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Thomas Jefferson University, Philadelphia, PA 19107

3Department of Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center at 
Jefferson, Thomas Jefferson University, Philadelphia, PA 19107

Abstract

Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and 

arises from the transformation of melanocytes in the uveal tract. Even after treatment of the 

primary tumor, up to 50% of patients succumb to metastatic disease. The liver is the predominant 

organ of metastasis. There is an important need to provide effective treatment options for advanced 

stage UM. In order to provide the preclinical basis for new treatments, it is important to 

understand the molecular underpinnings of the disease. Recent genomic studies have shown that 

mutations within components of G protein-coupled receptor (GPCR) signaling are early events 

associated with ~98% of UMs.

Implications—This review discusses the alterations in GPCR signaling components (GNAQ and 

GNA11), dysregulated GPCR signaling cascades, and viable targeted therapies with the intent to 

provide insight into new therapeutic strategies in UM.

Introduction

UM is a rare cancer with ~2,500 new patient diagnoses being reported per year in the U.S. 

Primary UM tumors are treated effectively by radiation plaque therapy or enucleation; 

however, approximately 50% of patients develop metastatic disease, frequently in the liver 

(1, 2). In some cases, metastases are found decades after successful treatment of the primary 

tumors and one likely explanation is dissemination of tumor cells from the primary site 

followed by cellular dormancy (3). Metastatic UM responds poorly to clinically available 

therapies and patients often succumb within 1 year of diagnosis of the metastases; hence, 

there is an urgent unmet need for effective therapeutic strategies for advanced UM (4). There 

is a low mutational burden in UM tumors, unlike cutaneous melanoma, but identification of 
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mutations in components of GPCR signaling in UM tumors may uncover new therapeutic 

targets in UM. These components include GNAQ, GNA11, PLCB4 and CYSLTR2, 

mutations of which are found in ~98% of UM. Here, we review the molecular alterations in 

GPCR pathway components and discuss the therapeutic possibilities directed at targeting 

GPCR signaling.

GNAQ and GNA11 mutations

GNAQ and GNA11 encode the alpha subunits of guanine nucleotide-binding proteins (G 

proteins), Gαq and Gα11, respectively. They form a heterotrimeric complex with β and γ 
subunits and are important intermediates between membrane-bound GPCRs and intracellular 

signaling cascades. G proteins are normally inactive when bound by guanosine diphosphate 

(GDP) but agonist activation of GPCRs triggers recruitment of the G proteins to the 

receptors where a switch from GDP to guanosine triphosphate (GTP) occurs, rendering the 

G proteins active to bind/stimulate proteins associated with downstream pathways. 

Normally, the GTPase activity of G proteins hydrolyzes GTP to GDP (5), an inactivation 

process that is catalyzed by the regulator of G protein signaling (RGS) proteins. GNAQ and 

GNA11 mutations occur in a mutually exclusive manner in ~93% of UM tumors (The 

Cancer Genome Atlas (TCGA): GNAQ and GNA11 mutations detected in ~50% and ~43% 

of UM tumors, respectively) (6). They are almost exclusively found in exon 5 codon 209 

(Q209) although mutations in exon 4 codon 183 (R183) have been determined in a minority 

of cases (7–9). Common substitutions in GNAQ are glutamine-to-leucine (Q209L) and 

glutamine-to-proline (Q209P) whereas in GNA11, the most frequent substitution is Q209L. 

Q209 is crucial for the GTPase activity of G proteins; thus, hydrolysis of GTP is abolished 

in GNAQ and GNA11 mutants, leading to constitutive activation of the Gαq and Gα11 

proteins in UM. Interestingly, the levels of Gαq Q209L mutant proteins may be regulated by 

Ric-8A, a molecular chaperone that contributes to folding of the G protein (10). Deletion of 

Ric-8A in GNAQ Q209L mutant melanocytes grafted into NSG mice led to a marked 

reduction in levels of membrane-associated mutant Gαq proteins and inhibition of GNAQ 
Q209L driven tumor progression.

GNAQ and GNA11 are the most frequently mutated genes in UM; however, their mutations 

do not correlate with UM patient outcome, patient survival or factors that would indicate 

high risk of metastasis (9, 11). GNAQ and GNA11 mutations occur at similar frequencies in 

metastasizing and non-metastasizing tumors. Similarly, these mutations are not associated 

with class 1 (low metastatic potential) or class 2 (high metastatic potential) of UM tumors 

(11, 12). It has been shown that the Q209 mutation in GNAQ and GNA11 are found in 

benign nevi such as blue nevi in addition to primary and metastatic UM tumors (7, 8). 

