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INTRODUCTION
In 2017, it is estimated that 26,070 patients will be diagnosed with a malignant primary 
brain tumor in the United States, with more than half having the diagnosis of glioblas-
toma (GBM).1 Magnetic resonance imaging (MRI) is a widely utilized examination in the 
diagnosis and post-treatment management of patients with glioblastoma; standard 
modalities available from any clinical MRI scanner, including T1, T2, T2-FLAIR, and 
T1-contrast-enhanced (T1CE) sequences, provide critical clinical information. In the 
last decade, advanced imaging modalities are increasingly utilized to further charac-
terize glioblastomas. These include multi-parametric MRI sequences, such as dynamic 
contrast enhancement (DCE), dynamic susceptibility contrast (DSC), diffusion tensor 
imaging (DTI), functional imaging, and spectroscopy (MRS), to further characterize 
glioblastomas, and significant efforts are ongoing to implement these advanced imaging 
modalities into improved clinical workflows and personalized therapy approaches. A 
contemporary review of standard and advanced MR imaging in clinical neuro-oncologic 
practice is presented.

Initial diagnosis and surgical management
Most patients with glioblastoma undergo computed tomography of the brain upon 
initial presentation. Once a mass is identified and hemorrhage is excluded, a contrast-
enhanced MRI is typically ordered, with standard T1, T2, FLAIR, and contrast-enhanced 
T1 (T1CE) sequences.2,3 Many institutions will also capture gradient echo and diffusion 
sequences. Maximal safe debulking surgery is recommended as the initial standard of 
care. Neurosurgeons will often utilize high-resolution MRI (0.5 – 1.2mm slice thickness) 
for surgical planning and intraoperative guidance, as well as to make the determination 
of how aggressively to resect based on risk of toxicity to nearby eloquent regions.4 

Standard imaging also can identify other important characteristics of the mass in situ, 
including the amount of necrosis, compression of the surrounding normal tissue, and 
midline deviation.

A recent meta-analysis of over 40,000 glioblastoma patients demonstrated that gross-
total resection was associated with improved survival as compared to subtotal resection.5 
Historically, the determination of gross-total resection was made in the operating room 
by the neurosurgeon. However, in the modern era, the practice of obtaining a post-
operative contrast-enhanced MRI within 24-48 hours of surgery has become routine 
after publication of a study showing that radiological determination of the extent of 
resection via MRI had prognostic significance.6 Several series have attempted to quantify 
a threshold value for the extent of resection as a guide for neurosurgeons, utilizing 
the amount or enhancing tumor present in the preoperative and post-operative T1CE 
images. These series report thresholds ranging from 70% to 100%7-9, with the caveats 
that they were obtained retrospectively. To date, no formal threshold is recommended 
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other than “maximal safe resection” as 
mentioned previously.

Standard preoperative images can be 
analyzed for macroscopic shape and 
location features that are associated with 
improved survival,10-13 providing potential 
biomarkers that may be utilized in strati-
fying patients in clinical trials.

Advanced MR imaging sequences have 
utility in the preoperative domain as 
well. Functional imaging (fMRI) has 
been particularly useful in preoperative 
surgical planning in cases where tumors 
or their resection may disrupt eloquent 
areas. Many patients who were once 
felt to be unresectable due to uncer-
tain risk of neurologic compromise are 
now candidates for more aggressive 
resection after functional mapping.14 
Diffusion tensor imaging (DTI) generates 
rich white matter tractography images 
which may guide neurosurgical plan-
ning15 and can help distinguish between 
post-operative vascular damage and 
residual enhancing tumor.16 Dynamic 
contrast-enhanced (DCE) sequences 
in the preoperative setting measure 
pharmacokinetic parameters of contrast 
uptake, which may be associated with 
early disease progression and survival.17 
Dynamic susceptibility contrast (DSC) MR 
imaging may be helpful in preoperative 
diagnosis18 of malignant lesions. Imaging 
features extracted from standard and 
advanced preoperative MR sequences 
can predict survival, molecular subtype, 
and mutational status in glioblastoma,19,20 
potentially enhancing the set of imaging 
biomarkers available to clinicians.

