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SUMMARY

Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not 

completely understood. Using a phosphoproteomics screen, we now show that active Akt 

accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase 

kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this 

pathway switches tumor metabolism towards glycolysis, antagonizes apoptosis and autophagy, 

dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. 

Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter 

survival in glioma patients and may provide an “actionable” therapeutic target in cancer.
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INTRODUCTION

Hypoxia is a nearly universal feature of tumor growth (Hockel and Vaupel, 2001), conferring 

worse disease outcome via protection from apoptosis (Graeber et al., 1996), resistance to 

therapy (Tredan et al., 2007), and enhanced metastatic competence (Cox et al., 2015). This 

pathway requires the transcriptional activity of hypoxia-inducible factor 1 (HIF1), a master 

regulator of oxygen homeostasis (Keith et al., 2012) that becomes stabilized upon drops in 

oxygen pressure by escaping prolyl hydroxylation and proteasome-dependent destruction by 

the von Hippel-Lindau tumor suppressor (Semenza, 2013). In turn, nuclear localized HIF1 

contributes to oncogene signaling (Mazumdar et al., 2010), angiogenesis (Ravi et al., 2000), 

cell invasion (Gilkes et al., 2014), and tumor metabolic reprogramming.

In this context, mitochondria are the primary site of hypoxia-induced metabolic 

reprogramming in tumors (Denko, 2008). This response involves HIF1-dependent 

transcription of mitochondrial pyruvate dehydrogenase kinase (PDK) (Kim et al., 2006; 

Papandreou et al., 2006), which in turn phosphorylates the pyruvate dehydrogenase complex 

(PDC) on three separate sites (Patel et al., 2014). By suppressing the oxidative 

decarboxylation of pyruvate into acetyl-CoA (Patel et al., 2014), an active PDK shuts off 

oxidative phosphorylation, lowers the production of toxic ROS, and switches tumor 

bioenergetics towards glycolysis (Denko, 2008), a driver of more aggressive disease traits 

(Gatenby and Gillies, 2004). What has remained unclear, however, is whether HIF1-

dependent transcription is the sole mechanism for PDK activation in hypoxia (Kim et al., 

2006; Papandreou et al., 2006), and the existence of other potential regulators of this 

response has not been widely investigated. In this study, we examined mechanisms of the 

tumor response to hypoxia.
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RESULTS

A mitochondrial Akt phosphoproteome in hypoxia

We began this study by profiling the mitochondrial phosphoproteome of prostate 

adenocarcinoma PC3 cells exposed to severe hypoxia (<0.5% oxygen for 48 hr) versus 

normoxia. A total of 4,236 phosphosites were identified in the phosphopeptide-enriched 

samples, with a large number of changes in phosphorylation level in hypoxia/normoxia 

samples (Figures 1A and S1A). In total, 1,329 phosphosites showed a significant change 

(minimum fold-change of 1.6) in at least one sample analyzed (Figure 1A). By 

bioinformatics analysis, the mitochondrial phosphoproteome in hypoxia contained regulators 

of organelle integrity, bioenergetics, gene regulation and proteostasis (Figure 1B), which are 

functionally implicated in tumor cell proliferation, motility, invasion and apoptosis (Figure 

S1B). To complement these data, we also examined changes in the global mitochondrial 

proteome in hypoxia versus normoxia. A total of 5,583 proteins were identified in this 

analysis, and 267 of these proteins showed a significant change in hypoxia/normoxia 

samples (Figure S1C). Many of the phosphosites were not modulated at the protein level, 

suggesting that these phosphorylation events were independent of protein expression. In 

addition, the hypoxia-regulated mitochondrial phosphoproteome contained a discrete “Akt 

signature” (Figure 1A), characterized by increased phosphorylation of six Akt target proteins 

in hypoxia versus normoxia (Figure 1C).

Based on these results, we next looked at a role of Akt in the tumor response to hypoxia. 

Exposure of PC3 cells to hypoxia resulted in increased recruitment of Akt to mitochondria, 

whereas the cytosolic levels of Akt were unchanged between hypoxia and normoxia (Figures 

1D and S1D). The hypoxia-regulated pool of mitochondrial Akt was “active” as it was 

phosphorylated on Ser473 (Figure 1D) and persisted for up to 24 hr after re-oxygenation 

(Figures 1E and S1E). Consistent with these results, hypoxia was accompanied by increased 

phosphorylation of a set of mitochondrial proteins recognized by an antibody to the Akt 

consensus phosphorylation sequence, RxRxxS/T (Akt cons Ab) (Figure 1F). Preincubation 

of mitochondrial extracts with Akt cons Ab (Figure 1F), or silencing Akt2 by small 

interfering RNA (siRNA) (Figure S1F), removed the mitochondrial proteins recognized by 

Akt cons Ab in hypoxia, confirming the specificity of this response and Akt-directed 

phosphorylation activity in mitochondria in hypoxia. Silencing Akt1 had minimal effect 

(Figure S1F). siRNA silencing of HIF1α did not affect Akt recruitment to mitochondria in 

hypoxia (Figure S1G), suggesting that this pathway did not require HIF1-dependent 

transcription. In addition, depletion of HIF1α did not affect Akt levels in the cytosol or 

mitochondria under normoxic conditions, whereas phosphorylated Akt2 levels were 

increased in the cytosol in response to hypoxia (Figure S1G). As detected by Akt cons Ab, 

the expression levels of downstream Akt-phosphorylated target molecules were unchanged 

in normoxic or hypoxic conditions (Figure 1F). In response to hypoxia, active Akt was 

found predominantly in the mitochondrial inner membrane, and, to a lesser extent, the 

matrix (Figure S1H).

The mechanism(s) of how Akt is recruited to mitochondria in hypoxia was further 

investigated. We found that blocking the chaperone activity of heat shock protein-90 
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(Hsp90) with 17-allylaminogeldanamycin (17-AAG) prevented the accumulation of 

mitochondrial Akt in hypoxia (Figure 1G). Also, scavenging mitochondrial ROS with 

MitoTempo (MT) inhibited Akt recruitment to mitochondria (Figure 1H). The antioxidant 

N-acetyl cysteine (NAC) had no effect (Figure 1H), identifying mitochondria-derived ROS 

as a critical stimulus for mitochondrial accumulation of Akt in hypoxia.