Particularly, GNAQ is frequently mutated in blue nevi (~83%). This suggests that mutations 

in the G proteins are early events in UM development. Despite this notion, the GNA11 Q209 

mutation is more commonly identified in UM metastases (~57%) and found only in ~7% of 

benign blue nevi, indicating that in comparison to GNAQ, alteration in GNA11 is associated 

with higher risk of metastasis of UM (7, 8, 13).
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Effector and receptor mutations: PLCB4 and CYSLTR2

In addition to the GNAQ and GNA11 mutations, other, less common, driver mutations in 

UM have been identified recently by next-generation sequencing. Mutations in 

phospholipase C β4 (PLCB4) and cysteinyl leukotriene receptor 2 (CYSLTR2) have been 

identified in 1% and 4 UM tumors, respectively (14, 15) and are mutually exclusive with 

GNAQ and GNA11 mutations. The alteration in PLCβ4, D630Y, affects the Y-domain of the 

highly conserved catalytic core of PLCβ4 which controls signal transduction (14). 

Consistent with this finding, PLCβ4 interacts directly with Gαq (16) (Fig 1). PLCβ4 

mediates signal transduction by catalyzing the conversion of phosphatidylinositol 4,5-

bisphosphate (PIP2) in the plasma membrane into inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). Subsequently DAG and IP3 activate downstream signaling 

components such as protein kinase C (PKC). IP3, particularly, translocates into the cytosol 

where it induces the release of calcium (Ca2+) from the endoplasmic reticulum to activate 

PKC.

The other alteration in the GPCR pathway in UM is at the level of GPCRs. Out of 136 UM 

patient specimens analyzed by Moore and colleagues, 4 samples harbored a leucine to 

glutamine substitution at codon 129 (Leu129Gln) in the CYSLTR2 gene, and all four 

samples lacked mutations in GNAQ, GNA11 or PLCB4 (15). CYSLTR2 encodes a seven 

transmembrane GPCR that activates Gαq, a finding that is consistent with the mutual 

exclusive profile of the mutations (17) (Fig 1). Activation of Gαq by CysLT2R promotes 

binding of Gαq/Gα11 to PLCβ4. The Leu129Gln mutation is located in the third 

transmembrane helix of the receptor and promotes ligand independent activation of the 

GPCR. Expression of Leu129Gln CYSLTR2 in HEK293 cells increased basal levels of 

calcium and promoted the growth of melanocyte cell lines in vitro and in vivo (15). 

Collectively, these findings raise the possibility of targeting mutant forms of GNAQ/GNA11, 

PLCB4 and CYSLTR2 in UMs as well as pathways downstream of mutant GNAQ/GNA11.

Dysregulated pathways downstream of mutant GNAQ/GNA11

Since the identification of mutations in GPCR signaling components in a high proportion of 

UM tumors, molecular understanding of pathways downstream of Gαq and Gα11 has 

become crucial for development or discovery of effective treatment options for metastatic 

UM. These pathways include the ERK1/2, Rho/Rac/YAP and PI3K/AKT pathways.

ERK1/2 Pathway—The ERK1/2 pathway usually involves binding of ligands to tyrosine 

kinase receptors on the cell membrane and activation of downstream intermediates, RAS, 

RAF and MEK. MEK phosphorylates and activates ERK1/2, which subsequently undergoes 

dimerization and translocates into the nucleus to regulate cellular processes including 

proliferation, survival, differentiation and apoptosis (18). The ERK1/2 pathway is frequently 

activated in UM with 86% of primary UM tumors reported to have elevated ERK1/2 

phosphorylation (19). However, unlike cutaneous melanoma, in which BRAF is commonly 

mutated, mutations in RAS and BRAF are rare in UM tumors (20). Only one patient with 

choroidal melanoma has been shown to harbor the BRAF V600E mutation (21). MEK-

ERK1/2 activation in UM is expected to be induced rather by mutant Gαq/Gα11 proteins. 

The G proteins activate PLCβ and PKC, which then stimulates MEK/ERK1/2 (18) (Fig 1). 
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Transfection of GNAQ Q209L in human melanocytes enhanced phosphorylated ERK1/2 

protein levels and was associated with increased anchorage-independent growth (7). 

