now	  provide	  a	  reliable	  estimate	  for	  n,	  
using	  the	  curve	  fitting	  method	  described	  in	  the	  Section	  5A	  text.	  	  	  
D:	  Families	  of	  curves	  of	  [AaBb]	  vs.	  [ABb],	  now	  with	  varying	  [b]T,	  and	  the	  indicated	  (constant)	  values	  of	  [a]T	  (black),	  plus	  (for	  reference)	  the	  black	  
curve	  from	  A	  (which	  has	  constant	  [b]T	  and	  varying	  [a]T).	  	  Each	  black	  curve	  is	  accompanied	  by	  two	  curves	  in	  which	  both	  KA	  and	  [a]T	  are	  either	  
decreased	  (red)	  or	  increased	  (blue)	  by	  10%.	  	  Although	  [a]T	  is	  as	  yet	  unknown,	  the	  method	  involves	  keeping	  track	  of	  dilution	  factors	  of	  it,	  relative	  
to	  a	  reference	  concentration,	  which	  will	  be	  determined	  from	  the	  data.	  	  In	  those	  with	  the	  lower	  values	  of	  [a]T	  (toward	  the	  right),	  the	  red	  and	  blue	  
curves	  are	  visibly	  separated	  from	  the	  bracketed	  black	  curve.	  	  This	  illustrates	  that	  curve	  fitting	  using	  such	  data	  sets	  can,	  in	  principle,	  give	  good	  
estimates	  for	  both	  of	  the	  unknowns,	  [a]T	  and	  KA,	  once	  a	  good	  estimate	  for	  n	  is	  obtained	  from	  experiments	  with	  varying	  [a]T,	  as	  illustrated	  in	  C.	  	  The	  
dark	  gray	  curve	  across	  the	  top	  is	  x	  +	  y	  =	  [AB]T,	  which	  is	  the	  limit	  of	  each	  curve	  at	  infinite	  [b]T	  (in	  that	  limit,	  all	  the	  AaB	  is	  chased	  into	  AaBb,	  so	  [ABb]	  
+	  [AaBb]	  =	  [AB]T).	  

 

The colored dots on the graph (Fig. 5A,D) are our crude estimates of “bracketing” values for the relative [AaBb] and [ABb] in the 

published data (columns 2-7 of Fig. 5B of [7]).  The red dots represent one extreme estimate and the blue dots the opposite extreme estimate, 

one of each color for each data point in the published figure (not all of the blue dots are in the range of this graph).  The black curve is 

obtained by choosing values for the various constants so that it falls between these maximum and minimum estimates for all the data points.  

However, the value of n chosen can only be a minimum estimate for n, because, as the graph shows, higher values for n than that used for the 

black curve (n = 8 x 104) also give curves that fit this criterion (these curves are actually indistinguishable from the black curve on this graph). 

What can we do in such a case of high cooperativity, in order to get a better estimate of the actual value of n, and then go on to 

determine KA and [a]T?  The answer is illustrated in Fig. 5B and C.  By reducing both the [AB]T and [b]T used in the experiment, the curves 

become sensitive to differences between larger n values.  Fig. 5B shows that when these are reduced by 10-fold, we now start to see 

separation between the curves for the chosen n value and 10 times this value (n = 8 x 105).  We take this process further in Fig. 5C, which 

shows that reducing both [AB]T and [b]T by 100-fold allows us to distinguish n = 8 x 104 from n = 8 x 105, and we can also now just discern 

separation between the curves for the latter and for n = 8 x 106. 
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We tested the ability of curve fitting to give accurate values for n under these conditions, by modeling such experiments with these 

different values for [AB]T and [b]T.  We constructed data sets from these curves, and rounded the data to introduce random errors, then tested 

how well these data sets allowed curve fitting to recover the value for n.  The effectiveness of the method is illustrated in section B (below).  

We found that for the situation graphed in Fig. 5C (100-fold reduced values for [AB]T and [b]T), we could recover n to within 10% using 28 

data points rounded to 2 significant figures (and so containing random errors between 0.5% and 5%).  These 28 data points were for 4 

different values of [b]T in combination with 7 different values of [a]T.  A second such data set taken at the higher values for [AB]T and [b]T 

can then be used to find both KA and [a]T, as described below.  The expressions used both to generate the graphs shown in Fig. 5 and for curve 

fitting are given in section 5B (below). 

There are potential limitations in implementing this method to achieve such accuracy.  One is the need to use high concentrations of 

ligand a in order to reach the part of the binding curve that is most sensitive to n, and another is the requirement that low amounts of 

complexes be quantifiable.  The former may be limited by the ability to purify enough ligand a and/or to maintain its solubility under actual 

experimental conditions.  We limited our data to concentrations of transcription factors that are within 10-fold of those commonly used in 

such DNA binding experiments.  The latter limitation depends (for DNA binding studies) on both the specific activity of labeling of the oligo 

and the sensitivity of the detection methodology.  Where these prove to be restrictive, it may not be possible to accurately measure very high 

n values.  In such extreme cases, it may be easier to define a lower limit for n using its definition, given in Fig. 2A of Peacock and Jaynes [1]:   

n = [AB] [AaBb] / [AaB] [ABb].  For such cases, [AaB] may be too low to quantify, but we can estimate its upper limit.  This upper limit, 

combined with the other 3 quantities, gives a lower limit for n.  However it may be found, a lower limit for n can be useful, in combination 

with the value of KA still to be determined, in predicting cooperative binding behavior in vivo.  This is particularly true when comparing 

related ligand combinations and binding sites, where relative behaviors are often key to understanding biological phenomena. 