PDK1 is a phosphorylation target of mitochondrial Akt in hypoxia

We next set up a 1D proteomics screen to identify mitochondrial proteins phosphorylated by 

Akt in hypoxia (Figure 2A). Immune complexes precipitated with Akt cons Ab from 

normoxic or hypoxic PC3 cells contained bands with ~35 to ~120 kDa molecular weight that 

were more abundant in hypoxia (Figure S2A). Preclearing mitochondrial extracts with Akt 

cons Ab removed most of these proteins, validating the specificity of the 

immunoprecipitation step. From these experiments, we identified by mass spectrometry 84 

high-confidence Akt substrates differentially expressed in hypoxia (Table S1). Sixteen of 

these molecules were known mitochondrial proteins (Figure 2B), including hypoxia- and 

HIF1-regulated effectors of bioenergetics (UGP2, SLC2A1, PDK1, HK2), extracellular 

matrix remodeling (P4HA1), Ca2+ homeostasis at the ER-mitochondria interface (Ero1L), 

oxidative phosphorylation (LonP1, IBA57), and metabolism (Acot9). Due to previously 

published work suggesting the importance of PDK1 in the tumor hypoxic response, we next 

focused on PDK1 as a potential substrate of mitochondrial Akt in hypoxia. In kinase assays, 

active Akt1 or Akt2 readily phosphorylated PDK1, as well as control GSK3β, as determined 

by Western blotting with Akt cons Ab (Figure 2C). This phosphorylation event was selective 

for PDK1, as related PDK2, PDK3 or PDK4 isoforms were unreactive (Figure 2D). In 

addition, PDK1 immune complexes reacted with Akt cons Ab preferentially in hypoxia 

(Figure 2E), and reciprocally, immune complexes precipitated with Akt cons Ab in hypoxia 

contained PDK1 (Figure S2B), consistent with the model of Akt phosphorylation of PDK1 

in hypoxia.

We next looked for potential Akt phosphorylation sites in PDK1 by LC-MS/MS analysis of 

chymotrypsin digests of Akt-phosphorylated PDK1 in a kinase assay separated by SDS-

PAGE (Figure S2C). We identified Thr346 (T346) in a number of PDK1 chymotryptic 

peptides, including the sequence STAPRPRVEpTSRAVPL (m/z=908.9751) as the sole 

phospho-amino acid modified by Akt1 or Akt2, compared to control (Figure 2F). The PDK1 

sequence surrounding T346 matched an Akt consensus phosphorylation site, RxRxxS/T 

(Figure S2D), which was not present in PDK2, PDK3 or PDK4 (Figure S2E). Consistent 

with these data, active Akt2 phosphorylated wild type (WT) PDK1 but not a 

phosphorylation-defective Thr346→Ala (T346A) PDK1 mutant in transfected PC3 cells 

(Figure 2G). In the PDK1 crystal structure, T346 is predicted to localize to a flexible, “ATP 

lid” hinge region (Figure 2H), positioned to affect ATP loading and kinase activation.

To independently validate these findings, we next generated a phospho-specific antibody to 

phosphorylated T346 (pT346 Ab) in PDK1. The pT346 Ab dose-dependently reacted with 

the phosphorylated PDK1 peptide CAPRPRVE(pT)SRAVPLA, but not the non-

phosphorylated sequence (Figure S2F). A second antibody raised against the non-

phosphorylated sequence recognized the non-phosphorylated PDK1 peptide (Figure S2G). 

Chae et al. Page 4

Cancer Cell. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Under these conditions, pT346 Ab reacted with Akt2-phosphorylated WT PDK1, but not 

T346A PDK1 mutant (Figure 2I). Consistent with the model that T346 phosphorylation is 

hypoxia-sensitive, WT PDK1, but not T346A PDK1, precipitated from hypoxic PC3 cells 

reacted with pT346 Ab (Figure 2J). pT346 Ab only weakly reacted with WT or T346A 

PDK1 precipitated from normoxic cells (Figure 2J).

Finally, we generated clones of PC3 cells stably silenced for endogenous PDK1 by short 

hairpin RNA (shRNA). pT346 Ab did not react with these cells in normoxia (Figure S2H). 

In contrast, pLKO transfectants reacted with pT346 Ab in hypoxia, and this response was 

abolished by shRNA silencing of PDK1 (Figure S2H).

Akt-PDK1 phosphorylation axis in hypoxia

Expression of WT PDK1 in hypoxic PC3 cells increased the phosphorylation of the E1α 
catalytic subunit (PDHE1) of the PDC (Figure 3A) on site 1 (Ser264 in the mature protein), 

one of three regulatory phosphorylation sites (Patel et al., 2014). Conversely, expression of 

T346A PDK1 mutant reduced PDHE1 phosphorylation in hypoxia (Figure 3A), and no 

PDHE1 phosphorylation was detected in normoxia (Figure 3A). Immune complexes of WT 

or T346A PDK1 mutant contained comparable amounts of the PDC component, PDHE1α, 

suggesting that T346 does not contribute to a PDK1-PDC complex (Figure S3A). In a kinase 

assay, active Akt2 increased PDK1 phosphorylation of PDHE1 (Figure 3B). While WT 

PDK1 phosphorylated PDHE1 in the presence of Akt2 (Figure 3C), T346A PDK1 mutant 

was ineffective (Figure 3C). Consistent with these data, increased PDHE1 phosphorylation 

was detected only in the presence of Akt2 and PDK1, but not PDK2, PDK3 or PDK4 

(Figure S3B). Silencing of Akt2 inhibited PDHE1 phosphorylation in hypoxia, whereas 

Akt1 knockdown only had a partial effect (Figure 3D). As a complementary approach, we 

used a pan-Akt small molecule inhibitor, MK2206, which indistinguishably suppressed Akt 

phosphorylation in hypoxia and normoxia (Figure S3C). Incubation of PC3 cells with 

MK2206 suppressed PDHE1 phosphorylation in hypoxia (Figure 3E). This response was 

specific because PDK1 immunoprecipitated from MK2206-treated cells also failed to 

phosphorylate PDHE1 in a kinase assay in hypoxia (Figure S3D). In normoxia, MK2206 

had no effect on PDHE1 phosphorylation in cell extracts (Figure 3E) or in a kinase assay 

with immunoprecipitated PDK1 (Figure S3D), validating the specificity of Akt-directed 

phosphorylation in hypoxic conditions.

As an independent approach, we next generated WT or kinase-dead (KD) Akt2 constructs 

targeted to the mitochondria by the cytochrome c oxidase subunit 8 mitochondrial import 

sequence. Similar to the endogenous protein, mitochondrial-targeted Akt2 accumulated in 

the various submitochondrial fractions (Figure S3E). Functionally, mitochondrial-targeted 

Akt2-KD inhibited PDHE1 phosphorylation in hypoxic PC3 cells (Figure 3F), whereas non-

mitochondrial targeted Akt2-KD had no effect. There was no PDHE1 phosphorylation in the 

cytosol of hypoxic or normoxic tumor cells, and Akt2-KD or mitochondrial-targeted Akt2-

KD had no effect in these settings (Figure S3F). Reciprocally, forced expression of 

mitochondrial-targeted WT Akt2 was sufficient to increase PDHE1 phosphorylation even in 

the absence of hypoxia (Figure S3G).
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Finally, we reconstituted PDK1-depleted cells with various PDK1 cDNAs. Expression of 

WT PDK1 in these settings restored PDHE1 phosphorylation in hypoxia, whereas T346A 

PDK1 mutant had no effect (Figure 3G). With respect to its enzymatic function, PDK1 

knockdown increased PDH activity in normoxic PC3 cells (Figure 3H). Hypoxic cells 

showed reduced PDH activity, and this response was partially rescued by shRNA silencing 

of PDK1 (Figure 3H). Reconstitution of these cells with WT PDK1, but not T346A PDK1 

mutant, suppressed PDH activity in hypoxia (Figure 3I). In addition, expression of Akt-KD 

or mitochondrial-targeted Akt-KD in PC3 cells had no effect on PDH activity in normoxia, 

but modestly elevated PDH function in hypoxia (Figure S3H), consistent with loss of an 

Akt-regulated inhibitory function of PDK1 in these settings. Vector or non-mitochondrial 

targeted Akt2-KD had no effect (Figure S3H).