Post-operative imaging and 
radiation planning
After maximal safe resection, which is 
evaluated on immediate post-operative 
MRI, the standard of care for patients 
with glioblastoma is chemoradiation 
with concurrent temozolomide, after 
the results of a large randomized Phase 
III trial.21 Typically, chemoradiation 
begins 3-6 weeks after surgery to allow 
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Figure 1 Figure 2 Figure 3 Figure 4

Figure 1. Axial CT image at the level of basal 
ganglia demonstrates a large heterogeneous 
mass in the right frontal lobe with mass effect 
on the right lateral ventricle and leftward shift 
of midline. Ct, computed tomography.

Figure 2. Axial FLAIR weighted image at the 
level of basal ganglia demonstrates heteroge-
neous mass centered in the right frontal lobe 
and basal ganglia with surrounding infiltrating 
signal abnormality ‘FLAIR envelope’ which 
extends medially across the corpus callosum 
posteriorly in the insular region. The ‘FLAIR 
envelope’ is typically a manifestation of 
combination of tumor infiltration and edema. 
There is associated mass effect on the right 
ventricle and leftward midline shift. FLAIR, 
fluid-attenuated inversion recovery.

Figure 3. Axial gradient echo (GRE) image 
depicts multiple foci of hypointense signal 
‘susceptibility artifacts’ within the right frontal 
mass compatible with intra-tumoral blood 
products.

Figure 4. Post gadolinium based contrast 
administration T1 weighted axial image 
(T1CE). There is heterogeneous irregular 

peripheral enhancement associated with 
the right frontal lobe mass with central 
non-enhancing area, consistent with 
necrosis. Of note are additional patchy areas 
of enhancement in the right anterior frontal 
lobe and right basal ganglia region. These 
additional areas of enhancement lie within 
the previously described region of ‘FLAIR 
envelope’. FLAIR, fluid-attenuated inversion 
recovery; T1CE, T1 contrast-enhanced.

Figure 5. BOLD fMRI for localization of hand 
sensorimotor cortex in a patient with right 
frontal glial neoplasm. BOLD fMRI data is 
superimposed on sagittal FLAIR weighted 
image for anatomic localization. In the right 
hemisphere, the hand sensorimotor cortex 
(arrow) is located along the posterosuperior 
aspect of the frontal mass and is separated by 
less than one gyrus distance. fMRI, functional 
magnetic resonance imaging; FLAIR, fluid-
attenuated inversion recovery.

Figure 6. BOLD fMRI for localization of 
tongue sensorimotor cortex. BOLD fMRI data 
is superimposed on axial FLAIR weighted 
image for anatomic localization. In the right 
hemisphere, the area of 

activation (arrow), tongue sensorimotor 
cortex is in immediate proximity of the poste-
rior margin of the right frontal mass. FLAIR 
envelope seems to extend into this region 
of activation. fMRI, functional magnetic 
resonance imaging; FLAIR, fluid-attenuated 
inversion recovery.

Figure 7. BOLD fMRI for localization of 
Broca’s area in a patient with right frontal 
glial neoplasm. There is bilateral Broca’s 
area activation on sentence completion and 
verb generation tasks (arrows), with the right 
hemispheric area of activation located at the 
anteroinferior aspect of tumor within one 
gyrus distance. fMRI, functional magnetic 
resonance imaging.

Figure 8. Color fractional anisotropy map 
superimposed on axial FLAIR weighted 
image. There is loss of fractional anisotropy 
in the expected region of right corticospinal 
tract (arrow, blue colored fibers). This tract is 
located at the posteromedial margin of the 
FLAIR envelope. Loss of fractional anisotropy 
may be related edema, infiltration by tumor 
or displacement. FLAIR, fluid-attenuated 
inversion recovery.

Figure 5 Figure 6 Figure 7 Figure 8
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along with fractional anisotropy measure-
ments from diffusion images, ADC values 
may be associated with poor response to 
treatment and worse survival among high 
grade glioma patients.29 Diffusion and 
perfusion parameters, when combined with 
standard MR sequences, may allow radia-
tion oncologists to better characterize the 
highest-risk regions to include in high-dose 
target volumes, utilizing macroscopi-
cally visible features30 as well as radiomic 
features.31 Voxel-based MR spectroscopy 
(MRS) and whole-brain spectroscopic MRI 
(sMRI) may identify regions of tumor infiltra-
tion and areas at high risk of recurrence;32 
regions with metabolic abnormalities on 
sMRI are correlated with intraoperative 
tissue samples showing increased immuno-
histochemical staining for neoplastic cells.33

Response Assessment
As demonstrated at any multidisciplinary 
tumor board, imaging is of utmost impor-
tance in the interpretation of the response to 
treatment in glioblastoma. The first widely-
adopted set of guidelines for standardizing 
the assessment of treatment response that 
utilized MR imaging was the Macdonald 
criteria,34 which used clinical parameters in 
conjunction with imaging measurements to 
classify responses into four broad catego-
ries (complete response, partial response, 
stable disease, and progressive disease). 