Consistently, these results were reversed by siRNA-mediated knockdown of GNAQ which 

decreased phospho-ERK1/2 levels (7). However, it is noteworthy that in some UM cases, 

ERK1/2 may not be activated by G proteins as a study of 22 UM patient tumors did not 

observe a correlation between GNAQ mutation and ERK1/2 activation although samples 

with GNAQ mutations had a higher average of the total ERK1/2 expression level compared 

to GNAQ wild-type tumors (22).

Rho/Rac/YAP Pathway—A major role of Gαq/11 is to directly bind and activate PLCβ, 

but additional effectors and signaling pathways may also play an important role. Particularly 

relevant to UM, Gαq/11 stimulates Rho and Rac small GTPase-mediated signaling through 

direct binding and activation of several members of the large Rho guanine-nucleotide 

exchange factor (RhoGEF) family, including p63RhoGEF and Trio (23, 24) (Fig 1). Trio 

appears to be a key player in mediating mitogenic signals in UM since knockdown of Trio 

inhibited tumor growth and DNA synthesis in two UM cell line models (25). Interestingly, 

Trio is a very large multi-domain protein that has two GEF domains, one that selectively 

activates RhoA and one that activates Rac1/RhoG. Notably, activation of both RhoA and 

Rac1 by Trio are required for Gαq/11 mitogenic signaling (25, 26).

Multiple pathways downstream of Rho/Rac are likely to mediate Trio-dependent cell 

proliferation in mutant Gαq/11 UM cells. Depletion of Trio by siRNA did not inhibit 

ERK1/2 activation, but instead blocked activation of the MAPKs JNK and p38; JNK and 

p38 can both regulate the transcription factor AP-1 which controls the transcription of a 

number of growth-promoting genes (25). In addition, two reports strongly implicate two 

transcriptional co-activators in the Hippo pathway, Yes-associated protein (YAP) and 

transcriptional co-activator with PDZ-binding motif (TAZ), as being critical mediators of 

oncogenic Gαq/11 downstream of Rho/Rac (27, 28). These reports showed that mutationally 

activated Gαq/11 induced the cytoplasm to nucleus translocation of YAP/TAZ and 

transcription of several YAP/TAZ-dependent genes that promote cell proliferation (27, 28). 

Moreover, siRNA depletion of YAP or inhibition of YAP with the pharmacological inhibitor 

verteporfin suppressed the growth of UM cells in culture and in a mouse model (27, 28). 

Robust nuclear localization of YAP was also observed in uveal melanocytes in a recently 

described zebrafish model for UM (29). The mechanisms underlying Rho and Rac activation 

of YAP appear to involve both inhibition of upstream kinases, large tumor suppressor 

homolog 1 and 2 (LATS1/2), as well as increased sequestration to F-actin of the YAP-

binding protein angiomotin (AMOT), resulting in both cases in increased levels of YAP 

available to translocate to the nucleus (27, 28, 30). The exciting implication of the above 

studies is that the Trio/Rho/Rac/YAP pathway of oncogenic Gαq/11 signaling suggests 

numerous new therapeutic targets in UM.

ADP-ribosylation factor 6 (ARF6)—Another monomeric small GTPase, ARF6, has 

been proposed as a key mediator of most pathways activated by oncogenic Gαq/11 (31). 

Inhibition or depletion of ARF6 in UM cells inhibited cell proliferation and the downstream 

signaling targets PLCβ, ERK1/2, Rho, Rac and YAP. Activation of ARF6 by Gαq/11 appears 
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to be mediated by direct binding of Gαq/11 to the ARF-GEF, GEP100. A provocative 

mechanism for the role of ARF6 in controlling Gαq/11 signaling was proposed, in which 

ARF6 promoted localization of mutationally activated Gαq/11 to cytoplasmic vesicles, rather 

than the plasma membrane, and these cytoplasmic vesicles are the site of oncogenic 

signaling by Gαq/11 (31) (Fig 1). Regardless of the exact mechanism of how ARF6 regulates 

Gαq/11 signaling, ARF6 provides another potential therapeutic target in UM.