Mitochondrial Akt-PDK1 phosphorylation controls tumor metabolic reprogramming

To understand how mitochondrial Akt-PDK1 signaling affects tumor behavior, we first 

looked at potential changes in cancer metabolism. Consistent with previous studies, hypoxia 

stimulated glycolytic metabolism in tumor cells, characterized by increased glucose 

consumption (Figure 3J) and lactate production (Figure 3K). Mitochondrial Akt-PDK1 

signaling was important for this response, as PDK1 knockdown reduced glucose 

consumption in hypoxia, whereas reconstitution of targeted cells with WT PDK1, but not 

T346A PDK1 mutant, restored glycolysis (Figure 3J). Similarly, Akt inhibition with 

MK2206 (Figure 3K) or silencing of Akt2 (Figure 3L) impaired metabolic reprogramming, 

reducing lactate production in hypoxia. Normoxic cultures were not affected (Figures 3K 

and 3L), and Akt1 knockdown had only partial effect (Figure 3L). Consistent with a 

metabolic switch towards glycolysis (Kim et al., 2006; Papandreou et al., 2006), PC3 cells 

reconstituted with WT PDK1 exhibited reduced oxygen consumption, a marker of oxidative 

phosphorylation, whereas expression of T346A PDK1 mutant restored oxygen consumption 

(Figure 3M), further supporting a role of mitochondrial Akt-PDK1 signaling in hypoxic 

metabolic reprogramming.

Mitochondrial Akt-PDK1 phosphorylation in vivo

When analyzed in time-course experiments, hypoxia increased phosphorylation of Akt1 and 

Akt2, as well as PDHE1 starting at 3 and 6 hr, respectively (Figure S4A). The overall 

hypoxic response under these conditions was cell type-specific. Akt inhibition strongly 

reduced PDHE1 phosphorylation in prostate adenocarcinoma (DU145), lung 

adenocarcinoma (A549) and glioblastoma (LN229), but had no effect on PDHE1 

phosphorylation in breast adenocarcinoma cells MCF-7 (ER+) or MDA-231 (ER−) (Figure 

S4B). Knockdown of PTEN in MCF-7 cells increased PDHE1 phosphorylation in normoxia 

and, to a lesser extent, hypoxia, whereas LN229 cells were unaffected (Figure S4C), 

suggesting that PTEN status may differentially affect hypoxia-stimulated mitochondrial Akt-

PDK1 signaling depending on the tumor cell type.

To examine a more “physiologic” model of tumor hypoxia, we next looked at 3D cultures of 

patient-derived, stem cell-enriched GBM neurospheres (Di Cristofori et al., 2015). These 

cultures become hypoxic in their “core”, as determined by expression of a hypoxia probe 

(Figures 4A and S4D and S4E). Under these conditions, GBM neurospheres exhibited 
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strong phosphorylation of PDK1, as determined by immunofluorescence with pT346 Ab 

(Figure 4A). Conversely, differentiated GBM cells depleted of stem cells and growing as 

monolayers were normoxic, contained cytosolic HIF1α, and did not react with pT346 Ab 

(Figure 4A). Pre13 absorption of pT346 Ab with the immunizing peptide abolished 

reactivity with GBM (Figure S4D).

Next, we looked at Akt phosphorylation of PDK1 in primary, patient-derived GBM tissue 

samples (Table S2). GBMs with a high score (≥2) for nuclear HIF1α showed increased 

phosphorylation of PDK1 by Akt (pT346 Ab), as well as phosphorylation of PDHE1 and 

Src, a major determinant of glioma invasiveness (Du et al., 2009), in hypoxic areas (Figures 

4B and S4F). In contrast, GBMs with undetectable nuclear HIF1α (score = 0) showed low 

to undetectable levels of PDK1-PDHE1 phosphorylation (Figures 4C and S4F). In these 

patients, phosphorylation of PDK1 (pT346 Ab) (Figure 4D) or PDHE1 phosphorylation 

(Figure 4E) correlated with expression of nuclear HIF1α. Reciprocally, PDHE1 

phosphorylation correlated with the expression of Akt-phosphorylated PDK1 (pT346 Ab) 

(Figure 4F), reinforcing a link between hypoxia and mitochondrial Akt-PDK1 

phosphorylation in primary patient samples.

Mitochondrial Akt-PDK1 regulation of tumor cell proliferation in hypoxia

To test a role of a mitochondrial Akt-PDK1 signaling in tumor growth in vivo, we first 

utilized human U251 GBM cells expressing a luciferase reporter under the control of a 

HIF1-responsive element (HRE) and a mCherry reporter under a constitutive PGK promoter 

to quantify cell viability. Stereotactic intracranial injection of these cells in 

immunocompromised mice gave rise to GBMs characterized by HIF1-directed luciferase 

activity and reactivity with a hypoxia-sensitive marker (Figures 5A and 5B). Despite low 

oxygenation, these orthotopic GBMs remained viable, as determined by high mCherry 

expression (Figures 5A and 5B) and exhibited a time-dependent increase in the number of 

mitotic tumor cells (Figure S5A). These proliferating cells stained intensely positive for Akt-

phosphorylated PDK1 (Figures 5C and S5B and S5C), correlating with increased HIF1 

activity (Figure S5D). PDHE1 was also highly phosphorylated in intracranial GBMs (Figure 

5C).

We next tested the requirement of mitochondrial Akt-PDK1 signaling in regulating 

proliferation under hypoxic conditions. siRNA knockdown of Akt1 or Akt2 (Figure 5D) or 

stable shRNA knockdown of PDK1 (Figure 5E) suppressed tumor cell proliferation in 

hypoxia. Normoxic cultures were partially affected (Figures 5D and 5E). When cells were 

analyzed for cell cycle transitions, MK2206 or the PDK1 inhibitor dichloroacetate (DCA) 

suppressed S-phase progression in hypoxia and increased the population of tumor cells in 

G1/sub-G1 phase (Figure S5E). Finally, stable silencing of PDK1 abolished PC3 colony 

formation in hypoxia, a marker of tumorigenicity (Figures 5F and 5G), whereas normoxic 

growth was not significantly affected. Together, these data point to an important role of 

mitochondrial Akt-PDK1 signaling in maintaining tumor cell proliferation in hypoxia.
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Mitochondrial Akt regulation of stress signaling in hypoxia

The downstream implications of defective mitochondrial Akt-PDK1 signaling were next 

investigated. First, inhibition of Akt with MK2206 (Figure 6A) or stable shRNA silencing of 

PDK1 (Figure 6B) increased aberrant ROS production in tumor cells, especially in hypoxia. 

