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ARTICLE

Decoding critical long non-coding RNA in ovarian
cancer epithelial-to-mesenchymal transition
Ramkrishna Mitra 1, Xi Chen1, Evan J. Greenawalt1, Ujjwal Maulik2, Wei Jiang3, Zhongming Zhao 4

& Christine M. Eischen1

Long non-coding RNA (lncRNA) are emerging as contributors to malignancies. Little is

understood about the contribution of lncRNA to epithelial-to-mesenchymal transition (EMT),

which correlates with metastasis. Ovarian cancer is usually diagnosed after metastasis. Here

we report an integrated analysis of >700 ovarian cancer molecular profiles, including

genomic data sets, from four patient cohorts identifying lncRNA DNM3OS, MEG3, and MIAT

overexpression and their reproducible gene regulation in ovarian cancer EMT. Genome-wide

mapping shows 73% of MEG3-regulated EMT-linked pathway genes contain MEG3 binding

sites. DNM3OS overexpression, but not MEG3 or MIAT, significantly correlates to worse

overall patient survival. DNM3OS knockdown results in altered EMT-linked genes/pathways,

mesenchymal-to-epithelial transition, and reduced cell migration and invasion. Proteotran-

scriptomic characterization further supports the DNM3OS and ovarian cancer EMT connec-

tion. TWIST1 overexpression and DNM3OS amplification provides an explanation for

increased DNM3OS levels. Therefore, our results elucidate lncRNA that regulate EMT and

demonstrate DNM3OS specifically contributes to EMT in ovarian cancer.
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Ovarian cancer is the most lethal gynecologic malignancy
in the United States with ~14,100 deaths and 22,500 new
cases estimated for 20171. The high mortality of ovarian

cancer is primarily due to the high rate of therapy resistance and
the diagnosis of the disease after it has metastasized, which occurs
in ~80% of women2,3. Evidence indicates the ability of ovarian
cancer cells to invade and metastasize is enhanced through the

loss of epithelial features and the gain of a mesenchymal phe-
notype known as epithelial-to-mesenchymal transition (EMT)4,5.
EMT leads to reversible reprogramming of cells, which is defined
by fundamental changes initiated and maintained by critical
genes, their regulatory circuits, and signaling pathways6.

EMT is regulated at the transcriptional level by EMT-inducing
transcription factors and at the post-transcriptional level by non-
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coding RNA, such as microRNA (miRNA)7. Recently, reports
suggest that long non-coding RNA (lncRNA), non-coding RNA
longer than 200 nucleotides, can also modulate gene expression
through several not fully characterized mechanisms8. LncRNA
function in a broad range of cellular processes including cell
proliferation, apoptosis, and reprogramming of cell
pluripotency9–11. Aberrant expression of 15 lncRNA was detected
in ovarian cancer tissue, but their functions were not investi-
gated12. Elevated expression of one lncRNA, ANRIL, was reported
to increase proliferation, migration, and invasion of serous
ovarian cancer cells13,14. Additionally, 11 lncRNA have recently
been shown to function in migration, EMT, and metastasis in
multiple cancers; however, their role in ovarian cancer is
unknown15. Therefore, much about lncRNA and ovarian cancer
remains to be investigated.

In this study, we systematically identified lncRNA and their
regulation of ovarian cancer EMT. Leveraging large-scale ovarian
cancer molecular profiles and genomics from multiple indepen-
dent patient cohorts revealed reproducible regulation of EMT by
lncRNA in ovarian cancer. Verification, including evaluation of
gene expression, levels of EMT proteins, and ovarian cancer cell
migration and invasion after knockdown and proteotran-
scriptomic characterization, supported the link between EMT and
lncRNA. This study increases understanding of lncRNA-
mediated regulatory mechanism of ovarian cancer EMT and
increases knowledge of the processes involved in ovarian cancer
metastasis that may be targetable.