Once an estimate for n has been found, we can determine KA and [a]T using the following method.  In the experimental approach 

described above, we vary [a]T, but do not yet know its actual value.  For finding n, the expression used for curve fitting does not contain 

either [a]T or KA.  However, we can use the same data to find these quantities, provided we keep track of how a reference [a]T is diluted for 

each data point.  We then use a different expression, containing all 3 of the original unknowns, n, [a]T, and KA, for curve fitting to find the 

latter two.  While it is theoretically possible to find all 3 unknowns simultaneously using this expression, we have found, through testing with 
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a number of data sets, that the method works much more reliably with realistic data if we use the first expression to find n, then plug the n 

value into the latter expression to find KA and [a]T.  Fig. 5D illustrates how the method works.  The data used above to find n consists of data 

points for [AaBb] and [ABb] at different values of both [a]T and [b]T.  Fig. 5A-C show only curves with varying [a]T.  Fig. 5D shows a family 

of 7 curves (plus variants) with varying [b]T, each with a different, but constant, [a]T.  For reference, the black curve from Fig. 5A is also 

shown.  The expression used to generate these curves is that used for curve fitting to find KA and [a]T.  Its dominant term contains the ratio 

[a]T / KA, which determines the approximate slope of these near straight-line curves.  This ratio is relatively easy to determine, while 

separately determining KA and [a]T depends on the deviations of these curves from a straight line.  The red and blue curves represent a 

simultaneous 10% change in KA and [a]T from their accompanying black curve.  Where these are distinct, realistically precise data can be 

expected to provide the necessary distinction.  We tested this, and found that with 28 data points, taken from these curves and then rounded to 

2 significant figures, curve fitting gave KA and [a]T individually within 10%.  However, this was assuming the exact value for n.  In order to 

use curve fitting with data rounded to 2 significant digits to first recover n, and then KA and [a]T, each within 10%, it was necessary to use 

data like that illustrated in Fig. 5C (with [AB]T = 0.1 and [b]T in the same range) to find n (within 4%), then a separate data set like that in Fig. 

5D (with [AB]T = 10 and [b]T in the same range) to recover KA and [a]T.  This is because there is a trade-off in determining n and then KA and 

[a]T:  while data sets using lower [AB]T and [b]T give n more accurately, higher [AB]T and [b]T give KA and [a]T more accurately.  The reasons 

for this can be seen by examining the relevant equations, as described in section B (below).  There, a general procedure is outlined for 

maximizing the precision obtainable for all 3 parameters, within experimental limitations.  In section C (below), a summary of our curve 

fitting trials is given that illustrates the general principles involved. 

In cases where the accuracy of n is low, this limits the accuracy of KA to about the same level of precision.  Specifically, the 

methodology gives an accurate value for KA / (n * [a]T), while [a]T is typically determined quite accurately, along with the ratio of KA / n.  If 

all that can be obtained is a lower limit for n (as discussed above), this then provides a lower limit for KA. 
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Section 5B.   
Given here is  
1) how to find the cooperativity factor (= n) as a parameter in curve fitting, using data for how [protein2-substrate complex] (= b)  
and [ternary complex] (= A) co-vary as [protein1] (= p) is changed, given the (constant) [protein2] (= q), [total probe] (= H),  
and the dissociation constant of the protein2-substrate complex (= L), and  
2) how to get p and k as parameters in curve fitting using the data set {(b, A, ∆)}, knowing n and the dilution factors (= ∆) for a stock solution of protein1, of unknown concentration. 
 
key for single-character notation used here: 
below Peacock &   description 
  Jaynes [1] 
    H     [AB]T  total concentration of labeled substrate 
    h     [AB]  free concentration of labeled substrate 
    p     [a]T  total concentration of protein1 
    f     [a]  free concentration of protein1 
    q     [b]T   total concentration of protein2 
    g     [b]  free concentration of protein2 
    k      KA  equilibrium dissociation constant of protein1 from its single-protein complex 
    L      KB   equilibrium dissociation constant of protein2 from its single-protein complex 
    n      n   cooperativity factor 
    a     [AaB]  concentration of single-protein1 complex 

    b     [ABb]  concentration of single-protein2 complex 
    A    [AaBb]  concentration of ternary complex 
 
Contents: 
Given the (constant) [protein2] (= q), [total probe] (= H), and the dissociation constant of the protein2-substrate complex (= L),  
we first find the cooperativity factor (= n) as a parameter in curve fitting, using data for how [protein2-substrate complex] (= b)  
and [ternary complex] (= A) co-vary as [protein1] (= p) is changed.  We keep track of the dilution factors used for p, for use below. 
(The Kd of protein2 dissociating from the ternary complex, L/n, is then known).   
 
