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ARTICLE

ERK-mediated phosphorylation regulates
SOX10 sumoylation and targets expression in
mutant BRAF melanoma
Shujun Han1, Yibo Ren1, Wangxiao He1, Huadong Liu1, Zhe Zhi1, Xinliang Zhu1, Tielin Yang 1, Yu Rong1,

Bohan Ma1, Timothy J. Purwin2, Zhenlin Ouyang1, Caixia Li1, Xun Wang1, Xueqiang Wang1, Huizi Yang1,

Yan Zheng3, Andrew E. Aplin2,4, Jiankang Liu1,5,6 & Yongping Shao1

In human mutant BRAF melanoma cells, the stemness transcription factor FOXD3 is rapidly

induced by inhibition of ERK1/2 signaling and mediates adaptive resistance to RAF inhibitors.

However, the mechanism underlying ERK signaling control of FOXD3 expression remains

unknown. Here we show that SOX10 is both necessary and sufficient for RAF inhibitor-

induced expression of FOXD3 in mutant BRAF melanoma cells. SOX10 activates the tran-

scription of FOXD3 by binding to a regulatory element in FOXD3 promoter. Phosphorylation

of SOX10 by ERK inhibits its transcription activity toward multiple target genes by interfering

with the sumoylation of SOX10 at K55, which is essential for its transcription activity. Finally,

depletion of SOX10 sensitizes mutant BRAF melanoma cells to RAF inhibitors in vitro and

in vivo. Thus, our work discovers a novel phosphorylation-dependent regulatory mechanism

of SOX10 transcription activity and completes an ERK1/2/SOX10/FOXD3/ERBB3 axis that

mediates adaptive resistance to RAF inhibitors in mutant BRAF melanoma cells.
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Small molecule inhibitors targeting BRAF and/or MEK
kinases have achieved great success in the treatment of
mutant BRAF melanoma1–4. However, clinical benefit of

these agents is often limited by short-lived responses and
acquired resistance via heterogeneous mechanisms5, 6. Since
resistant tumor cells are derived from parental cells that survive
the initial drug treatment7, improving the initial treatment effi-
cacy to maximally eliminate sensitive tumor cells may effectively
delay the onset of durable acquired resistance. The initial
responsiveness of mutant BRAF melanoma patients to RAF and/
or MEK inhibitors varies substantially and is influenced by tumor
microenvironment and adaptive resistance8–10. Adaptive resis-
tance involves a rapid and reversible rewiring of pro-survival
signaling pathways in response to therapeutic agents8. Under-
standing the mechanisms of adaptive resistance will help to
develop combinatorial therapeutic approaches that more effi-
ciently eliminate tumor cells at the early treatment stage through
synthetic lethal effects and prolong the progression-free survival.

In contrast to the highly diversified acquired resistance, only a
few mechanisms of adaptive resistance to RAF inhibitors have
been reported in melanoma, such as ERK1/2 reactivation, upre-
gulation of RTKs and metabolic reprogramming8. One important
example of adaptive resistance is the upregulation of the stem cell
transcription factor, Forkhead box D3 (FOXD3) upon inhibition
of ERK1/2 signaling in mutant BRAF melanoma cells11, 12.
FOXD3 mediates adaptive resistance to RAF inhibitors by directly
activating the expression of v-erb-b2 erythroblastic leukemia viral
oncogene homolog 3 (ERBB3) at the transcriptional level and
enhancing the responsiveness of melanoma cells to the ERBB3
ligand, neuregulin-1 (NRG1)13. Enhanced NRG1/
ERBB3 signaling activates the PI3K/AKT pathway and protects
melanoma cells against the cytotoxic effect of RAF inhibitors.
Although the role of FOXD3 as a mediator of adaptive resistance
to RAF inhibitors in mutant BRAF melanoma cells has been well
established, how ERK signaling controls FOXD3 expression
remains unclear.

Sex determining region Y (SRY) related HMG box-containing
factor 10 (SOX10) is a member of the SOX family transcription
factors that plays pivotal regulatory roles in the development of
neural crest and the melanocyte lineage. SOX10 haploinsuffi-
ciency causes pigmentation defects and Waardenburg syndromes
in human14, 15. SOX10 regulates the proliferation, survival and
melanogenesis of melanocytes by activating its target genes
including Mitf, Dct, Tyr, and Tyrp114. SOX10 is also important
for the initiation and maintenance of melanoma16 and promotes
the migration and invasion of melanoma cells17. In a hetero-
geneous melanoma cell population, cells with low-SOX10
expression are associated with increased TGF-β signaling and
elevated EGFR/PDGFR expression, which leads to a reversible
adaptive resistance to RAF inhibitors18. Recently, SOX10 was
found to regulate the expression of the long non-coding RNA
(lncRNA) SAMMSON, which is expressed in 90% of human
melanoma and plays an oncogenic role19.

While the importance of SOX10 in embryonic development
and melanoma progression has been well recognized, the reg-
ulation of SOX10 remains poorly characterized. SOX10 tran-
scription has been shown to be controlled by multiple species-
conserved regulatory sequences in the upstream region and
binding sites of a variety of transcriptional factors have been
discovered in these sequences20. Post-translational modifications
also participate in the regulation of SOX10. For example,
sumoylation of SOX10 regulates its transcriptional activity21, 22

and FBXW7-mediated ubiquitination of SOX10 controls its
protein stability23.

In this study, we identify SOX10 as a transcriptional activator
of FOXD3 downstream of ERK1/2 signaling. SOX10 activates the

transcription of FOXD3 by direct binding to a regulatory
sequence in the promoter of FOXD3. We further show that ERK
phosphorylates SOX10 at T240 and T244, which inhibits the
sumoylation of SOX10 at K55 and subsequently the transcription
activity toward its target genes. Our findings not only delineate a
signaling network that governs the FOXD3-mediated adaptive
resistance to RAF inhibitors in mutant BRAF melanoma but also
demonstrate an intricate regulatory switch of SOX10 transcrip-
tion activity that involves interplay between phosphorylation and
sumoylation.

Results
SOX10 is necessary and sufficient for FOXD3 induction.
Blocking ERK signaling in mutant BRAF melanoma cells with
RAF or MEK inhibitors induces FOXD3 expression at the tran-
scriptional level11; however, the underlining mechanism of this
regulation is unknown. Studies have shown that FOXD3 and
SOX10 are two transcription factors that are both expressed in
pre-migratory neural crest and play similar regulatory roles in the
development of neural crest24, 25. We analyzed whether there is a
regulatory relationship between SOX10 and FOXD3 in melanoma
cells. We first evaluated the correlation between expression of
SOX10 and FOXD3 in melanoma patients based on two inde-
pendent data sets: RNA-seq data from the TCGA research net-
work (http://cancergenome.nih.gov) and microarray data from a
study by Talantov et al.26. Spearman correlation analysis suc-
cessfully detected a positive correlation of SOX10 with several of
its known targets including MITF, DCT, and TYR, confirming
previous findings and the validity of our analysis. Notably, a
positive correlation was also found between SOX10 and FOXD3
in both data sets when analyzing all melanoma genotypes and
selectively BRAF mutant melanoma (Supplementary Table 1).