PI3K/AKT Pathway—Phosphatidylinositol (4,5)-bisphosphate 3-kinase (PI3K) catalyzes 

the formation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) from PIP2, and PIP3 

induces membrane translocation of AKT where it becomes active and signals to promote 

cell proliferation and survival (18). PI3K signaling is negatively regulated by phosphatase 

and tensin homolog (PTEN), which reverses PIP2 conversion to PIP3. Complete loss of 

PTEN is identified in 16% of UM tumors (n=75) and weaker immunostaining of PTEN is 

found in 42.7% of UM tumors (32). Patients with PTEN-null tumors are associated with a 

shorter disease-free survival compared to patients with UM tumors expressing normal levels 

of PTEN (32).

Targeted therapies in UM

Patients with metastatic UM typically die within one year of diagnosis; hence, there is an 

urgent unmet need to identify novel approaches for treatment which includes targeted 

therapies as either monotherapy or in combinational strategies.

GPCR Inhibitors—Since activating mutations in either CYSLTR2, GNAQ, GNA11 or 

PLCB4 are found in ~98% of UMs, this signaling pathway represents a viable therapeutic 

target for the treatment of UM. One approach to targeting this pathway is the development of 

specific inhibitors to individual proteins in the pathway. For example, constitutively active 

GPCRs such as the CysLT2R-L129Q mutant found in UM (15) could potentially be targeted 

using a receptor specific inverse agonist, which would bind to and stabilize an inactive 

conformation of the receptor that should no longer activate Gαq/11. Unfortunately, 

CysLT2R-L129Q is only a viable target in ~4% of UM patients. A more compelling target is 

the activated G protein, either Gαq or Gα11, which together are mutated in ~93% of UM 

patients. In this regard, there are two potent and specific inhibitors that have been reported 

for Gαq, YM-254890 and FR900359 or UBO-QIC. YM-254890 is a cyclic depsipeptide 

isolated from Chromobacerium sp. broth and showed inhibition of Gαq signaling mediated 

processes such as ADP-induced platelet aggregation and Ca2+ mobilization through a Gαq-

coupled receptor (33). A crystal structure of the Gαq protein, loaded with GDP, in complex 

with YM-254890 suggests the inhibitor works by allosterically stabilizing the protein in the 

GDP bound form, preventing GDP dissociation, and locking it in the inactive state (34). 

More recently, FR900359, a slightly different cyclic depsipeptide isolated from the Ardisia 
crenatasims plant, has shown similar pharmacological activity and specificity against Gαq 

(35). Docking models and molecular dynamics studies suggest FR900359 inhibits Gαq in an 

identical manner to YM-254890 (36). While these compounds appear to be potent and 

selective inhibitors of Gαq (they have not been tested on Gα11), it’s unclear whether they 

would be able to inhibit the constitutively active forms of Gαq typically found in UM. For 

example, while YM-254890 inhibited a Gαq-R183C mutant, it was unable to inhibit Gαq-
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Q209L (33). Moreover, one also needs to consider Gαq vs Gα11 selectivity when inhibiting 

these proteins since a non-selective Gαq/11 inhibitor would likely be toxic, as knockout of 

both Gαq and Gα11 in mice leads to death in utero (37). Finally, one could consider 

targeting PLCβ4 with a selective inhibitor since this is mutated in ~1% of UM and is a 

downstream effector of Gαq/11. However, PLCβ4 is unlikely to be the only downstream 

target of activated Gαq/11 in UM so such an inhibitor might only prove useful in the small 

number of patients that have a PLCβ4 mutation.

MEK Inhibitors—Due to the high incidence of MEK-ERK1/2 activation in UM, targeting 

of components of the Gαq/Gα11-induced ERK1/2 cascade such as MEK and PKC has been 

investigated as a therapeutic approach in UM. Inhibition of MEK1/2 either by trametinib, 

selumetinib or PD0325901, induced growth arrest and apoptosis in GNAQ/GNA11 mutant 

UM cell lines and xenograft tumors (38–41). Trametinib is FDA-approved and used in 

combination with the BRAF inhibitor, dabrafenib for patients with unresectable or 

metastatic melanoma harboring BRAF V600E and V600K mutations (42). However, reports 

from clinical studies indicated variable outcomes for MEK inhibition in UM. In a phase 1 

trial involving 16 metastatic UM patients, trametinib was shown to have limited efficacy 

(43). A phase II trial which enrolled 120 advanced UM patients showed that selumetinib 

improved the median progression-free survival (PFS) by ~9 weeks compared to 

chemotherapy (dacarbazine or temozolomide) but only modestly increased median overall 

survival (44). In the most recent phase III clinical trial (SUMIT), the combination of 

selumetinib and dacarbazine failed to improve PFS compared to chemotherapy alone and 

was associated with a low response rate (3–4%) (45). Thus, while pre-clinical studies 

support MEK inhibitors as part of a therapeutic approach for metastatic UM, it is important 

to identify agents that in combination enhance the responses of UM to MEK inhibition.