Knowing n and the dilution factors (= ∆) for a stock solution of protein1, of unknown concentration p,  
we can then get p and k as parameters in curve fitting using the data set {(b, A, ∆)} using a different expression, derived below. 
 
Here, the [strongly binding protein] (= q) is kept constant, as the weakly binding one (p) is varied. 
We assume q and L are known from single-protein binding experiments  Note that here, q is a protein concentration, whereas elsewhere, it was a Kd. 
 
Equilibrium binding reaction:  two proteins (or complexes) bind to two distinct sites on the "probe" (labeled) substrate (e.g., DNA); 
(No non-specific competitor is present); 
 
The following are known: 
total [protein2] = q 
dissociation constant, single-protein2 complex = L  
total [labeled DNA] = H 
[2-protein complex] = A  (measured, as [protein1] is varied) 
[protein2 complexed with labeled substrate] = b  (this is also measured, as [protein1] is varied) 
H = total [labeled DNA], which includes both bound (a+b+A) and free (h); 
a and b are the [labeled single-protein complexes], A is the [ternary complex], and 
h is the free [labeled DNA]; 
 
Dissociation constants of the labeled-DNA – single-protein complexes are k and L.   
Only L is known initially. 
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Dissociation (equilibrium) constants of the various complexes with labeled substrate; 
protein 1: 

 

 
protein 2: 

 

 
We have the following governing equations with 12 variables (H, h, p, q, f, g, a, b, A, k, L, n),  
5 of them known or measured during the experiment (H, L, q, b, A). 
Initially, we want to determine n in terms of the known quantities (then later, p and k). 
The 6 governing equations are: 
#1:  

 
#2:  

 
#3:  

 
#4:  

 
#5:  

 
#6:  

 
Equations 2, 3, 5, and 6 can be considered a simpler system without p, f, and k (and so containing 9 variables, allowing n to be solved for in terms of the 5 known quantities,  
using the 4 equations). 
Rearranging #2 and using #5, and solving for h: 
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gives an expression for a (using #3): 

 
Now, using #6 and the expression for h above: 

gives: 

 
Given q and L from single-protein experiments, this can be used for curve fitting to find n,  
taking as data points b and A, which vary with p.  The actual value of p is unknown at this point,  
even if it can be measured directly, because the fraction of it that is active is unknown.   
 
To use this in standard curve fitting software, solve this for A: 

 
Use this to find n from data points (b, A), curve fitting for the parameter n, given H, q, and L. 
 
This expression involves L/n only in relation to the term H + q – 2b.  Therefore, to maximize the effectiveness of the curve fitting,  
we should minimize the values of H and q used in the experiment, consistent with maintaining accurately quantifiable  
levels of b and A.  The opposite is true for finding p and k (see below). 
 
 
We can get p and k from the same data set used to find n, by 
"keeping track" of how much p is varied (defining the factor ∆),  
and curve fit to get p and k, from the data set {(b, A, ∆)}. 
To do this, we will need a and h in terms of b, A, H, and n. 
Using #3 and #6: 

so we have: 
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and: 

 
From #4 and #6: 

 
and using #1: 

 

 
So,  

 

 

 
We modify this by substituting ∆*p0 for p, and now ∆ varies (and is known) but p0 is constant (and is  
as yet unknown).  We solve the expression for ∆, and using the data set {(b, A, ∆)}, curve fit to find p0 and k as parameters.   
p0 can be chosen as any one value, and ∆ = 1 for that data point.   
The others p values that correspond to each data point (b, A) are then ∆*'p0'.   
The final curve fitting expression is thus: 

 
Here, small values of H tend to make the term containing it small, relative to k/nb.  This makes it relatively difficult to  
individually determine k and p0, because when the term containing H vanishes, the curve depends only on the ratio k / p0.   
So, higher values of H are generally better for accurately determining p and k, while, as described above, lower values of H  
are generally better for accurately determining n.  In practice, therefore, it is optimal to first determine n using the minimum  
H that is consistent with good quantitation of b and A, then redo the experiment at higher values of H (and enough q to get  
accurately quantifiable levels of b and A), in order to get precise values for p0 and k (rather than only a precise value for their ratio). 
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Section 5C.	  	  The	  following	  is	  a	  summary	  of	  our	  curve	  fitting	  trials	  to	  find	  first	  n,	  then	  p	  and	  k	  using	  the	  equations	  derived	  in	  Section	  5B. 
	  