We then investigated whether SOX10 is a mediator of the ERK-
dependent regulation of FOXD3 in mutant BRAF melanoma
cells. SOX10 expression was depleted using two independent
SOX10-specific siRNAs in mutant BRAF melanoma cells which
were then treated with the RAF inhibitor, Vemurafenib, for
various times. Consistent with previous studies, Vemurafenib
treatment resulted in a rapid and time-dependent induction of
FOXD3 at both protein and mRNA levels (Fig. 1a, b). SOX10
knockdown using either of the siRNAs effectively reduced
Vemurafenib-induced FOXD3 levels at both mRNA and protein
levels, indicating that SOX10 is required for FOXD3 induction
associated with inhibition of ERK signaling (Fig. 1a, b). This
SOX10-dependent induction of FOXD3 by inhibition of ERK1/
2 signaling is durable for at least 120 h (Supplementary Figs. 1
and 16) and is also present in melanoma cells treated with a
combination of RAF and MEK inhibitors (Supplementary Figs. 2,
17, 18). In addition, the ERK1/2/SOX10/FOXD3 axis appears to
be specific to mutant BRAF melanoma cells since N-RAS mutant
melanoma cells have no detectable level of basal or induced
FOXD3 expression (Supplementary Figs. 3 and 19). To rule out
the potential off-target effects of siRNAs, we confirmed the
regulation of FOXD3 by SOX10 by a rescue experiment, in which
the endogenous SOX10 was ablated by RNA interference while an
exogenous HA-tagged and siRNA-resistant SOX10 cDNA was
introduced through a lentiviral system. Two Tet repressor-
expressing mutant BRAF cell lines, A375-TR and 1205Lu-TR
were used to transduce the lentivirus so that the expression of the
exogenous HA-SOX10 is controllable by doxycycline13. As
expected, doxycycline induced the expression of the exogenous
HA-SOX10 in A375-TR and 1205Lu-TR cells and the expression
was resistant to SOX10 siRNAs (Fig. 1c). In the absence of
doxycycline, FOXD3 was induced by Vemurafenib treatment but
ablated upon SOX10 depletion as previously seen (Fig. 1c). Of
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note, expression of exogenous HA-SOX10 not only enhanced the
inhibitor-induced FOXD3 level, but also completely rescued
FOXD3 induction by Vemurafenib when endogenous SOX10 was
depleted. Together, our loss-of-function and rescue experiments
consistently demonstrate that SOX10 is a necessary and sufficient
transcription activator of FOXD3 downstream the ERK signaling.

SOX10 directly regulates FOXD3 transcription. Since the reg-
ulation of FOXD3 expression by SOX10 occurred at the mRNA
level, we wondered whether SOX10 can directly regulate FOXD3
promoter activity. To test this, dual luciferase reporter assays were
performed using a 1.6 kb region of the human FOXD3 promoter
linked to luciferase gene and an increasing amount of SOX10-
expressing plasmids in HEK293T cells. SOX10 overexpression
enhanced FOXD3 promoter activity in a dose-dependent manner
(Fig. 2a). SOX10 binds to a consensus DNA sequence 5′-[A/T][A/
T]CAA[A/T]G-3′27 and bioinformatics analysis of the 1.6 kb
FOXD3 promoter fragment uncovered three putative SOX10

binding sites upstream the transcription starting site (Fig. 2b). To
determine which putative site accounts for the transactivation
activity of SOX10, we individually mutated the three sites and
examined the impact on FOXD3 promoter activity. Over-
expression of SOX10 enhanced wild-type (WT) FOXD3 promoter
activity by 50% (Fig. 2c). Mutation of site 1 or site 2 had negligible
effects on SOX10-enhanced promoter activity, while disruption of
site 3 completely abolished the transactivation activity of SOX10,
indicating that site 3 is essential for the transactivation function of
SOX10 toward FOXD3 promoter. Interestingly, site 3, but not site
1 or 2 was evolutionary conserved among different species, fur-
ther supporting it being an important regulatory element
(Fig. 2d). To investigate whether SOX10 directly binds to FOXD3
promoter in vivo, ChIP analysis was performed using the HA
antibody (for exogenous SOX10) and a primer set spanning site 3.
As expected, no enrichment was detected in HA versus IgG
immunoprecipitates on a genomic region between the GAPDH
and CNAP1 genes, which served as a negative control. By

0 6 24

A375a

b

c

A375

*** *** ***
************

***

******

***

siRNA

siRNA

Vem (h)

SOX10

FOXD3

pERK

Actin

18 7 3

2.5

2

1.5

1

0.5

0

6

5

4

3

2

1

0

16

14

12

10

8

6

4

2

0

1205Lu

1205Lu

Dox – – –

–

– –

––

–

–

–

– –

–

–

–

+

+ + + +

+++

+ +

+ +

+ +

+

+

– – –

–

– –

––

–

–

–

– –

–

–

–

+

+ + + +

+++

+

1.0 0.3

A375 TR HA-SOX10 1205Lu TR HA-SOX10

1.5 1.1 1.0 0.2 1.5 1.1

+

+ +

+ +

+

+
Vem

Ctrl

SOX10

FOXD3

siRNA

Dox

Vem

Ctrl

SOX10

FOXD3

HA (SOX10)

Sox10

pERK

Actin

HA (SOX10)

Sox10

pERK

Actin

siRNA

M238

M238

CTRL SOX10#1 SOX10#2

CTRL SOX10#1

R
el

at
iv

e 
F

ox
D

3 
m

R
N

A
 le

ve
l

SOX10#2 CTRL SOX10#1 SOX10#2 CTRL SOX10#1 SOX10#2

Vemurafenib

0 h
6 h

24 h

CTRL SOX10#1 SOX10#2 CTRL SOX10#1 SOX10#2

6 240 6 240 6 240 6 240 6 240 6 240 6 240 6 240

Fig. 1 SOX10 is necessary and sufficient for FOXD3 induction by ERK signaling inhibition. a Melanoma cells were transfected with non-targeting control or
SOX10-specific siRNAs for 72 h and treated with 2 μM Vemurafenib for 0, 6, and 24 h before being lysed for western blot analysis. b Same as (a) except
that after siRNA transfection and Vemurafenib treatment, cells were collected to isolate total RNA for qRT-PCR analysis on FOXD3 using actin as the
internal control. Average results from three independent experiments are shown. Error bars represent standard deviation. Significance was determined by
ANOVA one-way test, ***p< 0.001. c 1205Lu-TR HA-SOX10 and A375-TR HA-SOX10 cells were transfected with control or SOX10 siRNAs for 72 h in the
presence or absence of 100 ngmL−1 Doxycycline. The cells were then treated with 2 μM Vemurafenib for 24 h and lysed for western blot analysis.
Quantitations of FOXD3 expression based on band intensity are shown below the blots. Uncropped images are shown in Supplementary Fig. 9

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02354-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:28 |DOI: 10.1038/s41467-017-02354-x |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