This was associated with decreased tumor cell viability (Figure 6C), and appearance of 

cleaved caspase 3 (Figure 6D), a marker of apoptosis. In normoxia, cleaved caspase 3 was 

undetectable. Confirming the specificity of this response, exposure of tumor cells to a small 

molecule inhibitor of PI3K, PX-866 did not result in caspase activation (Figure 6D). 

Reconstitution of these cells with WT PDK1, but not T346A PDK1 mutant, partially rescued 

tumor cell viability in hypoxia (Figure 6E). Normoxic cultures were not affected, further 

supporting a role of PDK1 signaling selectively in hypoxia.

As a second downstream pathway of tumor maintenance modulated by bioenergetics, we 

next observed that stable knockdown of PDK1 (Figure 6F) or siRNA silencing of Akt1 or 

Akt2 (Figure 6G) in hypoxia increased the phosphorylation of the energy stress sensor, 

AMP-regulated kinase (AMPK). This response was associated with concomitant activation 

of autophagy, as determined by LC3 conversion to a lipidated form (Figures 6F and 6G), and 

punctate LC3 fluorescence staining (Figures 6H and 6I). Normoxic cultures showed a 

minimal level of autophagy induction after PDK1 silencing (Figures 6F and 6G and S6A). In 

PDK1-depleted cells, re-expression of WT PDK1, but not T346A PDK1 mutant, attenuated 

AMPK phosphorylation and reduced autophagy in hypoxia (Figures 6H and 6I and S6B).

Requirement of hypoxic mitochondrial reprogramming for tumor growth in vivo

Next, we asked if mitochondrial Akt-PDK1 signaling was important for tumor growth in 

vivo. shRNA silencing of PDK1 significantly impaired the growth of PC3 xenograft tumors 

implanted in immunocompromised mice (Figure 7A). Re-expression of WT PDK1 in these 

cells restored tumor growth in vivo (Figures 7B and 7C), whereas T346A PDK1 mutant 

further impaired tumor growth (Figure 7C). By immunohistochemistry, PC3 tumors 

harboring WT PDK1 showed increased cell proliferation, reduced apoptosis and lower levels 

of autophagy, compared to tumors reconstituted with T346A PDK1 mutant (Figures 7D and 

7E). In addition, tumors with loss of endogenous PDK1 showed a trend towards increased 

apoptosis and heightened autophagy in vivo, whereas tumor cell proliferation by Ki-67 

staining was unchanged (Figures 7F and G). Taken together, these results suggest that 

mitochondrial Akt-PDK1 signaling promotes tumor adaptation to hypoxia, and specifically 

enables continued tumor cell proliferation despite an unfavorable microenvironment (Figure 

7H).

To test the relevance of this model in human cancer, we next looked at the prognostic impact 

of Akt phosphorylation of PDK1 in a clinically-annotated cohort of 116 glioma patients 

(Table S3). Undetectable in normal brain parenchyma, the expression of Akt phosphorylated 

PDK1 on T346 progressively increased in gliomas, with the highest reactivity observed in 

glioblastoma (Figures 8A and 8B). PDK1 phosphorylation on T346 segregated with other 

markers of disease progression, including HIF1α expression (Figure 8C), wild type status of 

isocitrate dehydrogenase-1 (IDH1) (Figure 8D), and unmethylated MGMT promoter (Figure 

8E). Consistent with this prognostic profile, elevated expression of Akt-phosphorylated 
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PDK1, as determined by ROC curves analysis (Figures S7A and S7B), was significantly 

associated with reduced overall survival in patients with gliomas (p=0.006; HR=2.2; 95%CI: 

1.17–4.12; Figure 8F) as well as patients with GBM (p=0.032; HR=2.03; 95%CI: 0.95–4.32; 

Figure 8G).

DISCUSSION

In this study, we have shown that hypoxia, a universal driver of malignancy, promotes the 

recruitment of active Akt to mitochondria of tumor cells. In turn, mitochondrial Akt, in 

particular Akt2, phosphorylates the bioenergetics regulator PDK1 on a Thr346 target site, 

resulting in increased kinase activity and phosphorylation of its downstream substrate in the 

PDC, PDHE1α. This pathway improves tumor fitness, stimulating glycolysis, countering 

autophagy and apoptosis, dampening oxidative stress, and enabling continued cell 

proliferation in face of severe hypoxia in vivo. Accordingly, mitochondrial Akt-PDK1 

signaling emerged as a powerful negative prognostic factor in glioma patients, correlating 

with markers of unfavorable outcome and shortened survival.

Akt is an essential signaling node exploited in most cancers, integrating growth factor 

responses with mechanisms of cell proliferation, survival and bioenergetics (Manning and 

Cantley, 2007). The role of this pathway as a regulator of tumor adaptation to hypoxia has 

not been previously described, and its spatial arrangement in subcellular compartments, in 

particular mitochondria, has only recently begun to emerge (Ghosh et al., 2015). Data 

presented here suggest that the recruitment of predominantly active Akt to mitochondria 

during hypoxia (Santi and Lee, 2010) may be part of a broader stress response in tumors, 

enabled by the chaperone function of cytosolic Hsp90 in mitochondrial pre-protein import 

(Young et al., 2003) and mitochondrial ROS production, which may participate in 

subcellular trafficking of signaling molecules (Nakahira et al., 2006), including 

mitochondrial import (Fischer and Riemer, 2013).

In our phosphoproteomics screen, Akt recruitment to mitochondria was associated with a 

discrete Akt phosphorylation signature that included regulators of organelle homeostasis and 

glycolytic reprogramming in hypoxia, such as 6-phosphofructose-2-kinase/fructose-2,6-

bisphosphatase 3 (PFKB3) and PDK1 (De Bock et al., 2013). In the case of PDK1, Akt 

phosphorylation took place exclusively in hypoxia, did not involve other PDK isoforms, and 

targeted a unique Thr346 site in the “ATP lid” (Zhang et al., 2015), ideally positioned to 

affect ATP loading, and kinase activation (Patel et al., 2014). Thr346 did not affect PDK1 

binding to the PDC, thus differently from another proposed post-translational modification 

of PDK1 involving Tyr phosphorylation of the “ATP lid” (Hitosugi et al., 2011).

Extensively studied as part of HIF1 signaling (Semenza, 2013), the tumor response to 

hypoxia has been linked to metabolic reprogramming (Kim et al., 2006; Papandreou et al., 

2006), with suppression of mitochondrial respiration in favor of glycolysis (Denko, 2008). 

However, there is evidence that this pathway may extend well beyond bioenergetics, as 

PDK1 signaling has been implicated in senescence (Kaplon et al., 2013), metastatic tropism 

(Dupuy et al., 2015), and multiple mechanisms of tumor maintenance (McFate et al., 2008). 