key	  for	  single-‐character	  notation	  used	  here:	  
below	   Peacock	  &	  	   description	  
	   	   Jaynes	  [1]	  
	  	  	  	  H	   	   	  	  	  [AB]T	   	   total	  concentration	  of	  labeled	  substrate	  
	  	  	  	  k	   	   	  	  	  	  KA	  	   	   equilibrium	  dissociation	  constant	  of	  protein1	  from	  its	  single-‐protein	  complex	  
	  	  	  	  p	   	   	  	  	  [a]T	   	   total	  concentration	  of	  protein1	  
	  	  	  	  q	   	   	  	  	  [b]T	   	   total	  concentration	  of	  protein2	  
	  	  	  	  n	   	   	  	  	  	  n	   	   	   cooperativity	  factor	  
 
First,	  we	  summarize	  our	  trials	  to	  recover	  the	  values	  which	  we	  gleaned	  from	  the	  Vershon	  lab	  paper	  Jin	  et	  al.,	  1999	  [7],	  namely	  {n,	  k}	  =	  {80,000,	  80,000},	  	  

along	  with	  the	  values	  for	  p	  which	  we	  used	  in	  each	  trial	  to	  obtain	  the	  data	  for	  curve	  fitting	  (listed	  below).	  
	  
Then,	  we	  do	  the	  same	  for	  the	  three	  En	  binding	  sites	  that	  we	  focused	  on	  in	  Peacock	  and	  Jaynes	  [1],	  as	  follows:	  
B1a,	  where	  {n,	  k}	  =	  {	  	  500,	  	  	  3,000};	  
B1b,	  where	  {n,	  k}	  =	  {	  	  113,	  	  	  5,975};	  
A2a,	  where	  {n,	  k}	  =	  {7,000,	  90,000}.	  
	  
All	  of	  the	  following	  refer	  to	  trials	  with	  28	  data	  points	  (taken	  from	  curves	  drawn	  using	  the	  exact	  parameter	  values)	  rounded	  to	  2	  significant	  figures	  	  

(thereby	  incorporating	  errors	  in	  the	  range	  of	  0.5	  –	  5%):	  
	  
Note:	  	  %	  values	  in	  boldface	  indicate	  cases	  where	  the	  procedure	  worked	  well	  enough	  to	  determine	  a	  parameter	  within	  about	  10%.	  
	  
	  
With	  H	  =	  20,	  q	  =	  10,	  20,	  40,	  80},	  p	  =	  {48,	  90,	  144},	  curve	  fitting	  to	  find	  n	  didn’t	  converge;	  

assuming	  the	  correct	  n,	  then	  finding	  p	  and	  k:	  	  	  
p:	  	  error	  3.0%,	  curve	  fit	  error	  5.5%;	  	  	  
k:	  	  error	  4.4%,	  curve	  fit	  error	  6.2%.	  	  This	  low	  curve	  fitting	  error	  suggests	  that,	  once	  n	  is	  determined	  with	  reasonable	  accuracy	  using	  a	  lower	  value	  of	  H,	  	  

using	  this	  higher	  value	  of	  H	  will	  yield	  accurate	  values	  for	  p	  and	  k	  (confirmed	  below).	  
	  
	  
With	  H	  =	  10,	  q	  =	  {4,	  8,	  12,	  16},	  p	  =	  {48,	  64,	  80,	  96,	  112,	  128,	  144}:	  
n:	  	  error	  58%,	  	  curve	  fit	  error	  111%.	  
Using	  the	  n	  value	  obtained	  from	  this	  curve	  fitting,	  then	  finding	  p	  and	  k:	  	  	  
p:	  	  error	  5.2%,	  curve	  fit	  error	  12%;	  
k:	  	  error	  56%,	  curve	  fit	  error	  12%.	  
	  
	  
With	  H	  =	  1,	  q	  =	  {0.4,	  0.8,	  1.6,	  3.2},	  p	  =	  {48,	  144,	  288,	  480,	  800,	  1440,	  2880}:	  
n:	  	  error	  5335%,	  	  curve	  fit	  error	  1069%.	  
Using	  the	  n	  value	  obtained	  from	  this	  curve	  fitting,	  then	  finding	  p	  and	  k:	  	  	  
p:	  	  error	  88%,	  curve	  fit	  error	  99%;	  
k:	  	  error	  541%,	  curve	  fit	  error	  100%.	  
	  
	  
With	  H	  =	  0.1,	  q	  =	  {0.04,	  0.08,	  0.16,	  0.32},	  p	  =	  {1000,	  1200,	  1440,	  1720,	  2000,	  2400,	  2880}:	  
n:	  	  error	  7.6%,	  	  curve	  fit	  error	  8.0%.	  
Using	  the	  n	  value	  obtained	  from	  this	  curve	  fitting,	  then	  finding	  p	  and	  k:	  	  	  
p:	  	  error	  100%,	  curve	  fit	  error	  147%;	  
k:	  	  error	  100%,	  curve	  fit	  error	  148%.	  
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With	  H	  =	  0.1,	  q	  =	  {0.04,	  0.08,	  0.16,	  0.32},	  p	  =	  {480,	  1440,	  2880,	  4800,	  8000,	  14400,	  28800}:	  
actual	  error	  is	  2.9%,	  	  curve	  fitting	  error	  is	  3.6%.	  

n:	  	  error	  2.9%,	  	  curve	  fit	  error	  3.6%.	  
Using	  the	  n	  value	  obtained	  from	  this	  curve	  fitting,	  then	  finding	  p	  and	  k:	  	  	  
p:	  	  curve	  fitting	  doesn’t	  converge;	  
k:	  	  curve	  fitting	  doesn’t	  converge.	  
	  