2

1.5

1

0.5

0
SOX10 (ng)

SOX10

Actin

2 NS

NS

1.5

1

0.5

0

3 4

3

2

1

0
NC S3 NC S3

2

1

0

WT

NC

PLX

Pull-down

Input

PLX – +

Oligo pull-down

IB: SOX10

NC S3 W
T

S3 
M

ut

NC S3 W
T

S3 
M

ut

– + PLX – +

S3 NC S3

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

F
ol

d 
en

ric
hm

en
t

F
ol

d 
en

ric
hm

en
t

Mut1 Mut2

A375TR HA-SOX10
1205TR HA-SOX10

Mut3

–SOX10

IgG

HA

IgG

HA

+SOX10
500 ng

0 0 100

pGL3-FOXD3 P
a

c

e

f

d

b***
***

***
***

***

***
*

***

***

***

pGL3
basic

250 500 1000

–1500

WT

SOX10 sites

Consensus

FOXD3 promoter

Site#3

Mut1
Mut2
Mut3

Site#1
–626

Site#2
–526

Site#3
–271

+1

+84

Luc5′–

5′-

5′-
5′-
5′-
5′-

5′-
5′-
5′-
5′-

5′-Human
Mouse

Rat
Dog

Cattle
Frog

Zebrafish

5′-
5′-
5′-
5′-
5′-
5′-

5′

5′

5′

5′

5′--3′

-3′
-3′
-3′
-3′

5′-
5′-
5′-
5′-

-3′
-3′
-3′
-3′

-3′
-3′
-3′
-3′

-3′
-3′
-3′
-3′
-3′
-3′
-3′

3′
3′

3′

S3 WT

S3Mut
3′

-3′

-3′

Fig. 2 SOX10 activates the transcription of FOXD3 by direct binding to FOXD3 promoter. a HEK293T cells were co-transfected with 500 ng pGL3-FOXD3
(or pGL3-Basic as negative control), 50 ng pRL-TK and an increasing amount of pLentipuro/TO/HA-SOX10 plasmids. After 48 h, cells were lysed and dual-
lucfiferase assays were performed. Average relative luciferase activities from three experiments are shown. The expression of SOX10 was verified by
western blot. Error bars represent standard deviation. Significance was determined by ANOVA one-way test, ***p< 0.001. b A schematic illustration of
FOXD3 promoter region. The positions and sequences of three putative SOX10 binding sites were highlighted. The +1 arrow designated the transcription
initiation site. The mutated SOX10 binding sites and the consensus motif are shown. Mutated nucleotides were underlined. c HEK293T cells were co-
transfected with 500 ng pGL3-FOXD3 promoter constructs carrying either WT sequence or mutations in either of the three putative SOX10 binding sites,
50 ng pRL-TK and 500 ng pLentipuro/TO/HA-SOX10 for 48 h. Cells were then lysed for dual-luciferase assay. Average relative luciferase activities from
three experiments are shown. Error bars represent standard deviation. Significance was determined by ANOVA one-way test, ***p< 0.001. d Sequence
alignment of SOX10 binding site #3 in FOXD3 promoters from different species. The SOX10 binding sites were in bold. e A375-TR HA-SOX10 and 1205Lu-
TR HA-SOX10 cells were treated with 2 μM Vemurafenib for 6 h. Occupancy of SOX10 (HA) on a region surrounding site #3 in FOXD3 promoter and a
region between the GAPDH and CNAP1 genes (negative control) was evaluated by ChIP analysis. Average results from three independent experiments are
shown. Error bars represent standard deviation. Significance was determined by ANOVA one-way test, *p< 0.05; **p< 0.01; ***p< 0.001. f Oligo pull-
down assays were performed using nuclear extracts from A375 cells treated with or without 2 μM Vemurafenib for 6 h and biotin-labeled FOXD3 promoter
fragments containing WT or mutated SOX10 binding site #3. Non-biotinylated DNA fragments (NC) were used as a negative control. The nucleotide
sequences of promoter fragments are shown on the right. SOX10 binding sites were underlined and mutated nucleotides were highlighted in bold.
Uncropped images are shown in Supplementary Fig. 10

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02354-x

4 NATURE COMMUNICATIONS |  (2018) 9:28 |DOI: 10.1038/s41467-017-02354-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


contrast, the site 3 region of FOXD3 promoter was significantly
enriched in HA immunoprecipitates versus the IgG control
(Fig. 2e). Vemurafenib treatment did not alter the level of
enrichment at site 3, indicating ERK inhibition does not affect the
chromatin occupancy by SOX10 at the FOXD3 promoter. We
next performed oligonucleotide pull-down assays to interrogate
the direct interaction between SOX10 and site 3. A 25-bp bioti-
nylated FOXD3 promoter fragments containing site 3 efficiently
pulled down SOX10 from the nuclear extract of A375 cells
(Fig. 2f). However, the amount of SOX10 pulled down was
reduced when site 3 was mutated in the same promoter fragment.
In addition, Vemurafenib treatment had marginal effects on the
efficiency of SOX10 pull-down, which was consistent with the
ChIP results. Therefore, we conclude that SOX10 likely activates
FOXD3 transcription by direct binding to a –271 regulatory
element in the FOXD3 promoter region.

ERK2 phosphorylates SOX10 at T240 and T244. We next
determined how ERK signaling regulates the transcription activity
of SOX10 toward FOXD3. FOXD3 induction by ERK inhibition is
independent of increased SOX10 protein level (Fig. 1) and altered
nuclear localization (Supplementary Fig. 4). Furthermore, ERK
inhibition by Vemurafenib does not seem to affect the binding of
SOX10 to FOXD3 promoter (Fig. 2e, f). These observations,
together with the rapid induction rate of FOXD3 within hours of
ERK inhibition (Fig. 1a, b) suggested the notion that ERK sig-
naling may regulate the transcriptional activity of SOX10 via
post-translational modification. Guided by the ERK consensus
phosphorylation motif “pxT/Sp”, we identified two putative ERK
phosphorylation sites, T240 and T244 in SOX10. Interestingly,
these two sites are highly conserved among species and the SOXE
family proteins (Fig. 3a). Phosphorylation of two corresponding
sites in SOX9 (T236 and T239) was detected in breast cancer
cells28. Furthermore, a previous proteomic study detected phos-
phorylated SOX10 tryptic peptides (residue 216–246) harboring
the two putative ERK sites (T240 and T244) in a mutant BRAF
melanoma cell line although the exact phosphorylation sites were
not determined29. Based on these observations, we tested whether
SOX10 is phosphorylated in vivo at T240 and/or T244. Four
tryptic peptides of SOX10 (spanning residue 216–246) that carry
either none, single or double phosphorylation sites were indivi-
dually synthesized (Supplementary Fig. 5) and used as peptide
standards in a multiple reactions monitoring (MRM) mass
spectrometry analysis on HA-SOX10 immunoprecipitated from
A375-TR HA-SOX10 cell lysates. As expected, phosphorylation
of T240 or T244, and both sites together was detected from A375
melanoma cell lysates (Fig. 3b). Importantly, treatment of
Vemurafenib reduced the levels of SOX10 phosphorylation at
both single and double sites (Fig. 3c).