The fact that this response is “druggable” and that small molecule PDK1 inhibitors have 
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entered clinical testing in cancer patients (Michelakis et al., 2010) adds to the relevance of 

PDK1 signaling as a potential driver of tumor progression.

Against this backdrop, the pathway of mitochondrial Akt-PDK1 signaling described here 

appears ideally poised to affect a plethora of downstream signaling mechanisms important 

for tumor adaptation and improved fitness. This involves suppression of apoptosis via 

mitochondrial Akt phosphorylation of hexokinase-II at the outer membrane (Roberts et al., 

2013) and cyclophilin D in the permeability transition pore (Ghosh et al., 2015), as well as 

inhibition of oxidative phosphorylation through Akt phosphorylation of PDK1 and 

subsequent inhibition of the PDC (Patel et al., 2014). In turn, this lowers the production of 

toxic ROS, prevents the phosphorylation of stress energy sensor, AMPK (Liang and Mills, 

2013), and inhibits downstream activation of autophagy (White, 2012). Although these 

pathways have been implicated in both tumor suppression and oncogenesis (Liang and 

Mills, 2013; White, 2012), there is evidence that AMPK inhibition and suppression of 

autophagy may promote malignant expansion (White, 2012), and heightened metastatic 

competence (Caino et al., 2013), including in hypoxia (Liu et al., 2015), further 

compounding the more aggressive traits of glycolytic tumors (Gatenby and Gillies, 2004).

Here, a pivotal feature of mitochondrial Akt-PDK1 signaling was its activation in mitotic 

cells and requirement to support tumor cell proliferation in the face of hypoxia, in vivo. 

Whether this response can be entirely attributed to the suppression of ROS or involves other 

mechanisms of mitochondria-to-nuclei retrograde signaling (Jazwinski, 2013) remains to be 

elucidated. On the other hand, hypoxic reprogramming may participate in cell cycle 

transitions via regulation of p27 expression (Gardner et al., 2001) or Myc transcriptional 

activity (Gordan et al., 2007), and effector(s) of glycolysis have been linked to chromosomal 

segregation and mitotic progression, selectively in hypoxia (Jiang et al., 2014). In line with 

the broad impact of mitochondrial Akt-PDK1 signaling on multiple mechanisms of tumor 

adaptation, this pathway was found to have significant implications for disease progression 

in humans. Accordingly, expression of PDK1 phosphorylated on T346 was undetectable in 

normal brain, but increased steadily in the hypoxic environment of gliomas, including 

glioblastomas, segregated with unfavorable prognostic markers, and correlated with 

shortened overall survival in these patients. Although these results await further 

confirmation in larger patient cohorts, detection of Akt-phosphorylated PDK1 may provide 

an easily accessible biomarker for clinical decision-making in patients with gliomas, 

including glioblastoma (Wick et al., 2014).

Despite expectations for personalized, or precision medicine, small molecule antagonists of 

Akt and its associated signaling nodes, PI3K and mTOR (Manning and Cantley, 2007), have 

produced only limited responses in the clinic, hampered by drug resistance and significant 

toxicity (Fruman and Rommel, 2014). While these results may reflect mechanisms of tumor 

adaptation (Ghosh et al., 2015), including mitochondrial reprogramming (Caino et al., 

2015), the identification of mitochondrial Akt (Ghosh et al., 2015) as a post-translational 

regulator of PDK1 activity and tumor progression may rationally repurpose Akt-directed 

molecular therapies as an approach to impair tumor adaptation to hypoxia. In this context, 

targeted inhibition of the mitochondrial pool of Akt may selectively disable a host of 

metabolic, survival and proliferative requirements for tumor fitness (McFate et al., 2008) and 
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reawaken endogenous tumor suppressor mechanisms important for anticancer activity in 

patients.

EXPERIMENTAL PROCEDURES

Patients

All patient-related studies were reviewed and approved by an Institutional Review Board at 

Fondazione IRCCS, Ca’ Granda Ospedale Maggiore Policlinico Milan, Italy. A first cohort 

of 26 patients diagnosed with de novo glioma were enrolled at Fondazione IRCCS Ca’ 

Granda Ospedale Maggiore Policlinico (Milan, Italy) between 2010 and 2011, and described 

previously (Di Cristofori et al., 2015). All patients were treated with surgical resection with 

curative intent. Gliomas were staged according to the WHO classification (Louis et al., 

2007), and the clinicopathological and molecular characteristics of the patients’ series used 

in this study are described in Table S2. This cohort was used to evaluate the expression of 

phosphoT346-PDK1 (pPDK1), phosphoPDHE1α (pPDHE1), phosphoT416-Src (pSrc) and 

nuclear HIF1α reactivity, by immunohistochemistry. Tissue microarrays (TMAs) of glioma 

or normal brain tissues were as described (Di Cristofori et al., 2015). Immunohistochemistry 

slides were digitalized using an Aperio scanner at 20× magnification, and HIF1α nuclear 

staining was quantified using a nuclear-specific algorithm implemented in Genie Histology 

Pattern Recognition software (Aperio, Leica Microsystems). To specifically quantify nuclear 

HIF1α expression in primary GBM culture, the Volocity algorithm that counts and displays 

red signals (HIF1α) within the Hoechst signal (nuclei) in each z-stack was used. A second 

series of 116 patients with de novo glioma who underwent surgery with curative intent 

between 2008 and 2009 and for which complete clinical and follow-up records were 

available (Table S3), was retrieved from the archives of the Pathology Division. This cohort 

was used in the present study to correlate the expression of Akt-phosphorylated PDK1 on 

T346 with prognostic markers of glioma progression, including nuclear HIF1α, MGMT 

promoter methylation and IDH1 mutational status (wild type (WT)/R132H), and patients’ 

overall survival.

Xenograft tumor growth studies

All experiments involving animals were approved by an Institutional Animal Care and Use 

Committee (IACUC) at The Wistar Institute in accordance with the Guide for the Care and 

Use of Laboratory Animals of the National Institutes of Health (NIH), or, alternatively, at 

the University of Milan, in compliance with the Italian Ministry of Health. In a first set of 

experiments, PC3 cells stably transduced with control pLKO or PDK1-directed shRNA were 

reconstituted with vector, WT PDK1 or T346A PDK1 mutant cDNA at 80% confluency, 

suspended in PBS, pH 7.4, and injected (0.2 ml containing 2×106 cells) s.c. into the flank of 

6–8 week old male NOD SCID γ (NSG, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) 

immunocompromised mice (Jackson Laboratory, 3 mice per condition/2 tumors per mouse). 