Combining	  the	  H=0.1	  data	  sets	  with	  the	  others	  does	  not	  help	  either	  convergence	  or	  %	  errors	  in	  the	  curve	  fitting.	  
	  
Note	  that	  only	  with	  H	  =	  0.1	  (or	  less,	  not	  listed)	  is	  n	  determined	  within	  10%.	  	  	  
Using	  the	  value	  for	  n	  so	  obtained,	  then	  using	  a	  data	  set	  taken	  with	  H	  =	  20	  in	  curve	  fitting	  to	  find	  p	  and	  k,	  gives	  p	  and	  k	  within	  ~10%:	  

	  
	  
Using	  the	  value	  for	  n	  obtained	  with	  H	  =	  0.1,	  then	  finding	  p	  and	  k	  (%	  in	  parentheses	  is	  for	  1st	  set	  of	  q	  values	  above	  with	  H	  =	  0.1;	  	  	  

curve	  fitting	  error	  is	  the	  same	  for	  both	  sets	  of	  q	  values	  with	  H	  =	  0.1):	  
Using	  the	  H	  =	  10	  data,	  	  
p:	  	  error	  5.4%	  (5.4%),	  curve	  fit	  error	  12%;	  
k:	  	  error	  8.6%	  (14%),	  curve	  fit	  error	  12%.	  
	  
Using	  the	  H	  =	  20	  data,	  	  
p:	  	  error	  4.4%	  (4.4%),	  curve	  fit	  error	  5.5%;	  
k:	  	  error	  6.7%	  (12%),	  curve	  fit	  error	  6.2%.	  
	  
	  
From	  these	  same	  data	  sets,	  we	  can	  get	  an	  accurate	  value	  for	  the	  ratio	  k/p	  much	  more	  easily	  than	  we	  can	  obtain	  their	  individual	  values	  accurately.	  	  Assuming	  a	  high	  value	  for	  p,	  then	  using	  curve	  
fitting	  to	  find	  the	  ratio	  k/p,	  given	  a	  previously	  determined	  n,	  gives	  a	  very	  accurate	  value	  for	  the	  ratio	  (within	  0.4%	  curve	  fitting	  error).	  

	  
	  
	  
Fujioka	  et	  al.,	  2012	  [8],	  En	  binding	  sites	  
B1a,	  where	  {n,	  k}	  =	  {500,	  3000};	  
B1b,	  where	  {n,	  k}	  =	  {113,	  5975};	  
A2a,	  where	  {n,	  k}	  =	  {7000,	  90000}:	  
	  
with	  H	  =	  1,	  q	  =	  {0.4,	  0.8,	  1.2,	  1.6},	  	  p	  =	  {1200,	  1440,	  1720,	  2000,	  2400,	  2880}:	  
	  
B1a:	  
First	  find	  n:	  	  1.2%	  error,	  curve	  fitting	  error	  0.65%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  99%,	  curve	  fit	  error	  38%;	  	  	  
k	  error	  100%,	  curve	  fit	  error	  40%;	  	  then	  p	  and	  k	  	  
	  
from	  H	  =	  40	  data,	  using	  the	  above	  value	  for	  n	  (H	  =	  1):	  	  	  
p	  error	  2.9%,	  curve	  fit	  error	  5.4%;	  	  	  
k	  error	  1.7%,	  curve	  fit	  error	  6.2%.	  
	  
For	  this	  site,	  we	  needed	  to	  use	  H	  =	  1	  (or	  less)	  to	  accurately	  determine	  n,	  then	  H	  =	  40	  (or	  greater)	  to	  accurately	  determine	  p	  and	  k.	  
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B1b:	  
First	  find	  n:	  	  0.17%	  error,	  curve	  fitting	  error	  0.48%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  100%,	  curve	  fit	  error	  100%;	  	  	  
k	  wouldn’t	  converge;	  	  then	  p	  and	  k	  	  
	  
from	  H	  =	  40	  data,	  using	  the	  value	  for	  n	  found	  with	  H	  =	  1:	  	  	  
p	  error	  16%,	  curve	  fit	  error	  24%;	  	  	  
k	  error	  16%,	  curve	  fit	  error	  24%;	  	  then	  p	  and	  k	  	  
	  
from	  H	  =	  160	  data,	  using	  the	  value	  for	  n	  found	  with	  H	  =	  1	  
p	  error	  6.8%,	  curve	  fit	  error	  5.6%;	  	  	  
k	  error	  8.1%,	  curve	  fit	  error	  6.7%.	  
	  