To further examine whether ERK2 can directly phosphorylate
SOX10 at T240 and/or T244, In vitro kinase assays were
performed using recombinant activated ERK2 kinase and
synthetic SOX10 peptides (236-HGPPTPPTTPKTELQ-250) with
WT sequence or alanine replacement at T240 and/or T244. The
reaction products were analyzed by LC–Mass Spectrometry.
Three peaks were detected for the WT peptides, which
corresponded to unphosphorylated (MW: 1600D), single-
phosphorylated (MW: 1680D) and double-phosphorylated
(MW: 1760D) species respectively (Fig. 3d, Supplementary Fig. 6).
For T240A or T244A SOX10 peptides, only unmodified and
single-phosphorylated species were detected. However, no
phosphorylation was detected with the AA peptides. Together,
these results indicate that ERK2 can directly phosphorylate
SOX10 at T240 and/or T244 residues. To further validate the
phosphorylation of SOX10 by ERK kinases in vivo, we

individually immunoprecipitated WT, T240A, T244A, and AA
HA-SOX10 variants from lentivirus transduced A375 cells treated
with or without the ERK inhibitor SCH772984 and probed
phospho-threonine using an antibody targeting the PXpTP motif.
As expected, phospho-threonine was successfully detected in WT
HA-SOX10 and the signal was reduced when cells were treated
with SCH772984 (Fig. 3e). Importantly, significantly less or no
phospho-threonine signals were detected in T240A, T244A, or
AA HA-SOX10, confirming the phosphorylation of T240 and
T244 sites by ERK kinases in vivo. Moreover, the phosphorylation
of SOX10 at T240/T244 was also observed in 293T cells and was
inhibited by MEK inhibitor (Fig. 3f), indicating these modifica-
tions are not cellular context specific.

Phosphorylation of SOX10 inhibits its transcription activity.
Following the discovery of the two ERK phosphorylation sites in
SOX10, we next asked whether T240 and/or T244 phosphoryla-
tion regulates the transcriptional activity of SOX10 toward
FOXD3. Endogenous SOX10 was depleted in A375-TR or
1205Lu-TR cells and siRNA-resistant, phosphomimetic variants
of HA-SOX10 including T240E, T244E, or EE were ectopically
expressed through lentiviral vectors so that the transcription
activity of SOX10 variants toward FOXD3 can be compared
without the interference of endogenous WT SOX10. As shown in
Fig. 1c, expression of WT HA-SOX10 efficiently rescued FOXD3
induction by ERK inhibition in melanoma cells depleted of
endogenous SOX10. By contrast, in the absence of endogenous
SOX10, the phosphomimetic T240E or T244E replacement
inhibited the induction of FOXD3 by Vemurafenib and the EE
mutation almost completely blocked the induction of FOXD3
(Fig. 4a, b), suggesting that T240 and/or T244 phosphorylation
compromise the transcription activity of SOX10 toward FOXD3.
Importantly, we found that the phosphorylation-dependent reg-
ulation of SOX10 transcription activity is common toward other
SOX10 targets including MITF, TYR, and SAMMSON. Depletion
of endogenous SOX10 caused reduced expression of these target
genes which was fully rescuable by expression of exogenous WT
but not EE SOX10 (Fig. 4c). It is worth noting that all ectopic
SOX10 mutants were expressed at a comparable level to the
endogenous SOX10 and to WT HA-SOX10. Therefore, the
reduced capacities of SOX10 phosphomimetic mutants to activate
FOXD3 expression are not due to inefficient expression but more
likely caused by impaired transcriptional activity. We also noticed
that expression of exogenous SOX10 variants, regardless of their
mutational status, all enhanced the expression levels of SOX10
targets in the presence of endogenous SOX10 and Vemurafenib.
While the detailed mechanism is still unknown, one possible
explanation is that expression of exogenous SOX10 relieves the
inhibiting effects on the transcription activity of endogenous
SOX10 by titrating out the inhibitory factors. Nevertheless, our
knockdown/re-expression experiments clearly indicated that
T240 and/or T244 phosphorylation inhibits the transcription
activity of SOX10.

Sumoylation is required for SOX10 transcriptional activity.
Sumoylation regulates SOXE protein transcriptional activity and
function in early development of neural crest and ear22. SOX10
contains two sumoylation motifs (K55 and K357), which are
conserved among different species and in its family member,
SOX9 (Fig. 5a). To scrutinize the sumoylation of SOX10 at these
two sites, Flag-tagged SUMO1 and HA-tagged SOX10 variants,
WT, K55R, K357R, and 2KR, were co-expressed in
HEK293T cells and the lysates were analyzed by western blot. In
addition to the unmodified HA-SOX10 band at around 65 KD, a
higher molecular weight band (above 100 KD) was observed for
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Fig. 3 ERK2 directly phosphorylates SOX10 at T240 and T244. a Sequence alignment of the putative ERK phosphorylation motifs in SOX10 from different
species (top) and among SOXE family proteins (bottom). The putative phosphorylation motifs were highlighted in box and phosphorylation sites (T) are
shown in bold. The consensus ERK phosphorylation motif is shown below the sequences. b In vivo detection of SOX10 phosphorylation at T240 and T244.
HA-SOX10 proteins were immunoprecipitated from A375-TR HA-SOX10 cell lysates, digested by trypsin and analyzed by multiple reactions monitoring
(MRM) mass spectrometry. MRM spectra of non-phosphorylated and T240/T244-phosphorylated SOX10 tryptic fragments are shown. c Quantitation of
SOX10 phosphorylation in A375 cells treated with or without 2 μM Vemurafenib for 6 h. The areas of the peptide peaks in MRM chromatograms were
measured to estimate the relative quantities of corresponding peptides. A SOX10 tryptic fragment (183 AAQGEAECPGGEAEQGGTAAIQAHYK 208,
848.7188+++) was used as the internal control. d In vitro kinase assays were performed using recombinant ERK2 (activated) and synthetic SOX10 peptides
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anti-phospho-PXTP antibodies. Uncropped images are shown in Supplementary Fig. 10. f 293T cells were transduced with WT or AA HA-SOX10
constructs along with empty vector or V600E BRAF constructs, ±AZD6244 treatment. Cells were lysed and HA-SOX10 were immunoprecipiated and
probed with indicated antibodies. Uncropped images are shown in Supplementary Fig. 11
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WT and K357R HA-SOX10, but not for K55R or 2KR mutant
(Fig. 5b). To validate the identity of the higher molecular weight
band, HA-SOX10 immunoprecipitates were probed with anti-
Flag antibody for SUMO1 detection. Similar to the results of anti-
HA blots, Flag antibody detected a band above 100 KD in WT
and K357R immunoprecipitates but not in K55R or 2KR mutant
(Fig. 5b), indicating that the higher molecular weight band indeed
represents the sumoylated SOX10 and that SOX10 is sumoylated

at K55. To investigate whether K55 sumoylation modulates
SOX10 transcription activity toward FOXD3, we ectopically
expressed K55R, K357R, or 2KR HA-SOX10 mutants in 1205Lu-
TR or A375-TR cells depleted of endogenous SOX10 and mon-
itored the impact on FOXD3 induction by Vemurafenib. In
accordance with the sumoylation status at K55 and K357, both
the K55R and 2KR mutants had severely impaired abilities to
activate FOXD3 transcription upon ERK signaling inhibition
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while loss of K357 had negligible effect (Fig. 5c, d). These results
demonstrated that SOX10 is sumoylated at K55 and this mod-
ification is important for the transcriptional activity of SOX10
toward FOXD3.