MR imaging to define the at risk target 
volumes and organs at risk.

It is common to identify shifting of brain 
parenchyma on planning CT in the weeks 
after craniotomy as the normal brain 
tissue expands to fill the space taken out 
by the tumor. One study demonstrated a 
4mm shift in the position of the treatment 
isocenter between CT and MRI-based 
target delineation,25 even with only a few 
days between studies. The magnitude 
of the shift can be several centime-
ters, resulting in inaccurate registration 
between post-operative MRI and simula-
tion CT. Many institutions have begun the 
practice of obtaining repeat MRI at the 
time of simulation to better characterize 
the soft tissues for target delineation.

Advanced imaging at this time point may 
play a role in radiation planning. A Polish 
study demonstrated the discordance 
between gross tumor volume (GTVs) 
delineated from MRI as compared to 
18F-fluoroethylthyrosine-PET (FET-PET), a 
functional imaging modality; FET-PET was 
better associated with the site of eventual 
failure, suggesting that traditional target 
volumes may not be adequate.26 ADC 
maps generated from diffusion imaging 
can identify areas of restricted diffusion 
that may predict for areas of eventual 
recurrence with high concordance;27,28 

for adequate post-operative recovery. 
Radiotherapy planning includes registra-
tion (aka “fusion”) of the post-operative 
MRI (T1CE and FLAIR sequences) with the 
planning simulation CT, which allows for 
delineation of the FLAIR abnormality and 
residual enhancement in treatment plan-
ning. Guidelines for these delineations 
exist, but substantial variation is observed 
among practitioners from different coop-
erative groups (e.g., RTOG22 vs. EORTC23), 
and even among practitioners from one 
country,24 but all utilize post-operative 

Figure 11.  

Pre- and immediate post-operative (at 24 hours) axial t1CE weighted images. On post-oper-
ative image, there is minimal residual enhancement particularly along the medial aspects of 
the surgical site, concerning for minimal residual tumor. Majority of the hyperintense signal 
in the right parieto-occipital region is related to blood post-operative blood products. T1CE, 
T1-weighted contrast-enhanced.

Figure 10.  

Dynamic susceptibility contrast (DSC) 
perfusion weighted image. There is 
increase in rCBV (relative cerebral blood 
volume) in the region of right frontal 
mass (Figures 1-4), a finding favoring high 
grade neoplasm.

Figure 9.  

Tractography image demonstrates the 
intimate relationship of right frontal mass with 
the corticospinal tract (blue colored fibers).
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Challenges and limitations of the 
Macdonald criteria became apparent 
as imaging modalities revealed more 
details about gliomas and their response 
to treatment. The importance of non-
contrast-enhancing regions of abnormality 
has become better understood; for 
example, changes in the volume of 

Figure 13. 

Axial FLAIR and post contrast T1 weighted 
images demonstrate a large heteroge-
neously enhancing mass in the right 
parieto-occipital region with surrounding 
FLAIR hyperintense signal, compatible 
with high grade glial neoplasm. FLAIL, 
fluid-attenuated inversion recovery.

Figure 14. 

Immediate post-operative  
(at 24 hours) axial post contrast T1 weighted 
image. There is minimal residual peripheral 
enhancement particularly along the medial 
aspects of the surgical site concerning for 
small amount of residual tumor.

Figure 12. 

Single voxel MR spectroscopy at long TE (288 ms) acquired through the right temporoparietal 
region mass with imaging appearance compatible with glial neoplasm. There is markedly 
elevated choline (resonates at 3.2 ppm) with markedly decreased NAA (resonates at 2 ppm), a 
finding consistent with high grade glial neoplasm. MR, magnetic resonance.

Figure 15. 