The poor clinical response of metastatic UM to MEK inhibitors may be in part due to factors 

produced by the tumor microenvironment. Hepatocyte growth factor (HGF) provided 

resistance to trametinib growth inhibitory effects in metastatic UM cell lines and targeting of 

cMET (the receptor for HGF) enhanced the effects of trametinib in metastatic UM (40, 46). 

HGF-CMET signaling induced downregulation of BH3 pro-apoptotic proteins, BIM and 

BMF, which correlated with HGF-mediated inhibition of apoptosis in trametinib-treated 

cultures (46). Importantly, HGF is secreted by quiescent hepatic stellate cells that can be 

found in the liver microenvironment and phosphorylated/activated cMET is detected in the 

majority of UM liver metastases (40, 46). HGF promotes activation of the PI3K/AKT 

pathway as a mechanism of resistance to trametinib and the increase in phosphorylation of 

AKT is mediated by PI3K isoforms α, δ and γ. Use of a β-sparing PI3K inhibitor, 

GDC0032, reversed HGF-induced resistance to trametinib (46). These findings support an 

earlier study which reported the combination of MEK and PI3K inhibitors for UM and these 

agents induce marked early apoptosis in GNAQ mutant UM cell lines compared to the 

inhibitors alone which have moderate effects on apoptosis (40, 41).

MEK inhibitors have also been tested in combination with PKC inhibitors for UM. 

Inhibition of PKC alone such as by AEB071 or sotrastaurin induced cell cycle G1 phase 

arrest and suppressed PKC and ERK1/2 signaling (39). However, these effects were not 

durable, whereas in combination with MEK inhibitors, PD0325901 or MEK162, sustained 
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inhibition of the ERK1/2 pathway was observed (39). Furthermore, the inhibitors caused a 

strong synergistic growth inhibitory effect on UM cell lines and marked tumor regression in 

UM xenograft models. Recently, screening of drug combinations involving AEB701 in a 

large panel of UM patient-derived xenografts (PDX) also determined two non MEK 

inhibitors that could potentially be used in combination with PKC inhibitors as therapeutic 

strategies for metastatic UM (47). These were the p53-MDM2 inhibitor, CGM097 and the 

mTORC1 inhibitor, RAD001. AEB701 and CGM097 or AEB701 and RAD001 markedly 

reduced tumor growth and induced tumor regression (47). These studies provide evidence 

for a number of targeted therapies that may be evaluated in combination with MEK 

inhibitors or PKC inhibitors in clinical studies to improve the survival of patients with 

metastatic UM.

Conclusions

There is a lack of effective treatment options for advanced UM despite success in the 

treatment of primary UM tumors. Whilst identification of driver mutations in UM such as 

GNAQ and GNA11 has shed light to potential therapeutic targets, alterations in GPCR 

signaling occur early in disease progression. Other mutations and their impact on responses 

of UM to GPCR targeted therapies will need to be explored (48). For example, inactivating 

mutations of BAP1 have been found in ~80% of aggressive UM (49) while SF3B1 and 

EIF1AX were shown to correlate with a favorable prognosis (50). In addition, ongoing 

investigations will be needed to devise strategies that elicit favorable treatment outcomes 

using therapies targeting GPCR signaling. As in other forms of advanced-stage melanoma, it 

is likely that combination approaches will be key to elicit high response rates and the most 

effective combinations and scheduling of inhibitors will need to be identified.
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Fig 1. 
Alterations in GPCR signaling in UM. GPCRs (e.g. CysLT2R) activate the Gα subunit 

proteins, Gαq and Gα11, which stimulate downstream effector pathways including ERK1/2 

and YAP. Ric-8A chaperones participate in folding of G proteins which is important for 

membrane localization of the G proteins. ARF6 promotes localization of Gαq/11 to 

cytoplasmic vesicles where oncogenic Gαq/11 signaling can be active. In UM, mutations in 

GNAQ, GNA11, CYSLTR2 or PLCB4 lead to constitutive activation of pathways 

downstream of Gαq and Gα11 proteins.
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