Phosphorylation interferes with the sumoylation of SOX10. In
light of the similar functional defects of the phosphomimetic
mutants (T240E, T244E, EE) and Sumo-disrupting mutants
(K55R, 2KR) of SOX10, we hypothesized that there may be
interplay between these two post-translational modifications. To
test this, we comparatively analyzed the sumoylation status of
WT and phosphomimetic mutants (T240E, T244E, and EE) of
SOX10. As shown in Fig. 6a, T240E or T244E SOX10 had
decreased levels of sumoylation compared with WT SOX10 and
the EE mutation reduced SOX10 sumoylation even further. These
observations were well correlated with results from prior func-
tional studies on phosphomimetic (Fig. 4) and sumo-defective
SOX10 mutants (Fig. 5c, d) and supported a notion that phos-
phorylation at T240 and/or T244 inhibits the sumoylation of
SOX10, thus inactivating SOX10 for FOXD3 transcription. To
elucidate how phosphorylation of SOX10 may inhibit its
sumoylation, we examined the interaction of WT or EE SOX10
with the sumo E2 ligase UBC9, an essential component of the
sumoylation machinery. Reciprocal immunoprecipitation reliably
detected the interaction between SOX10 and UBC9 (Fig. 6a),
which was in accordance with previous reports22. Importantly,
the SOX10/UBC9 interaction was weakened by the phosphomi-
metic EE mutation (Fig. 6b) and knockdown of UBC9 diminished
the sumoylation of WT SOX10 (Fig. 6c). We then performed
GST-pull-down assay to further verify the interaction between
SOX10 and UBC9. As shown in Fig. 6d, WT SOX10 was effi-
ciently pulled down by recombinant GST-UBC9 but not by the
GST control, confirming the interaction between the SOX10 and
UBC9. Moreover, EE SOX10 was pulled down less by GST-UBC9
when compared with WT SOX10. The above results indicated
that phosphorylation of SOX10 at T240/T244 may inhibit
SOX10 sumoylation at least partly by interfering with the inter-
action between SOX10 and UBC9.

To further confirm the role of SOX10 sumoylation in FOXD3
activation and the interplay between SOX10 phosphorylation and
sumoylation, we performed dual-luciferase assays using the
FOXD3 promoter reporter and a panel of HA-SOX10 variants
including the sumoylation site mutants (K55R, K357R, and 2KR
HA-SOX10), phosphomimetic mutant (EE HA-SOX10) and non-
sumoylatable phosphomimetic mutant (2KR/EE HA-SOX10).
Taylor et al. have demonstrated that the C-terminal SUMO1
fusion of SOX10 successfully recapitulated the function of
sumoylated SOX10 at K357, a site close to the C-terminal end
(21). In our system, we found that sumoylation of the N-terminal
site K55 was more important than K357 for SOX10’s transcrip-
tion activity on FOXD3. Therefore, we additionally included two
phosphomimetic mutants that are either N-terminally or C-
terminally fused to SUMO1 to mimick constitutive sumoylated
SOX10 (C-SUMO1/EE, EE HA-SOX10 with C-terminal SUMO1
fusion and N-SUMO1/EE, EE HA-SOX10 with N-terminal
SUMO1 fusion). In accordance with our western blot results,
K55R and 2KR SOX10 failed to activate FOXD3 promoter while
K357R SOX10 retained WT activity (Figs 5c, d, 6e). The
phosphomimetic mutants EE and 2KR/EE SOX10 lost their
activities, confirming that T240/T244 phosphorylation compro-
mises the transcription activity of SOX10 on FOXD3 (Figs 4a, b,
6e). Interestingly, we found that the N-terminal but not C-
terminal SUMO1 fusion restored the transcription activity of EE
SOX10 on FOXD3 promoter (Fig. 6e), supporting the idea that

phosphorylation of SOX10 may regulate its transcription activity
through altering SOX10 sumoylation at K55.

SOX10 depletion sensitizes melanoma cells to RAFi. Since
FOXD3 induction in melanoma cells following RAF inhibitor
treatment promotes adaptive resistance by upregulating ERBB3
and activating the NRG1/ERBB3/AKT signaling13, we hypothe-
sized that depletion of SOX10, the upstream regulator of FOXD3,
would block the FOXD3/ERBB3/AKT axis and sensitize mela-
noma cells to the RAF inhibitors. To test this, we evaluated the
ERBB3/AKT signaling and vemurafenib-induced apoptosis in
melanoma cells depleted of SOX10. Consistent with previous
reports, vemurafenib treatment enhanced ERBB3 expression and
improved the sensitivity of melanoma cells to ERBB3 ligand,
NRG1, as assessed by the phosphorylation of AKT (Fig. 7a).
Importantly, SOX10 knockdown almost completely blocked the
upregulation of ERBB3 and the NRG1-dependent activation of
AKT signaling by vemurafenib. Similar results were observed in
melanoma cells treated with a combination of RAF and MEK
inhibitors and for extended periods of time (Supplementary
Fig. 2). These results suggested that SOX10 can modulate the
activity of NRG1/ERBB3/AKT pathway by controlling FOXD3
expression. The impact of SOX10 depletion on melanoma cell
proliferation and apoptosis was then analyzed by MTT assay and
annexin V/PI staining respectively. SOX10 knockdown alone
inhibited melanoma cell growth (Supplementary Fig. 7) but only
had a moderate influence on apoptosis (Fig. 7b). However, when
combined with the RAF inhibitor, SOX10 depletion increased
RAF inhibitor-induced apoptosis rate from 25 to 48% in 1205Lu
cells and from 15 to 27% in A375 cells, respectively (Fig. 7b,
Supplementary Fig. 8). In the mouse xenograft model, SOX10
knockdown also blocked FOXD3/ERBB3 induction by Vemur-
afenib, reduced tumor growth and further enhanced the tumor-
inhibiting capacity of Vemurafenib (Fig. 7c, d). Therefore, SOX10
depletion can sensitize mutant BRAF melanoma cells to
Vemurafenib in vitro and in vivo.

Discussion
Melanoma cells may elicit an adaptive resistance which rapidly
activates the survival signals to protect against the cytotoxic
effects of RAF inhibitors until acquired resistance takes over. One
important mediator of adaptive resistance in mutant BRAF
melanoma cells is the lineage-specific transcription factor,
FOXD3, which undergoes rapid transcriptional induction upon
inhibition of ERK1/2 signaling and activates the ERBB3/PI3K/
AKT pathway13. Mechanistically, how FOXD3 expression is
induced by ERK inhibition remains unknown. In this study, we
discover SOX10 as a transcription activator of FOXD3 down-
stream of the ERK1/2 signaling. We show that SOX10 activates
FOXD3 transcription through binding to a regulatory site in the
promoter region and that ERK directly phosphorylates SOX10 at
T240 and T244, which inhibits sumoylation of SOX10 at K55 and
consequently the transcriptional activity of SOX10 that is
dependent on this modification. Our work completes an ERK/
SOX10/FOXD3/ERBB3 pathway that governs the FOXD3-
mediated adaptive resistance to RAF/MEK inhibitors in mutant
BRAF melanoma. It also describes a novel regulatory mechanism
of SOX10 transcriptional activity that involves interplay between
two post-translational modification events: phosphorylation and
sumoylation.