The width and length of superficial tumors were measured with a caliper at the indicated 

time intervals, and tumor volume was calculated according to the formula Vol= width2 × 

length/2. After 21 days Xenograft tumors were harvested, fixed and processed for 

immunohistochemistry.
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An orthotopic murine model of glioblastoma (GBM) was obtained by stereotactic injection 

(coordinates: 1.5 mm lateral to the bregma, 0 mm behind and 3.0 mm ventral to the dura) 

(Maes et al., 2009) of 1×105 U251-HRE-mCherry GBM cells in 2 µl of PBS into 7–8-week-

old female nude mice (Harlan Laboratories) at day 0 (Lo Dico et al., 2014). Following 

surgery, mice were monitored for recovery until complete awakening. Six animals per time 

point were used and mice were euthanized after 20 or 34 days. Intracranial GBM samples 

were harvested from the various groups and processed for differential expression of 

phosphorylated PDK1 or PDHE1, HIF1α or Ki-67 by immunohistochemistry on serial 

sections.

Statistical analysis

Data were analyzed using the two-sided unpaired t or chi-square tests using a GraphPad 

software package (Prism 6.0) for Windows. Correlation parameters between 

immunohistochemical (IHC) scores in glioma patients and clinicopathological variables 

were derived using Mann-Whitney U test or chi-square test for continuous or discrete 

variable, respectively, using GraphPad Prism or MedCalc (Mariakerke, Belgium) statistical 

package. Receiver operating characteristics (ROC) curves method was used to test the 

accuracy of T346 phosphorylated PDK1 to correctly discriminate between glioma patients 

according to their survival status (alive or dead for the disease) and to generate cut-offs for 

phosphorylated PDK1 IHC score using the non-arbitrary criterion derived from the 

Youden’s statistic (J, MedCalc Software) as described (Di Cristofori et al., 2015). The 

pPDK1 IHC score value that more accurately discriminated between alive or dead patients 

was >25 and >40 for gliomas or GBM patients, respectively (Youden criterion). Glioma 

patients were then sorted into low or highexpressor categories and Kaplan-Meier survival 

curves were compared using the Log-Rank test (MedCalc Software). Data are expressed as 

mean±SD or mean±SEM of replicates from a representative experiment out of at least two 

or three independent determinations. A p value of <0.05 was considered as statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

The ability to flexibly adapt to an unfavorable microenvironment is a distinctive feature 

of tumor cells, engendering treatment resistance and unfavorable disease outcome. Low 

oxygen pressure, or hypoxia, is a powerful driver of tumor adaptation, but “druggable” 

therapeutic target(s) in this response have remained elusive. Here, we show that hypoxic 

tumors recruit a pool of active Akt to mitochondria, culminating with Akt 

phosphorylation of the metabolic gatekeeper, PDK1. This phosphorylation step improves 

tumor fitness, preserves tumor cell proliferation in the face of severe hypoxia, and is a 

negative prognostic factor in glioma patients. Repurposing small molecule Akt inhibitors 

currently in the clinic may provide an approach to prevent hypoxic reprogramming and 

improve anticancer therapy.
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Figure 1. Mitochondrial phosphoproteome in hypoxia
(A) Phosphoproteome of prostate adenocarcinoma PC3 cells in hypoxia versus normoxia. 

Identified phosphosites met a minimum MaxQuant localization probability of 0.75 and a 

score difference of 5. Fold changes were calculated from the normalized Heavy/Light 

SILAC ratio. Six Akt target proteins showing increased phosphorylation in hypoxia are 

indicated. Grey, not significant; red, upregulated; blue, downregulated; yellow squares, Akt 

targets.

(B) Ingenuity pathway analysis of mitochondrial phospho- and global proteome in hypoxia.
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(C) Kinases for which at least 5 known targets showed significant changes in 

phosphorylation in hypoxic versus normoxic conditions as in (A). Up, upregulation; Dn, 

downregulation. *, The modulated genes are: ARID1A; HIST1H1E; HMGA1; LARP1; 
LIG1; LIG3; LMNB2; LRCH3; LRWD1; MARCKS; MED1; MKI67; NCL; NPM1; 
NUCKS1; PDS5B; PTPN2; RB1; RBL1; RBL2; SAMHD1; SETDB1; TERF2; VIM. **, 

The modulated genes are: DUT; EEF1D; HIST1H1E; HMGA1; IRS2; LIG1; LIG3; LMNA; 
LMNB1; MAP4; NOLC1; NPM1; NUCKS1; PDS5B; PTPN2; RB1; SAMHD1; TCOF1; 
TOP2A; TPX2; VIM.

(D) PC3 cells in normoxia (N) or hypoxia (H) were fractionated in cytosol (Cyto) or 

mitochondrial (Mito) extracts and analyzed by Western blotting. pAkt, phosphorylated Akt 

(Ser473). TCE, total cell extracts.

(E) PC3 cells in hypoxia (H) were exposed to reoxygenation (O2) for the indicated time 

intervals and analyzed by Western blotting. N, normoxia.

(F) The indicated subcellular fractions isolated from normoxic (N) or hypoxic (H) PC3 cells 

were analyzed with an antibody to the Akt consensus phosphorylation site RxRxxS/T (Akt 

cons Ab) by Western blotting. Mito Sup, supernatant of mitochondrial extracts after 

preclearing with Akt cons Ab.

(G) PC3 cells in normoxia (N) or hypoxia (H) were treated with vehicle (Veh) or Hsp90 

small molecule inhibitor 17-AAG (5 µM for 6 hr), and cytosolic (Cyto) or mitochondrial 

(Mito) extracts were analyzed by Western blotting.

(H) PC3 cells in normoxia (N) or hypoxia (H) were treated with vehicle (Veh), the 

antioxidant N-acetyl cysteine (NAC, 1 mM) or mitochondria-specific ROS scavenger, 

MitoTempo (MT, 25 µM), and subcellular fractions were analyzed by Western blotting. See 

also Figure S1.

Chae et al. Page 18

Cancer Cell. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Mitochondrial Akt phosphorylation of PDK1
(A) Schematic diagram for the identification of a mitochondrial Akt phosphoproteome in 

hypoxic versus normoxic PC3 cells.

(B) Mitochondrial proteins reacting with Akt cons Ab showing differential expression in 

hypoxic versus normoxic PC3 cells.

(C) Recombinant PDK1 or GSK3β was mixed in a kinase assay with active Akt1 or Akt2, 

and phosphorylated bands were detected with Akt cons Ab by Western blotting.

(D) The indicated PDK isoforms were mixed in the presence or absence of active Akt2 in a 

kinase assay and phosphorylated bands were detected with Akt cons Ab, by Western 

blotting.
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(E) PC3 cells in normoxia (N) or hypoxia (H) were immunoprecipitated (IP) with an 

antibody to PDK1 followed by Western blotting. HIF1α reactivity (bottom) was used as a 

marker of hypoxia. TCE, total cell extracts. Bottom, densitometric quantification of 

phosphorylated (p) PDK1 bands. U, arbitrary units.

(F) Extracted ion chromatogram of the PDK1 phosphorylated T346 chymotryptic peptide 

(STAPRPRVEpTSRAVPL, m/z 908.9751) resulting from incubation with or without active 

Akt1 or Akt2 in a kinase assay.