For	  this	  site,	  we	  needed	  to	  use	  H	  =	  10	  (or	  less,	  see	  H	  =	  10	  below)	  to	  accurately	  determine	  n,	  then	  H	  =	  160	  (or	  greater)	  to	  accurately	  determine	  p	  and	  k.	  
	  
	  
A2a:	  
First	  find	  n:	  	  2.7%	  error,	  curve	  fitting	  error	  8.4%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  100%,	  curve	  fit	  error	  31%;	  	  	  
k	  error	  100%,	  curve	  fit	  error	  33%.	  	  then	  p	  and	  k	  	  
	  
from	  H	  =	  40	  data,	  using	  the	  value	  for	  n	  found	  with	  H	  =	  1	  
p	  error	  4.9%,	  curve	  fit	  error	  24%;	  	  	  
k	  error	  2.6%,	  curve	  fit	  error	  24%;	  	  then	  p	  and	  k	  	  
	  
from	  H	  =	  160	  data,	  using	  the	  value	  for	  n	  found	  with	  H	  =	  1	  
p	  error	  5.9%,	  curve	  fit	  error	  1.4%;	  	  	  
k	  error	  11%,	  curve	  fit	  error	  1.9%.	  
	  
For	  this	  site,	  we	  needed	  to	  use	  H	  =	  1	  (or	  less)	  to	  accurately	  determine	  n,	  then	  H	  =	  160	  (or	  greater)	  to	  accurately	  determine	  p	  and	  k.	  
	  
	  
	  
with	  H	  =	  10:	  
	  
B1a,	  q	  =	  {4,	  8,	  12,	  16},	  	  p	  =	  {48,	  64,	  80,	  96,	  112,	  128,	  144}:	  
First	  find	  n:	  	  7.6%	  error,	  curve	  fitting	  error	  14%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  217%,	  curve	  fit	  error	  185%;	  	  	  
k	  error	  246%,	  curve	  fit	  error	  186%.	  
	  
	  
B1b,	  q	  =	  {4,	  8,	  12,	  16},	  	  p	  =	  {1200,	  1440,	  1720,	  2000,	  2400,	  2880}:	  
First	  find	  n:	  	  1.2%	  error,	  curve	  fitting	  error	  0.94%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  97%,	  curve	  fit	  error	  43%;	  	  	  
k	  error	  97%,	  curve	  fit	  error	  46%.	  
	  
B1b,	  q	  =	  {4,	  8,	  12,	  16},	  	  	  p	  =	  {48,	  64,	  80,	  96,	  112,	  128,	  144}:	  
First	  find	  n:	  	  146%	  error,	  curve	  fitting	  error	  35%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  93%,	  curve	  fit	  error	  43%;	  	  	  
k	  error	  82%,	  curve	  fit	  error	  44%.	  
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A2a,	  q	  =	  {4,	  8,	  12,	  16},	  	  p	  =	  {48,	  64,	  80,	  96,	  112,	  128,	  144}:	  
First	  find	  n:	  	  62%	  error,	  curve	  fitting	  error	  53%;	  	  then	  p	  and	  k:	  	  	  
p	  error	  60%,	  curve	  fit	  error	  145%;	  	  	  
k	  error	  85%,	  curve	  fit	  error	  140%.	  
	  
	  
	  
with	  H	  =	  40,	  q	  =	  {10,	  20,	  40,	  80},	  	  p	  =	  {16,	  32,	  48,	  64,	  88,	  112,	  144}:	  
	  
B1a:	  
First	  find	  n:	  	  47%	  error,	  curve	  fitting	  error	  30%;	  
then	  p	  and	  k:	  	  	  
p	  error	  3.7%,	  curve	  fit	  error	  5.5%;	  	  	  
k	  error	  53%,	  curve	  fit	  error	  6.2%.	  
	  
	  
B1b:	  
First	  find	  n:	  	  52%	  error,	  curve	  fitting	  error	  41%;	  
then	  p	  and	  k:	  	  	  
p	  error	  15%,	  curve	  fit	  error	  23%;	  	  	  
k	  error	  30%,	  curve	  fit	  error	  24%.	  
	  
	  
A2a:	  
First	  find	  n:	  	  72%	  error,	  curve	  fitting	  error	  105%;	  
then	  p	  and	  k:	  	  	  
p	  error	  4.6%,	  curve	  fit	  error	  24%;	  	  	  
k	  error	  70%,	  curve	  fit	  error	  24%.	  
	  
	  
	  
with	  H	  =	  160,	  q	  =	  {80,	  160,	  240,	  320},	  	  p	  =	  {32,	  64,	  96,	  144,	  196,	  288}:	  
	  
B1b:	  
First	  find	  n:	  	  21%	  error,	  curve	  fitting	  error	  15%;	  
then	  p	  and	  k:	  	  	  
p	  error	  6.2%,	  curve	  fit	  error	  5.5%;	  	  	  
k	  error	  15%,	  curve	  fit	  error	  6.7%.	  
	  