Previous works have shown that two conserved distal enhancer
elements, NC1 and NC2, participate in the regulation of FOXD3
transcription by interacting with multiple transcription factors,
such as Pax7, Msx1/2, Ets1, and Zic130. In addition to these distal
enhancer elements, high level of sequence conservation was also
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UBC9 or GST and sonicated lysates of 293T cells expressing WT or EE HA-SOX10. Input and pull-down proteins were analyzed by western blot. e
HEK293T cells were co-transfected with 500 ng of pGL3-FOXD3, 50 ng of pRL-TK and 500 ng of indicated SOX10 plasmids. After 48 h, cells were lysed
and dual-lucfiferase assays were performed. Average ratios of firefly and renilla luciferase activities (FF/RL) from three experiments are shown. The
expressions of exogenous HA-SOX10 variants were verified by western blot. Error bars represent standard deviation. Significance was determined by
ANOVA one-way test, *p< 0.05. Uncropped images are shown in Supplementary Fig. 14
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observed in a FOXD3 promoter region proximal to the starting
codon31, raising the possibility that other regulatory elements
may exist in this region. Indeed, we identify SOX10 as a novel
regulator of FOXD3 in human mutant BRAF melanoma that
binds to a conserved regulatory element located 270 bp upstream
from the transcription starting site and activates FOXD3 tran-
scription. Our findings are consistent with previous reports
showing that SOX10 injection in Xenopus embryos led to
enhanced expression of FOXD3 in cranial ganglia22 and that
ChIP-seq analysis detected SOX10 binding to FOXD3 locus in
melanocytes32. Thus, in addition to the NC1 and NC2 enhancer-

mediated regulation of FOXD3, the SOX10/FOXD3 axis dis-
covered in mutant BRAF melanoma cells is likely a new com-
ponent of the complex regulatory network that controls the
development of neural crest.

Our work also describes a new mode of regulation of SOX10.
ERK phosphorylation of SOX10 at T240 and/or T244 inhibits its
transcription activity toward FOXD3 and other reported tran-
scriptional targets, such as MITF, TYR, and SAMMSON (Fig. 4),
indicating that this is a general regulation mechanism. However,
it is not completely understood how phosphorylation of SOX10 at
T240/T244 compromises its transcriptional activity. Blocking
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Fig. 7 SOX10 depletion sensitizes melanoma cells to mutant BRAF inhibitor. a Melanoma cells were transfected with control or SOX10 #2 siRNAs for 72 h
and ±2 μM vemurafenib for additional 24 h. Cells were then stimulated with 10 ng ml–1 NRG1 for 1 h and lysed for western blot analysis. b Melanoma cells
were transfected with Control, SOX10#1 or #2 siRNAs for 48 h and treated with ±10 μMVemurafenib for additional 48 (1205Lu) or 72 (A375) hours. Cells
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ERK signaling and hence SOX10 phosphorylation by RAF inhi-
bitors does not alter nuclear localization or the DNA binding
ability of SOX10 (Fig. 2e, f, Supplementary Fig. 4). Instead, we
postulate that phosphorylation of SOX10 at T240/T244 might
inhibit its transcription activity through interfering with
SOX10 sumoylation based on three observations: (1) SOX10 is
sumoylated at K55 and loss of this modification ablates its
transcription activity; (2) SOX10 phosphomimetic mutants
(T240E, T244E, and EE) showed reduced sumoylation levels
compared with WT SOX10; (3). The SOX10 EE phosphomimetic
mutant had decreased association with the E2 SUMO ligase,
UBC9 and UBC9 knockdown led to reduced sumoylation of
SOX10. This phosphorylation-sumoylation interplay is not
unique to SOX10 and has also been reported in other proteins.
Dependent on the cellular and protein contexts, phosphorylation
of a protein can either facilitate or inhibit its sumoylation33–36.
Our results of SOX10 represent another example of a mutually
exclusive relationship between phosphorylation and sumoylation.
While the phosphorylation-sumoylation interplay provides a
reasonable mechanism for the regulation of SOX10 activity, it is
still possible that phosphorylation of SOX10 exerts an inhibitory
effect on its transcription activity by interacting with other
transcriptional cofactors. Further investigation is needed to test
these possibilities.

As an important mediator of adaptive resistance to RAF
inhibitors, FOXD3 depletion promotes the cytotoxic effect of RAF
inhibitors in mutant BRAF melanoma cells12. Consistently, we
find that knockdown of SOX10, the upstream regulator of
FOXD3 also sensitizes mutant BRAF melanoma cells to
Vemurafenib in vitro and in vivo, suggesting that SOX10 can
protect melanoma cells against the acute cytotoxic effect of RAF
inhibitors. In addition, SOX10 knockdown by itself inhibited the
growth of melanoma cells (Supplementary Fig. 7), a finding
consistent with previous studies17, 37. Therefore, SOX10 not only
exerts a cytoprotective role against RAF inhibitors, but also par-
ticipates in the regulation of melanoma cell growth.

Our finding that SOX10 plays a protective role against acute
RAF inhibitor treatment is seemingly contradictory to a previous
report showing that loss of SOX10 contributes to RAF inhibitor
resistance by activating TGF-β signaling and EGFR/PDGFRβ
expression18. However, it should be noted that Sun et al. eval-
uated the effect of SOX10 depletion on RAF inhibitor resistance
at a rather late time point of drug treatment (4 weeks, see Fig. 2e
in Sun et al.18), when acquired resistance might have occurred. By
contrast, our work focuses on the immediate (within 120 h)
effects of SOX10 depletion on the survival of Vemurafenib-
challenged cells, which is more pertinent to the time window of
adaptive resistance. Therefore, the differential effects of SOX10 on
drug resistance observed in these two works are likely due to
different roles of SOX10 played at different stages of resistance
development. At the initial stage of drug treatment, SOX10 may
provide rapid protection on melanoma cells by upregulating pro-
survival factors such as FOXD3, MITF, and SAMMSON and
therefore is important for the survival of melanoma cells. In line
with this, SOX10 expression is not reduced for at least 96–120 h
of Vemurafenib treatment when FOXD3 is fully induced (Sup-
plementary Figs. 1 and 2). However, when the treatment pro-
longs, other adaptive resistance mechanisms, for example, ERK
reactivation, may be activated so that the apoptosis-protection
burden of SOX10 is relieved and more benefits can be gained by
gradual loss of SOX10, which as Sun’s work suggested, may lead
to the activation of the TGF-β signaling and EGFR/PDGFRβ
expression.

Aside from its important roles in melanoma, SOX10 is also a
key regulator of the neural crest development. Studies have shown
that SOX10-dependent development of oligodendrocytes is

inversely correlated with the activity of ERK or JNK kinase38.
Thus, the phosphorylation-dependent regulation of SOX10
transcription activity in melanoma cells may have implication in
the development field as well. Transgenic SOX10 EE knock-in
mouse models will likely provide more insights into the role of
this new mode of SOX10 regulation in the embryonic
development.

Methods
Reagent. Vemurafenib, SCH772984, and AZD6244 were purchased from Selleck
Chemicals LLC (Houston, TX, USA). Doxycycline was purchased from Thermo
Fisher Scientific (Rockford, IL, USA). Human Neuregulin-1 #5218 (hNRG-1) was
purchased from Cell Signaling Technology (Beverley, MA, USA).