Results
Integrated analysis identifies EMT-associated lncRNA. To
determine whether lncRNA contribute to EMT in ovarian cancer,
data from high-grade serous ovarian cancer patient samples were
obtained from The Cancer Genome Atlas (TCGA) and stratified
into 231 epithelial and 89 mesenchymal subtypes as previously
defined5 (patient subtype information in Supplementary Data 1).
For this large cohort of patients, matched DNA methylation, gene
copy number, and expression profiles of mRNA, lncRNA, and
miRNA available in TCGA were utilized (Methods section;
summarized in Fig. 1a, Supplementary Table 1). To predict EMT-
linked lncRNA, we constructed a computational framework
(Fig. 1). First we employed a multivariate linear regression model
considering mRNA and lncRNA expression, copy number, and
methylation profiling data from the matched patient samples of
TCGA cohort and determined differentially expressed genes
whose expression was significantly correlated with lncRNA
expression (Benjamini–Hochberg (BH)16 adjusted regression P<
10−6; Fig. 1b, c). The regression model took into account the
biases in estimating gene expression changes due to the corre-
sponding copy number and DNA methylation changes (Methods
section). In the spectrum of 386 protein coding genes that were
significantly differentially expressed (twofold change; edgeR
determined BH adjusted P< 10−3) in the mesenchymal subtype

compared with the epithelial subtype, and 2959 non-differentially
expressed genes (BH adjusted P> 0.25, as defined in ref. 17) as
background data, we inferred 25 lncRNA that had significantly
enriched association (BH adjusted hypergeometric test P< 10−3)
with the differentially expressed genes (Fig. 1d). Of note, 44
differentially expressed genes known for inducing mesenchymal
features including, EMT inducing transcription factors (TWIST1,
SNAI2, ZEB1, and ZEB2), matrix metalloproteinases, BMP family
genes, and collagen family genes (Supplementary Table 2), were
identified indicating the regression model was built on mean-
ingful data in the context of EMT18–22.

We also identified the lncRNA that were differentially
expressed in epithelial and mesenchymal lineage commitment
and that are evolutionary conserved (Fig. 1e). We determined
these 25 lncRNA had remarkably more significant differential
expression (BH adjusted two-tailed t-test) in the mesenchymal
subtype compared with the epithelial subtype than the remaining
lncRNA (Supplementary Fig. 1a). Notably, seven lncRNA had at
least twofold change in differential expression (DNM3OS, MIAT,
MEG3, DIO3OS, HAR1A, UCA1, and HCG14; Supplementary
Fig. 1b). The distribution of the expression of these seven lncRNA
showed in both epithelial and mesenchymal subtypes that they
were all well above the detection level that was previously
determined for lncRNA expression23 (Supplementary Fig. 2).
Among the seven lncRNA, UCA1 was not present in the 25
lncRNA list and lncRNA HCG14 and HAR1A were poorly
conserved across the primate species. The remaining four
lncRNA (DNM3OS, MIAT, MEG3, and DIO3OS) had signifi-
cantly elevated expression (BH adjusted two-tailed t-test) in the
mesenchymal subtype and they were highly conserved (Phast-
Cons conservation score= 0.94 ~ 0.98) across the primate species
(Fig. 1e, Supplementary Fig. 3a; Methods section). To determine
whether the four lncRNA are present in normal ovarian cells, we
extracted the expression of the four lncRNA in normal human
tissues from the LncRNA2Function database24. All four lncRNA
are expressed in normal ovary with MEG3 having the highest and
MIAT the lowest expression level (Supplementary Fig. 3b).

Differentially expressed genes, which were predicted to be
regulated by one of the four lncRNA (DNM3OS, MEG3, MIAT,
and DIO3OS) had significantly enriched association (BH adjusted
hypergeometric test P< 0.05) with the EMT-linked canonical
pathways, including focal adhesion, ECM-receptor interaction,
and gap junction (Fig. 1f; Methods section). Because genes in the
same pathway are typically co-expressed, we employed first-order
partial correlation statistic to examine if the co-expression of the
EMT-linked pathway genes was potentially induced by the
inferred EMT-linked lncRNA25 (Methods section). By definition,
first-order partial correlation measures gene co-expression with
removing the effect of a controlling variable; here the controlling
variable is one lncRNA26,27. We observed a significant reduction
of gene co-expression after removing the effect of mutually
associated lncRNA (P< 10−10, Wilcoxon rank-sum test; Supple-
mentary Fig. 4), which indicate lncRNA-mediated regulation of