Immediate post-operative (at 24 hours) axial 
post contrast T1 weighted image. There is 
minimal residual peripheral enhancement 
particularly along the medial aspects of the 
surgical site concerning for small amount of 
residual tumor.

Figure 16.

Follow up of a case of glioblastoma on 
therapy. Axial FLAIR weighted image demon-
strates a large area of infiltrating hyperintense 
signal abnormality in right temporo-occipital 
region, with associated mass effect and left-
wards shift of midline. FLAIR, fluid-attenuated 
inversion recovery.
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immunotherapy response assessment 
in neuro-oncology (iRANO) criteria,42 
which attempted to provide standardized 
guidelines for the determination of tumor 
progression in the setting of immune-
related therapy. 

MRI imaging features have the poten-
tial to predict treatment response to 
specific modalities of treatment. Relative 
cerebral blood volume and dynamics 
parameters (K¬trans and Ve), measured 
by perfusion-weighted MR imaging and 
other features may predict treatment 
response to standard chemoradiation 
and VEGF inhibitors,43-45 prior to initiation 
of therapy. Radiomic features derived 
from these images have been shown to 
have predictive value as well.46 

CONCLUSIONS
The volume of medical imaging data 
continues to grow at an exponential rate. As 
MR imaging becomes more cost-effective 
and the adoption of advanced MR modali-
ties becomes more widespread, it will 
become more critical than ever to incor-
porate advanced imaging and the power 
of large datasets into the management 
of glioblastoma. We anticipate that these 
changes will include not only the utilization 
of new MR sequences but also novel image 
analysis techniques, including radiomic 
analysis, to better drive treatment decision-
making, with the goal of improving clinical 
outcomes in glioblastoma.

is most commonly observed in patients 
whose tumors harbored a methylated 
MGMT promoter region,36 and makes 
accurate assessment of response difficult, 
especially in the setting of clinical trials 
attempting to answer the question of effi-
cacy of novel treatment regimens. Some 
medications, including anti-angiogenic 
drugs and immunologic agents, elicit 
unique radiographic changes which may 
mask accurate response assessment as well. 

These limitations, among others, led to the 
development of a new set of guidelines 
developed by the Response Assessment 
in Neuro-Oncology (RANO) working 
group,37 which incorporates more infor-
mation from MR imaging, including FLAIR 
sequence changes, into the objective 
assessment. The RANO criteria have been 
incorporated into clinical trials and daily 
clinical practice, allowing better apples-
to-apples comparisons.38 

Clinical trials in the last decade demon-
strated the benefit of bevacizumab, an 
anti-angiogenic monoclonal antibody, in 
recurrent glioblastoma.39 The radiographic 
appearance of malignant gliomas changes 
dramatically after treatment with bevaci-
zumab as a result of changes in vessel 
permeability and contrast dynamics.40 
Initial studies showed the difficulty in 
distinguishing these radiographic changes 
from true tumor effect; the temporal 
dynamics were also unclear.41 These 
issues led to the development of the 

hyperintensity on post-treatment FLAIR 
imaging, relative to baseline, are correlated 
with improved survival.35 Furthermore, 
some glioblastomas demonstrate imaging 
changes consistent with progression under 
the Macdonald criteria, but upon repeat 
surgical intervention, viable tumor cannot 
be identified in the resection specimen, 
suggesting that the adjuvant treatment 
may actually be having a positive effect that 
eludes detection on conventional imaging. 
This finding, termed “pseudoprogression,” 

Figure 17.

Axial T1CE image depicts an area of 
heterogeneous enhancement in right 
temporal lobe within the region of FLAIR 
signal abnormality. FLAIR, fluid-attenuated 
inversion recovery. T1CE, T1-weighted 
contrast-enhanced.

Figure 18.

Axial post-contrast T1 (T1CE) images at 8 months. There is a large heterogeneously enhancing 
mass in the right parieto-occipital region at the operative site. There is interval development of 
multiple enhancing nodules along the ependymal surface of ventricles, particularly along the 
right frontal and temporal horn, and roof of fourth ventricles. These findings are compatible with 
tumor progression. T1CE, T1-weighted contrast-enhanced.

Figure 19.

On dynamic susceptibility contrast (DSC) 
perfusion weighted imaging, the area 
of signal abnormality predominantly 
demonstrates low relative cerebral blood 
volumes. The overall findings were consis-
tent with pseudoprogression.
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