	  
A2a:	  
First	  find	  n:	  	  43%	  error,	  curve	  fitting	  error	  252%;	  
then	  p	  and	  k:	  	  	  
p	  error	  5.9%,	  curve	  fit	  error	  1.4%;	  	  	  
k	  error	  47%,	  curve	  fit	  error	  1.9%.	  
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Generalizing the methods to more than two binding sites and 
cooperating ligands 

The binding polynomial expresses the relative concentrations of all species in a system of 

ligands interacting with a substrate.  It is written as a sum of terms, one for each species, 

normalized to the concentration of free substrate.  First, for comparison to the more complex 

case of a 3-ligand complex, the definition of the binding polynomial for a 2-ligand complex is, 

after, e.g., Haiech et al, 2014 [8]: 

P(a, b) = ([AB] + [AaB] + [ABb] + [AaBb]) / [AB],  

which can be solved in terms of dissociation constants and free concentrations to give: 

P(a, b) = 1 + [a]/KA + [b]/KB + n * [a]/KA * [b]/KB. 

Introducing another ligand c then requires additional terms in the binding polynomial, 

one for each species.  Now our substrate (e.g., DNA containing 3 individual binding sites in 

positions that allow 3 distinct pairwise complexes to form) is ABC, and there are 3 different 2-

ligand complexes, AaBbC, AaBCc, and ABbCc, as well as the 3-ligand complex AaBbCc.  The 

binding polynomial is now: 

P(a, b, c) = ([ABC] + [AaBC] + [ABbC] + [ABCc] + [AaBbC] + [AaBCc] + [ABbCc] + 

[AaBbCc]) / [ABC],  

which becomes, in terms of measurable constants and free ligand concentrations: 

P(a,b,c) = 1 + [a]/KA + [b]/KB + [c]/KC + nAB * [a]/KA * [b]/KB + nAC * [a]/KA * [c]/KC + 

nBC * [b]/KB * [c]/KC + nABC * [a]/KA * [b]/KB * [c]/KC. 

We now need subscripts for each pairwise cooperativity factor to distinguish which pair 

of ligands it is associated with, as well as another cooperativity factor associated with the 3-

ligand complex.  This factor is an independent quantity in the general case where additional free 

energy (positive or negative) may be associated with the formation of the 3-ligand complex 

beyond that associated with the formation of each 2-ligand complex. 

As derived for a 2-ligand complex containing a and b in Fig. 2A of Peacock and Jaynes 

[1]: 

nAB = [ABC] * [AaBbC] / ([AaBC] * [ABbC]) 
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and, by analogy, 

nAC = [ABC] * [AaBCc] / ([AaBC] * [ABCc]) 

nBC = [ABC] * [ABbCc] / ([ABbC] * [ABCc]). 

We can find nABC to be: 

nABC = [ABC]2 * [AaBbCc] / ([AaBC] * [ABbC] * [ABCc]) 

by equating the term containing it in the binding polynomial with the definition of the 

corresponding term from above: 

nABC * [a]/KA * [b]/KB * [c]/KC = [AaBbCc] / [ABC] 

nABC = [AaBbCc] * KA * KB * KC / ([ABC] * [a] * [b] * [c]) 

where 

KA = [ABC] * [a] / [AaBC] 

KB = [ABC] * [b] / [ABbC] 

KC = [ABC] * [c] / [ABCc]. 
In order to relate the “new” cooperativity factor for the 3-ligand complex to those of the 

2-ligand complexes, we note that complete dissociation of the 3-ligand complex involves the 

sum of 3 free energies.  For one possible dissociation route, these are:  the free energy change 

when ligand a dissociates, that when ligand b dissociates from the 2-ligand complex, and that 

when ligand c dissociates from the single-ligand complex. 

Because the standard Gibbs free energy and the Kd are related by: 

∆G0 = – R * T * ln(KA) (where R is the gas constant and T is the absolute temperature), 

adding these 3 free energies is equivalent to multiplying the 3 dissociation constants that govern 

dissociation of ligand a from the 3-ligand complex, dissociation of ligand b from the 2-ligand 

complex containing ligands b and c, and dissociation of ligand c to release the free DNA. 

This product is: 

([ABbCc] * [a] / [AaBbCc]) * ([ABCc] * [b] / [ABbCc]) * ([ABC] * [c] / [ABCc])  

= [ABC] * [a] * [b] * [c] / [AaBbCc]  

= KA * KB * KC / nABC,  

where the last equality comes from the last expression above for nABC.   
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So, 1 / nABC represents the free energy in the complex that is due to cooperative binding;  

i.e., this “extra” ∆G0 = R * T * ln(nABC).  From the definitions above, the Kd that governs the 

dissociation of ligand a from the 3-ligand complex is: 

[ABbCc] * [a] / [AaBbCc] = ([ABC] * [a] / [AaBC]) * {[ABC] * [ABbCc] / ([ABbC] * 

[ABCc])} / {[ABC]2 * [AaBbCc] / ([AaBC] * [ABbC] * [ABCc])}  

= KA * nBC / nABC,  

and similarly for the other dissociation constants from the 3-ligand complex. 