Fig. 1 Identifying critical lncRNA in ovarian cancer EMT. a Ovarian cancer patients (n= 320) with genomic and molecular profiling data that classified into
epithelial (Epi; n= 231) or mesenchymal (Mes; n= 89) subtypes were selected for analysis. b Heatmap of 386 genes that were differentially expressed in
the mesenchymal subtype compared with the epithelial subtype. c Inferring deregulatory programs from ovarian cancer profiling data. Change in mRNA
expression is modeled as linear function of the gene’s DNA methylation, copy number, and lncRNA expression. d, e Systematic prediction of EMT-linked
lncRNA from the lncRNA-gene association information obtained from the linear model. d The lncRNA that had significantly enriched association with the
differentially expressed genes (n= 25, red dots; top 5 lncRNA labeled) were inferred as EMT associated. Remaining lncRNA were represented by gray dots.
The X-axis with four different colors represent major annotation classes of the selected lncRNA (n= 120). The Y-axis denotes which lncRNA had enriched
association with the differentially expressed genes compared with non-differentially expressed genes. e Filtering of high confidence EMT-linked lncRNA (n
= 4; blue dots with labels) based on their aberrant expression (X and Y-axis) in EMT and conservation score (Z-axis). Gray dots represent remaining
lncRNA. f Heatmap shows significantly enriched association of the inferred lncRNA with EMT-linked pathways. For d and f, P-values determined by BH
adjusted hypergeometric test
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EMT-linked pathway genes. Collectively, the data suggest the
inferred lncRNA may have important roles in ovarian cancer
EMT.

Independent ovarian cancer data reproduce lncRNA regula-
tion. Reproducible regulation provides added confidence in the
accuracy of the predictions and may reflect genuine molecular
events17,28; therefore, we examined if the results obtained from
TCGA data were consistent in another high-grade serous ovarian
cancer patient cohort (Gene Expression Omnibus (GEO) acces-
sion ID: GSE9891; Table 1). This data set was stratified into 136
epithelial and 97 mesenchymal subtypes, as defined in Yang et al.5

(Table 1, Supplementary Data 2). TCGA and this independent
data set showed that a similar number of genes had significant
differential expression (>twofold-change with BH adjusted P<
0.05; 386 genes in TCGA and 346 genes in GSE9891 determined
by edgeR and two-tailed t-test, respectively) in the mesenchymal
subtype compared to the epithelial subtype. Additionally,
the expression fold changes of the genes in these two
data sets were strongly correlated (Spearman ρ= 0.7; correlation
P< 2.2 × 10−16) in the spectrum of whole transcriptome data
(Fig. 2a). Reannotation of microarray probe sets showed that
DIO3OS, DNM3OS, MIAT, and MEG3 lncRNA were detected in
the two ovarian cancer subtypes at levels similar to known protein
coding EMT-linked genes (Supplementary Fig. 5). Except for
DIO3OS, the other three lncRNA (DNM3OS, MIAT, and MEG3)
had elevated expression in mesenchymal subtype compared to the
epithelial subtype (Fig. 2b). These three lncRNA were strongly co-
expressed (absolute Spearman ρ> 0.3; BH adjusted correlation P
< 10−4) preferentially with the genes that were differentially
expressed in the two subtypes compared to the non-differentially
expressed genes, but DIO3OS did not (Fig. 2c). Subsequent
pathway analysis revealed that DNM3OS, MIAT, and MEG3-
associated differentially expressed genes were significantly enri-
ched in the EMT-linked pathways (Fig. 2d; BH adjusted hyper-
geometric test P< 0.05). These data are consistent with the results
obtained from TCGA.

To begin to evaluate the results obtained from our bioinfor-
matics approach, we first focused on MEG3, which was reported

to regulate EMT in lung cancer29. We examined genome-wide
mapping of MEG3 binding sites, which were previously
determined30. The data indicate thatMEG3 potentially modulates
the expression of 30 genes that are members of the EMT-linked
pathways of which 22 genes had MEG3 binding sites at their
proximal or distal regulatory regions. This is a ~2.6-fold
enrichment (73.3% genes) compared with the total MEG3 bound
genes in genome-wide scale (28.1%) (Fig. 3a, b; Methods section).
Therefore, this MEG3 binding information verified the reliability
of our prediction results and suggests direct regulation of EMT-
linked genes by MEG3. Taken together, we observed highly
reproducible lncRNA regulation in two independent patient
cohorts, indicating the lncRNA MEG3, DNM3OS, and MIAT
likely have important roles in ovarian cancer cell EMT.