Cell culture. 1205Lu cells were gifted by Dr. Meenhard Herlyn at The Wistar
Institute. M238 cells were gifted by Dr. Antoni Ribas at University of California,
Los Angeles. A375 and HEK293T cells were purchased from the American Type
Culture Collection (ATCC) (Manassas, VA, USA). 1205Lu-TR and A375-TR are
sublines with high Tet repressor expression (Abel et al.13). 1205Lu, 1205Lu-TR,
and M238 cells were cultured in RPMI 1640 medium with 10% fetal bovine serum
and penicillin/streptomycin. A375, A375-TR, and HEK293T cells were cultured in
DMEM medium with 10% fetal bovine serum and penicillin/streptomycin. Par-
ental A375, 1205Lu, and M238 cells have been verified to carry the BRAFV600E

mutation by sequencing. All cell lines were mycoplasma free.

Western blotting. Melanoma cell lysates were separated on SDS-PAGE gels and
transferred to PVDF membranes. After blocking with 1% BSA for 1 h, the mem-
branes were incubated with primary antibodies at 4 °C overnight. Next day, the
membranes were incubated with horseradish peroxidase-conjugated secondary
antibodies for 1 h at room temperature. Blots were then developed using an
enhanced chemiluminescence western blotting detection kit (BioRad, Hercules,
CA, USA). Antibodies against Phospho-p44/42 MAPK (Thr202/Tyr204, clone
197G2, #4377), FOXD3 (clone D20A9, #2019), HA-tag (clone 6E2, #2367, clone
C29F4, #3724), Myc-tag (clone 71D10, #2278), HER3/ErbB3 (clone 1B2E, #4754),
Phospho-Akt (Ser473, clone D9E, #4060), AKT (#9272), Phospho-MAPK Sub-
strates Motif [PXpTP] (#14378) were purchased from Cell Signaling Technology
(Beverley, MA, USA). Anti-β-actin (#A2066) and anti-FLAG-tag (clone M2,
#F3165) were from Sigma-Aldrich. Anti-SOX10 (N-20, #SC-17342) was from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Another anti-FOXD3 (#631702)
antibody was purchased from Biolegend (San Diego, CA, USA).

Quantitative RT-PCR. Total RNA was extracted from melanoma cells by using the
TriPure Isolation Reagent (Roche, Basel, Switzerland) and reverse transcribed into
cDNA using iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA). PCR
reactions were performed using iQ SYBR Green Supermix (BioRad) and analyzed
by a CFX Connect real-time PCR detection system (BioRad). Relative mRNA levels
were calculated using the comparative Ct (ΔCt) method. Each Quantitation of
mRNA levels represents data from three independent experiments. The following
primers were used: β-actin (forward, 5′-TACCTCATGAAGATCCTCACC-3′;
reverse, 5′-TTTCG TGGATGCCACAGGAC-3′), FOXD3 (forward, 5′-CCCAA-
GAACAGCCTAGTGAA-3′; reverse, 5′-GCAGTCGTTGAGTGAGAGGT-3′),
MITF (forward, 5′-CCGTCTCTCACTGGATTGGT-3′; reverse, 5′-
TACTTGGTGGGGTTTTCGAG-3′), TYR (forward, 5′-CAGCCCAGCAT-
CATTCTTCTC-3′; reverse, 5′-GGATTACGCCGTAAAGGTCCCTC-3′), SAMM-
SON (forward, 5′-CCTCTAGATGTGTAAGGGTAGT-3′; reverse, 5′-
TTGAGTTGCATAGTTGAGGAA-3′).

Dual-luciferase assay. Around 3 × 105 HEK293T cells were transfected with
pGL3-FOXD3 promoter constructs, HA-SOX10 expressing constructs and pRL-TK
in 12-well plate using X-tremeGENE HP DNA transfection reagent (Roche). After
48 h, cells were collected for dual-luciferase assay using a Dual-Luciferase Reporter
Assay Kit (Promega, Madison, WI, USA) according to manufacturer’s instruction.
Luminescence was detected by a FlexStations 3 microplate reader (Molecular
Devices, Sunnyvale, CA, USA).

Chromatin immunoprecipitation assay. A375-TR HA-SOX10 WT and 1205Lu-
TR HA-SOX10 WT cells were cultured in 15 cm dishes and treated with 100 ng mL
−1 doxycycline. After 72 h, cells were treated with or without 2 μM Vemurafenib for
6 h before lysed for ChIP analysis. Briefly, cells were fixed with 1% formaldehyde
for 10 min and stopped with 0.125M glycine. After wash with PBS, cells were
scraped and collected by centrifugation. Cells were then resuspended in cell lysis
buffer (20 mM Tris-HCL, pH 8.0, 85 mM KCL, 0.5% NP40, and protease inhibi-
tors) and centrifuged to collect the nucleus. Nucleus pellet was lysed in SDS lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCL, pH 8.1 and protease inhibitor)
and sonicated to shear the DNA. Chromatin immunoprecipitation was then per-
formed using diluted sonicated lysates (1:5 in dilution buffer, 0.01% SDS, 1.1%
Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCL, pH 8.1, 167 mM NaCl plus
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protease inhibitors) and IgG or HA-tag antibody. Antibody-Chromatin complexes
were captured by the protein A/G Plus-Agarose beads (Santa Cruz, CA, USA) and
wished in low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM
Tris-HCL, pH 8.1, 500 mM NaCl), high salt wash buffer (0.1% SDS, 1% Triton X-
100, 2 mM EDTA, 20 mM Tris-HCL, pH 8.1, 500 mM NaCl), LiCl wash buffer
(0.25 M LiCl, 1% NP40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCL, pH 8.1)
and TE Buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Protein/DNA complexes
were eluted with elution buffer (1% SDS, 0.1 M NaHCO3) and decrosslinked in 0.2
M NaCl at 65 °C overnight. DNA was then purified by PCR cleanup columns.
Immunoprecipitated chromatin DNA was detected by qPCR using iQ SYBR Green
Supermix (BioRad). The following primers were used for PCR. NC_forward, 5′-
ATGGTTGCCACTGGGGATCT-3′; NC_reverse, 5′-TGCCAAAGCCTAGGG-
GAAGA-3′; FOXD3_forward, 5′-CACAGTGCGGAGCGGAGTT-3′; FOX-
D3_reverse, 5′-ACGTGACCGTGCGTGAC-3′.

Oligo pull-down assay. A375-TR HA-SOX10 WT cells were treated with 100 ng
mL−1 doxycycline for 72 h to induce HA-SOX10 expression. After that, cells were
treated with ±2 μM Vemurafenib for 6 h and lysed for nuclear extraction. Two 25-
bp biotinylated sense and antisense oligos were annealed to form double-stranded
DNA fragments containing the putative SOX10 binding site #3 or the mutated
counterpart. The biotinylated, double-stranded DNA probe (10 μL of a 2.5 μM
stock) and 10 μg poly dI/dC were added to 200 μg precleared nuclear extracts and
incubated at 4 °C overnight. Non-biotinylated oligos of same sequence (NC) were
used as a negative control. The following day, blocked streptavidin-agarose beads
(NEB, Ipswich, MA, USA) were added to the lysate/DNA mixture and incubated
for 2 h at 4 °C with rocking. After washing, the oligo pull-down samples were
boiled in SDS lysis buffer and analyzed by western blot.