This tells us that the Kd for dissociation of ligand a from the 3-ligand complex equals the 

Kd for dissociation of ligand a from the DNA (in the absence of the other ligands) multiplied by 

the cooperativity factor governing the dissociation of the remaining 2-ligand complex, then 

divided by the 3-ligand cooperativity factor.  As defined in Fig. 2A for the cooperativity factor 

associated with a 2-ligand complex, 1 / nBC represents the free energy associated with 

cooperativity in the 2-ligand complex containing ligands b and c, and we now know that 1 / nABC 

represents the free energy associated with cooperativity in the 3-ligand complex.  So, it makes 

sense that the equilibrium constant for dissociation of ligand a from the 3-ligand complex would 

equal KA multiplied by nBC (representing the free energy due to cooperativity remaining in the 2-

ligand complex containing b and c), divided by nABC (representing all of the free energy due to 

cooperativity within the 3-ligand complex). 

For nABC in the case where the free energies of interaction within the complex consist 

solely of those found within the respective 2-ligand complexes, the energy change that occurs 

when ligand a dissociates from the 3-ligand complex is the sum of those that occur when ligand 

a dissociates from each of the 2-ligand complexes containing it, minus the energy change that 

occurs when ligand a dissociates from the single-ligand complex (because the sum includes two 

such dissociations from the DNA itself, one from each 2-ligand complex).  This means that the 

Kd that governs the dissociation of ligand a from the 3-ligand complex will be the product of 

those that govern the dissociation of ligand a from each of the 2-ligand complexes that contain it, 

divided by the Kd that governs the dissociation of ligand a from the single-ligand complex.  In 

symbols, this means that: 

KA * nBC / nABC = (KA / nAB) * (KA / nAC) / KA. 
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Cancelling KA's and rearranging gives: 

nAB * nAC * nBC = nABC. 

 

So, if the free energies of association within the 3-ligand complex are simply the sum of 

those that occur within the 2-ligand complexes, nABC is the product of the cooperativity factors of 

the three 2-ligand complexes, and we already have enough information from analysis of the 2-

ligand complexes to predict the behavior of the entire 3-ligand system (see below). 

If, instead, we find by studying the formation of the 3-ligand complex that the above 

relationship does not hold, we can then measure nABC, and develop and test hypotheses that can 

explain its deviation from the product of the 2-ligand cooperativity factors. 

How can we determine nABC to see if the above relationship holds?  Perhaps the most 

straightforward requires us to distinguish and quantify only the 3-ligand complex and the free 

DNA, and use the individual Kd's and protein concentrations (determined by the methods 

described in this paper) along with the following, from above: 

nABC = [AaBbCc] * KA * KB * KC / ([ABC] * [a] * [b] * [c]). 

If this is done under conditions where the total [DNA] is much less than each of the total 

protein concentrations, then the free protein concentrations are essentially equal to the total 

protein concentrations, and we have all the information necessary to obtain nABC.  Once nABC is 

determined, we can use computational methods to solve the system and obtain the concentrations 

of each species over the full range of total protein and DNA concentrations. 

This system consists of 22 variables, namely, the 3 single-ligand Kd's, the 4 cooperativity 

factors, the concentrations of 9 forms of DNA (including total, bound, and unbound), and the 

total and free concentrations of each of the 3 proteins.  It is constrained by the following 11 

equations:  the definitions of the 3 individual Kd's and the 4 cooperativity factors, and the 4 

“continuity” equations where the total concentrations of each protein and of the DNA are set 

equal to the sum of the free and bound forms of each. 

The system is determined if we specify 11 of the variables.  For example, if we know the 

3 single-ligand Kd's and the 4 cooperativity factors, along with the total concentrations of DNA 

and of each of the 3 proteins, then solving the system gives us the values of the other 11 
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variables:  the concentrations of the 7 complexes and the free concentrations of the DNA and of 

each of the 3 proteins. 

In principle, we can follow an analogous procedure to characterize a 4-ligand system, by 

first determining the Kd's of each of the 4 ligands individually, along with the cooperativity 

factors for each of the 4 possible 3-ligand complexes (as described above), and then determining 

the “new” cooperativity factor for the 4-ligand complex.  This will be: 

nABCD = [AaBbCcDd] * KA * KB * KC * KD / ([ABCD] * [a] * [b] * [c] * [d]), 

and it can be determined by quantifying the [4-ligand complex] and the free [DNA] under 

conditions where the latter is much lower than each of the total [protein], as described above for 

the 3-ligand complex. 

If all of the interactions leading to cooperativity are contained within pairwise interaction 

domains that are not significantly affected by higher-order complex formation, then the sum of 

the free energies from the pairwise interactions equals the total cooperative free energy of the 

entire complex, and: 

nABCD = nAB * nAC * nBC * nAD * nBD * nCD  

For j ligands binding to distinct sites on a substrate and cooperating solely through 

pairwise interactions, the cooperativity factor is the product of the 

j! / [2 * (j – 2)!] 

possible pairwise cooperativity factors, which can each be measured by studying the ternary 

complex containing those two ligands, using the methods given here. 
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