DNM3OS overexpression correlates with worse survival. Given
that overexpression of the three identified lncRNA potentially
induces mesenchymal features, which contribute to metastasis, we
questioned whether their overexpression would correlate with
patient survival. To address this, we evaluated four independent
ovarian cancer data sets (Table 1) and performed a 5-year sur-
vival analysis for each lncRNA separately. Patient samples were
stratified based on the median expression of the specific lncRNA
into high or low. There was no significant correlation of MEG3 or
MIAT overexpression with overall patient survival (Supplemen-
tary Fig. 6). However, three of the four patient cohorts showed
that patients with higher DNM3OS expression had significantly
worse overall survival than those with lower DNM3OS expression
(Fig. 4; P= 0.041, P= 0.033, and P= 0.054, log-rank test for
GSE9891, GSE18520, and GSE26193, respectively). There was a
loss of 10, 17, and 16 months, respectively, in median survival for
those patients with increased levels of DNM3OS in the three data
sets. Evaluation of genes associated with EMT showed that E-
CADHERIN, N-CADHERIN, and SNAIL expression were not
correlated with overall survival, but SLUG and TWIST1 expres-
sion were (Supplementary Fig. 7). We also assessed whether the
expression of DNM3OS, MEG3, and MIAT were linearly anti-
correlated with survival time. DNM3OS, but not MEG3 and
MIAT, had significant negative association (Spearman correlation

Table 1 Demographics and clinical information of ovarian cancer patient cohorts

Category (Number of samples) TCGAa,b,c (320) GSE9891b,c,d (233) GSE18520b,c (53) GSE26193b,c (100) CPTACc (103)

Subtype
Epithelial 231 136 NA NA 71
Mesenchymal 89 97 NA NA 32

Histology
Serous 320 233 53 75 103
Other 0 0 0 25

Tumor grade
I 0 0 0 0 0
II 40 88 All samples are high grade 33 16
III 274 145 All samples are high grade 67 86
IV 1 0 All samples are high grade 0 0
Undetermined 5 0 0 0 1

Tumor stage
I 0 10 0 17 0
II 18 9 0 9 7
III 252 193 All samples are late stage 58 78
IV 47 21 All samples are late stage 16 18
Undetermined 3 0 0 0 0

Age at initial pathologic diagnosis 30 ~ 87 23 ~ 80 NA NA 34 ~ 87

aDiscovery data
bData used for survival analysis
cData used for meta-analysis
dIndependent validation data
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P< 0.05) with survival time, and this was consistent for all the
three data sets (Supplementary Table 3). Therefore, increased
levels of DNM3OS correlates to poor overall survival of ovarian
cancer patients, providing prognostic power of DNM3OS.

Characterization of DNM3OS as a regulator of EMT genes. We
first selected DNM3OS associated 256 protein coding genes that
were differentially expressed in the mesenchymal subtype com-
pared with the epithelial subtype in TCGA cohort (Supplemen-
tary Table 4). We extracted physical relationships among these
genes at their protein level from the curated human protein
interaction database PINA v2.031. Eighty-eight genes (34%) had
at least one interaction with another DNM3OS-associated gene
and in total, 132 interactions were determined (Supplementary
Table 5). The networks had significantly enriched association (BH
adjusted hypergeometric test P< 0.05) with several EMT-linked
Gene Ontology biological processes and canonical signaling
pathways (Supplementary Tables 6, 7). The results suggest the

differential gene expression in the EMT-linked protein interac-
tion networks may be due to changes in DNM3OS expression.
Second, we extracted DNM3OS-associated EMT-linked pathway
genes identified in the TCGA cohort along with three additional
EMT marker genes E-CADHERIN (CDH1), N-CADHERIN
(CDH2), and SNAIL (SNAI1) and predicted their binding affi-
nity with DNM3OS32. We observed that the distribution of
minimum interaction energy between DNM3OS and the EMT-
linked genes is significantly lower (P= 7.43 × 10−06;
Kolmogorov–Smironov test) compared with genome-wide
DNM3OS-RNA interactions (Fig. 5a, Supplementary Fig. 8). To
gain additional insight into DNM3OS regulation of EMT genes
and determine whether DNM3OS has the potential to regulate the
expression of EMT genes, we evaluated where DNM3OS resided
in ovarian cancer cells. Cellular fractionation revealed DNM3OS
is localized to the nucleus and not to the cytoplasm of ovarian
cancer cells (Fig. 5b). Collectively, these results provide further
support for DNM3OS regulating genes that mediate EMT.
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Loss of DNM3OS induces mesenchymal-to-epithelial transi-
tion. To further elucidate the contribution of DNM3OS in EMT
in ovarian cancer and to experimentally validate our bioinfor-
matics data, we evaluated knockdown of DNM3OS in ovarian
cancer cells through multiple approaches. First, we performed
whole transcriptome RNA-sequencing expression profiling after
siRNA-mediated knockdown of DNM3OS in SKOV3 cells com-
pared to non-targeting siRNA control (Fig. 6a). Gene set
enrichment analysis (GSEA)33 based on Kyoto Encyclopedia of
Genes and Genome (KEGG) database34 indicated DNM3OS
knockdown results in deregulation of several EMT-linked path-
ways, such as regulation of actin cytoskeleton, focal adhesion, and
WNT signaling pathways (Fig. 6b and Methods section). GSEA
Hallmark data also showed deregulation of EMT process, Notch
signaling and TGFβ signaling pathways in DNM3OS knockdown
cells compared with the controls. Genes downregulated in
DNM3OS knockdown cells (edgeR; at least twofold change with
BH adjusted P< 0.05) were significantly enriched (BH adjusted
hypergeometric test P< 0.05) with several EMT-linked pathways
including focal adhesion, regulation of cytoskeleton, adherens,
gap and tight junction, ECM-receptor interaction, and calcium
and MAPK signaling pathways (Fig. 6c). These data indicate that
these EMT pathways were preferentially deregulated with
DNM3OS loss.