(G) PC3 cells were transfected with vector or Flag-tagged wild type (WT) PDK1 or T346A 

PDK1 mutant, immunoprecipitated with an antibody to Flag and immune complexes were 

mixed with active Akt2 in a kinase assay followed by Western blotting with Akt cons Ab. 

Bottom, densitometric quantification of phosphorylated (p) PDK1 bands. U, arbitrary units.

(H) Molecular dynamics simulation of the structure of PDK1 (ribbon) with stick 

representation of residues 336–356 comprising the “ATP lid”. The ATP molecule is derived 

from the structure of PDK3-L2-ATP (PDB code 1Y8P) superimposed onto the structure of 

PDK1. The predicted location of Thr346 as well as Arg343 and Arg348 is shown.

(I) The experimental conditions are as in (G) except that Flag-PDK1 immune complexes 

mixed with active Akt2 in a kinase assay were analyzed with phospho-specific pT346 Ab by 

Western blotting. Exp., exposure. Bottom, densitometric quantification of phosphorylated 

(p) PDK1 bands. U, arbitrary units.

(J) Flag-PDK1 immune complexes as in (G) were precipitated from PC3 cells in normoxia 

(N) or hypoxia (H) and analyzed with pT346 Ab by Western blotting. p, phosphorylated. 

Bottom, densitometric quantification of pPDK1 bands. U, arbitrary units. See also Figure S2 

and Table S1.
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Figure 3. A mitochondrial Akt-PDK1-PDHE1 phosphorylation axis in hypoxia
(A) PC3 cells in normoxia (N) or hypoxia (H) were transfected with vector, WT PDK1 or 

T346A PDK1 mutant and analyzed by Western blotting. Bottom, densitometric 

quantification of phosphorylated (p) PDHE1 bands. U, arbitrary units.

(B) The indicated recombinant proteins were mixed in a kinase assay and analyzed by 

Western blotting.

(C) PC3 cells transfected with vector or the indicated Flag-tagged WT PDK1 or T346A 

PDK1 mutant were immunoprecipitated (IP) with an antibody to Flag, and immune 
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complexes were mixed in a kinase assay with recombinant Akt2 and PDHE1 followed by 

Western blotting.

(D) PC3 cells in normoxia (N) or hypoxia (H) were transfected with control siRNA (Ctrl) or 

siRNA to Akt1 or Akt2, and analyzed by Western blotting.

(E) PC3 cells in normoxia (N) or hypoxia (H) were treated with vehicle control (Veh) or a 

small molecule Akt inhibitor, MK2206 (1 µM), and analyzed by Western blotting.

(F) PC3 cells in normoxia (N) or hypoxia (H) were transfected with vector, Akt-kinase dead 

(Akt-KD) or mitochondrial-targeted Akt-KD (mtAkt-KD) mutant, and mitochondrial 

extracts (Mito) were analyzed by Western blotting.

(G) PC3 cells in normoxia (N) or hypoxia (H) were transduced with pLKO or PDK1-

directed shRNA, reconstituted with vector, WT PDK1 or T346A PDK1 mutant cDNA and 

analyzed by Western blotting. Bottom, densitometric quantification of phosphorylated (p) 

PDHE1 bands. U, arbitrary units.

(H) PC3 cells transduced with pLKO or PDK1-directed shRNA were analyzed for PDH 

activity in normoxia (N) or hypoxia (H) conditions. Left, representative tracings (n=4). 

Right, quantification of PDH activity. ns, not significant. Mean±SEM. *, p=0.03.

(I) PC3 cells in hypoxia were transduced with PDK1-directed shRNA, reconstituted with 

vector, WT PDK1 or T346A PDK1 mutant cDNA and analyzed for PDH activity. Left, 

representative tracings (n=3). Right, quantification of PDH activity. Mean±SEM. **, 

p=0.009.

(J) PC3 cells transduced with pLKO or PDK1-directed shRNA were reconstituted with 

vector, WT PDK1 or T346A PDK1 cDNA and analyzed for glucose consumption (n=4). 

Mean±SEM. ***, p<0.0002.

(K) PC3 cells in normoxia (N) or hypoxia (H) were treated with vehicle control (Veh) or Akt 

inhibitor, MK2206 (1 µM), and analyzed for lactate production (n=3). Mean±SEM. **, 

p=0.001–0.004; ***, p=0.0005–0.0009.

(L) PC3 cells in normoxia (N) or hypoxia (H) were transfected with control siRNA (Ctrl) or 

siRNA to Akt1 or Akt2 and analyzed for lactate production (n=2). Mean±SD. **, p=0.004; 

***, p=0.0005.

(M) PC3 cells stably silenced for PDK1 were transfected with vector (Vec), WT PDK1 or 

T346A PDK1 mutant, and analyzed for oxygen (O2) consumption (n=3). Mean±SEM. For 

all panels, data were analyzed using the two-sided unpaired Student’s t tests. See also Figure 

S3.
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Figure 4. Mitochondrial Akt-PDK1 phosphorylation, in vivo
(A) GBM neurospheres (top) or differentiated GBM cultures (bottom) were stained for DNA 

(DAPI), HIF1α, pT346-phosphorylated PDK1, or hypoxia (hypoxia-sensitive probe). 

Merged images of nuclear-localized HIF1α in hypoxic neurospheres (by velocity mask) are 

indicated (Merge). Yellow box, Volocity analysis to identify cells with nuclear HIF1α in 

each single z-stack. Scale bar, 20 µm.
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(B and C) Immunohistochemical staining of primary, patient-derived GBM samples with 

high (≥2) (B) or low (0) (C) score for HIF1α and phosphorylated protein (pProt) expression. 

Scale bar, 100 µm. p, phosphorylated.

(D–F) Quantitative immunohistochemical correlation of patient-derived GBM samples 

(n=24) or grade II gliomas (n=2) for HIF1α expression and pPDK1 (D), or pPDHE1 (E), or 

between pPDK1 and pPDHE1 (F). Four tissue microarray (TMA) cores/patient. The scoring 

is as follows: 0, no staining; 1, staining in at least one TMA core; 2, staining in ≥2 TMA 

cores. The individual p values per each analysis are indicated (Chi-Square test). See also 

Figure S4 and Table S2.

Chae et al. Page 24

Cancer Cell. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Requirement of mitochondrial Akt for tumor cell proliferation in hypoxia
(A and B) Bioluminescence imaging of immunocompromised mice carrying U251 

intracranial GBMs (3 animals/group) expressing luciferase under the control of HIF1-

responsive elements (Luc) and mCherry (cell viability) and exposed to a hypoxia-sensitive 

probe (Hypox). Scans were obtained at days 20 and 34 (A) and fluorescence signals were 

quantified (B). *, p=0.016–0.057 by Mann-Whitney test.

(C) Tissue samples from intracranial GBMs as in (A) were harvested at day 34 and analyzed 

for expression of HIF1α, phosphorylated (p) PDK1 (pT346 Ab) or pPDHE1, by 
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immunohistochemistry. Yellow lines were used to delineate the tumor mass within mice’ 

brain. Scale bar, 100 µm. Asterisks, mitotic cells; Insets (H&E and pPDK1 panels), high-

power magnification of mitotic cells. Scale bar, 25 µm.