In vitro kinase assay. SOX10 peptides of WT sequence (HGPPTPPTTPKTELQ),
T240A (HGPPAPPTTPKTELQ), T244A (HGPPTPPTAPKTELQ), or AA muta-
tions (HGPPAPPTAPKTELQ) were synthesized using a CSBio 336X automated
peptide synthesizer (CSBio, Menlo Park, CA, USA). For in vitro kinase assay, 0.5
mM peptide substrates were incubated with 200 unit recombinant ERK2 (NEB,
Ipswich, MA, USA) and 0.5 mM ATP in 1X NEBuffer (NEB) at 30 °C for 45 min.
The reaction products were analyzed by LC–Mass Spectrometry.

In vivo detection of SOX10 phosphorylation. A375-TR HA-SOX10 WT cells
were treated with 100 ng mL−1 doxycycline for 72 h and with ±2 μM vemurafenib
for 6 h. Then cells were washed in PBS and lysed in lysis buffer (20 mM Tris-HCl,
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.1% SDS, 1% sodium deox-
ycholate) supplemented with protease and phosphatase inhibitor cocktails (Roche,
Basel, Switzerland). HA-SOX10 was immunoprecipitated from the lysate using
anti-HA Magnetic Beads (Thermo Fisher Scientific) and eluted with 50 mM
NH4HCO3. Anti-HA immunoprecipitates were collected and digested in 50 mM
NH4HCO3 with sequencing grade trypsin. The digested products were subse-
quently injected onto an AB SCIEX QTRAP 6500+ using Eksigent nanoflex
cHiPLC system with a reverse-phase ChromXP C18-CL column for peptides
separation at the flow rate of 300 nl min−1. Peptides were eluted using a 62 min
gradient from 95% solvent A (H2O, 0.1% formic acid) and 5% B (acetonitrile, 0.1%
formic acid) to 50% B in 41 min, 6 min at 90%B, and back to 5% for 10 min. The
instrument was set to monitor 50 to 100 transitions in each sample with a dwelling
time of 100 ms per transition. Eluted peptides were then electrosprayed into the
mass spectrometer and MS/MS spectra were collected in the linear ion trap mode
with a mass range of 100–120039. The total ion chromatograms for the peptides
eluted at identical time provided measurement of their relative quantities using
Skyline software.

Construction of lentiviral vectors and cell lines. Wild-type HA-SOX10 cDNA
was cloned into pENTR/D-TOPO vector (Thermo Fisher Scientific) to generate the
entry plasmid. Entry plasmids of HA-SOX10 mutants were constructed using
Quickchange site-directed mutagenesis kit (Agilent Technologies Inc., Santa Clara,
CA, USA) and the WT HA-SOX10 entry plasmid as template. The resultant entry
plasmids were recombined with pLentipuro/TO/V5-DEST to generate lentiviral
plasmids. Lentiviruses were produced in HEK293FT cells and melanoma cells were
infected with lentivirus for 72 h before selection with puromycin. For SOX10-
shRNA constructs, DNA oligonucleotides were annealed and ligated into pENTR/
H1/TO plasmid using the manufacturer’s kit and instructions (Thermo Fisher
Scientific). The shRNA targeting sequences are the same as the two SOX10 siRNAs.
The shRNA cassettes were recombined into a destination vector with puromycin
resistance. Lentiviruses were produced and melanoma cells were transduced as
described above.

Annexin V/PI apoptosis assay. Cells were collected, washed by PBS and stained
using the Annexin-V-FLUOS kit (Roche) according to manufacturer’s protocol.
Stained cells were analyzed by flow cytometry on a CytoFLEX system (Beckman
Coulter, Indianapolis IN, USA). The data were analyzed using Flowjo software
(Three Star, Inc., Ashland, OR, USA).

siRNA transfection. Melanoma cells were transfected with 12.5 nM small-
interfering RNA and Lipofectamine RNAiMAX (Thermo Fisher Scientific) for 72 h.
Non-targeting siRNA control (5′-UUCUCCGAACGUGUCACGU-3′) and siRNAs
for SOX10 (#1 5′-CCGUAUGCAGCACAAGAAA-3′; #2 5′-GUAUGCAGCA-
CAAGAAAGA-3′) were purchased from Shanghai GenePharma Co., Ltd.
(Shanghai, China).

GST pull-down experiments. UBC9 cDNA was subcloned into pGEX-KG vector.
E.coli BL21 cells harboring pGEX-UBC9 or pGEX-KG plasmids were grown to
OD600 = 0.5 and induced with 0.5 M isopropyl β--1-thiogalactopyranoside for 4 h.
Cells were pelleted, resuspended in PBS supplemented with protease inhibitors and
lysed by sonication. Recombinant proteins were purified using GST chromato-
graphy followed by a size exclusion chromatography on Superdex 75 column (GE
health care, PA, USA). GST pull-down assays were carried out by incubating equal
amounts of GST and GST-UBC9 immobilized on glutathione MagBeads (Gene-
Script, NJ, USA) with lysates of 293T cells expressing WT or EE HA-SOX10, at 4 °
C for 3 h. Protein/bead complexes were washed three times with washing buffer
(20 mM Tris-HCl, pH 7.4, 300 mM NaCl, 0.5% NP40), eluted with SDS sample
buffer and subjected to western blot analysis.

Animal studies. Five-week-old female BALB/c nude mice (Shanghai SLAC
Laboratory Animal CO. LTD, Shanghai, China) were randomly divided into 6
treatment groups. 1205Lu-TR or A375-TR cells carrying Ctrl-shRNA, SOX10-
shRNA #1 or SOX10-shRNA #2 were intradermally injected into mice, respectively,
(2 × 106 per mouse for 1205Lu and 4 × 106 per mouse for A375) and allowed to
grow for 7–10 days to reach palpable tumor size (40–100 mm3). The mice were
then exposed to drinking water containing doxycycline (2 mgml−1) and treated
intraperitoneally with Vemurafenib (30 mg kg–1) or DMSO on a daily basis. Tumor
sizes were measured every 2 days and tumor volumes were determined by the
following formula: volume = (length × width2) ×0.52. Sick mice or mice with their
tumors damaged by cage mates were excluded from the experiment. Two mice
from each treatment condition were killed on day 5 and tumors were excised for
western blot analysis of the ERK/SOX10/FOXD3/ERBB3 signaling axis. The
remaining mice were killed on day 12 (A375) or 14 (1205Lu). All animal protocols
were approved by the Institutional Animal Care and Use Committee of Xi’an
Jiaotong University. The investigators were not blinded to the experiment groups.

Immunofluorescence assay. 1205Lu-TR HA-SOX10 cells were cultured on cov-
erslips in the presence of 100 ng mL−1 Doxycycline for 72 h and then treated with 2
μM Vemurafenib for 0, 4, or 8 h. Cells were fixed in 3.7% formaldehyde for 15 min,
and permeabilized in 0.1% Triton X-100 for 3 min. After that, cells were incubated
with antibodies against HA tag at 4 °C overnight, followed by staining with TRITC-
conjugated secondary antibody. Nucleus was stained by DAPI. Staining was
visualized by an Inverted Microscope System (Nikon ECLIPSE Ti, Tokyo, Japan).

Statistics. Statistical significance of differences between the results was evaluated
using Student's two-tailed t-test (assuming non-equal variance) for two groups’
comparison or ANOVA one-way test where multiple groups were involved. A p-
value <0.05 was considered statistically significant. Spearman’s correlation was
applied to estimate the correlation between expression of SOX10 and FOXD3 in
mutant BRAF melanoma patients.

Data availability. All relevant data are available from the authors upon request.
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