(D and E) PC3 cells transfected with control siRNA (Ctrl) or Akt1- or Akt2-directed siRNA 

(D) or stably transduced with pLKO or PDK1-directed shRNA (E) were analyzed for cell 

proliferation in normoxia or hypoxia by direct cell counting (n=5). Mean±SEM. ***, 

p<0.001; **, p=0.002

(F and G) PC3 cells stably transduced with pLKO or PDK1-directed shRNA were analyzed 

in normoxia or hypoxia for colony formation by crystal violet staining after 10 days (F) and 

quantified (n=3) (G). Mean±SEM. ns, not significant. **, p=0.003. For all panels, data were 

analyzed using the two-sided unpaired Student's t test. See also Figure S5.
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Figure 6. Mitochondrial Akt regulation of stress signaling in hypoxia
(A and B) PC3 cells in normoxia (N) or hypoxia (H) were treated with vehicle (Veh) or 

MK2206 (1 µM) (A) or transduced with pLKO or PDK1-directed shRNA (B) and analyzed 

for ROS production by CELLROX Green staining and flow cytometry. Upper panels, 

representative tracings. Bottom panels, quantification of ROS production under the various 

conditions tested (n=2). Mean±SD for both datasets. *, p=0.01–0.02; **, p=0.004; ns, not 

significant.

(C) The experimental conditions are as in (A) and treated cells were analyzed for cell 

viability by direct cell counting relative to control (n=3). Mean±SEM. ***, p<0.0001.

(D) PC3 cells in normoxia (N) or hypoxia (H) were incubated with vehicle (Veh) or small 

molecule inhibitors of Akt (MK2206, 1 µM) or PI3K (PX-866, 10 µM) and analyzed by 

Western blotting.

(E) PC3 cells stably silenced for PDK1 were reconstituted with vector, WT PDK1 or T346A 

PDK1 mutant and analyzed for cell viability by direct cell counting relative to control (n=3). 

Mean±SEM. ***, p=0.0002.
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(F and G) PC3 cells in normoxia (N) or hypoxia (H) were transduced with pLKO or PDK1- 

directed shRNA (F) or control siRNA (Ctrl) or Akt1- or Akt2-directed siRNA (G), and 

analyzed by Western blotting.

(H and I) PC3 cells as in (E) were analyzed for LC3 reactivity by fluorescence microscopy, 

Scale bars, 10 µm (H), and cells with LC3 puncta (>3) were quantified (n=250–860 cells) 

(I). Mean±SEM.*, p=0.014; ***, p=0.0005. ns, not significant. For all panels, data were 

analyzed using the two-sided unpaired Student's t test. See also Figure S6.
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Figure 7. Mitochondrial Akt-directed hypoxic reprogramming supports tumor growth in vivo
(A) PC3 cells transduced with pLKO or PDK1-directed shRNA were injected s.c. in the 

flanks of male NSG immunocompromised mice (3 animals/group; 2 tumors/mouse) and 

superficial tumor growth was quantified with a caliper at the indicated time intervals for 20 

days. Data were analyzed using the two-sided unpaired Student's t test. Mean±SEM. ***, 

p<0.0001.

(B) PC3 cells stably transduced with pLKO or PDK1-directed shRNA were reconstituted 

with WT PDK1 or T346A PDK1 mutant and injected s.c. in the flanks of 

immunocompromised mice (5 mice/group; 2 tumors/mouse). Tumor growth in the various 
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groups was quantified at the indicated time intervals for 20 days. Data were analyzed using 

the two-sided unpaired Student's t test. Mean±SEM. *, p=0.01–0.02; ***, p<0.0001.

(C) PC3 cells stably transduced with pLKO or PDK1-directed shRNA were reconstituted 

with vector, WT PDK1 or T346A PDK1 mutant and injected s.c. in immunocompromised 

mice with determination of tumor growth after 18 days. Each point corresponds to an 

individual tumor. (D and E) Tumors harvested from the animals in (C) were analyzed for 

histology (D) and cell proliferation (top, Ki-67), autophagy (middle, LC3-II) or apoptosis 

(bottom, TUNEL) was quantified (E). The statistical analysis of the various groups by 

ANOVA is as follows: Ki-67, p<0.0001; LC3, p=0.024; TUNEL, p=0.039. Scale bars, 100 

µm.

(F and G) Superficial flank tumors of PC3 cells transduced with control pLKO or PDK1-

directed shRNA were harvested after 18 day and processed for immunohistochemistry (F) 

with quantification of reactivity for Ki-67 (top), LC3 (middle) or TUNEL (bottom) (H). 

Representative images per each condition are shown. (n=3, 10 images per mouse), Mean

±SD. Scale bars, 100 µm.

(H) Schematic model of a mitochondrial Akt-PDK1-PDHE1 phosphorylation axis in 

hypoxic tumor reprogramming.
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Figure 8. Mitochondrial Akt phosphorylation of PDK1 is a negative prognostic marker in human 
gliomas
(A) Representative micrographs of immunohistochemical staining of non-neoplastic human 

brain parenchyma (normal) or grade II-IV gliomas (WHO classification) with PDK1 pT346 

Ab. OD, oligodendroglioma; AOD, anaplastic OD; GBM, glioblastoma. Scale bar, 100 µm.

(B) Quantification of pT346 staining in a series of human brain tumors (n=116) and 85 

nonneoplastic brain parenchyma using a two-factor scoring system that considers the 

percentage of positive cells and the intensity of the staining (pPDK1 score). ***, p<0.0001; 

**, p=0.002 by Mann Whitney U-test. Each symbol represents an individual patient.

(C–E) Differences in pPDK1 score in human brain tumors as in (B) (n=116) according to 

nuclear HIF1α expression (C, **, p=0.008 by Mann Whitney U-test), IDH1 mutation status 

(D; *, p=0.02 by Mann Whitney U-test), or MGMT promoter methylation (D; *, p=0.01 by 

Mann Whitney U-test). Data are presented as Tukey box-and-whisker plots. The bottom and 

top of the box represent the first and third quartiles, and the band inside the box represents 
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the median (i.e. the 2nd quartile). The bottom end of the whisker represents the lowest datum 

within the 1.5 interquartile range (IQR) of the lower quartile, and the top end of the whisker 

represents the highest datum within 1.5 IQR of the upper quartile. Outlier data, if any, are 

represented by single points.

(F and G) Kaplan-Meier curves were generated with either the complete series of glioma 

patients (n=116; F) or with GBM cases only (n=61; G) sorted into “Low” or “High” groups 

according to pPDK1 score. Cutoffs to rank patients in these two categories were generated 

using ROC curves and the Youden’s J statistic. Overall survival curves were compared using 

the Log-Rank test. HR, Hazard Ratio; CI, Confidence Interval. See also Figure S7 and Table 

S3.
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