As a second approach, we performed western blot analysis of
SKOV3 ovarian cancer cells after knockdown of DNM3OS. There
were elevated protein levels of the epithelial marker E-
CADHERIN, and reduced levels of the mesenchymal protein
N-CADHERIN in the DNM3OS knockdown cells compared to
control (Fig. 6d). Additionally, two transcription factors, SNAIL
and SLUG that repress E-CADHERIN expression showed reduced
levels in the DNM3OS knockdown cells (Fig. 6d). Therefore, our
data indicate that loss of DNM3OS results in a mesenchymal-to-
epithelial transition and alterations in these linked pathways.

Because mesenchymal cells typically have a greater capacity to
metastasize35, we next evaluated with transwell assays whether
loss of DNM3OS would impact the ability of ovarian cancer cells
to migrate and/or invade. DNM3OS knockdown in SKOV3
ovarian cancer cells resulted in significantly reduced numbers of

cells migrating (Fig. 6e) and invading (Fig. 6f) as compared to
cells with non-targeting control (two-tailed t-test). Because
changes in proliferation rates can impact cell migration and
invasion, we also assessed proliferation after DNM3OS knock-
down. Rates of proliferation were analogous between the cells
with DNM3OS knockdown and non-targeting control (Supple-
mentary Fig. 9), indicating DNM3OS does not influence ovarian
cancer cell growth. Therefore, DNM3OS regulates ovarian cancer
cell movement, which is a critical contributor to metastasis.

We then performed proteotranscriptomic characterization of
EMT-linked genes by conducting a meta-analysis to infer if the
modulation of their expression related to the changes of
DNM3OS expression. We assessed the siRNA-mediated
DNM3OS knockdown data, three microarray gene expression
profiling data sets available in the GEO database36, RNA-
sequencing data from TCGA, and protein expression profiling
data from the Cancer Proteomic Tumor Analysis Consortium
(CPTAC) (Table 1). For patient data, samples were stratified
based on the highest or lowest quartile expression of DNM3OS.
Gene expression changes were evaluated in patients that had the
lowest quartile expression of DNM3OS compared with the
patients that had the highest quartile expression of DNM3OS.
We determined that genes involved in EMT were consistently
deregulated in multiple data sets. Specifically, there was elevated
expression of the epithelial marker gene E-CADHERIN, and
decreased expression of mesenchymal marker genes N-
CADHERIN, SNAIL, SLUG, VERSICAN, VIMENTIN in the
samples with reduced DNM3OS (Fig. 6g). There were also
reductions in the genes that induce or contribute to mesenchymal
features such as collagen family genes, matrix metalloproteinase
genes, and TGFβ pathway genes. Differential gene expression P-
values, obtained from the multiple independent data sets, were
summarized by computing the Fisher’s combined probability test
by using the R/Bioconductor package Survcomp37. The P-values
represent overall significance of the differential expression of
these important genes inferred from multiple independent data
sets. Collectively, the results indicate that DNM3OS expression
modulates ovarian cancer EMT by regulating the expression of
several EMT-linked genes and their associated pathways.
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Regulation of DNM3OS expression. Among the 320 TCGA
patients, 16 patients (5%) showed copy number amplification of
DNM3OS, indicating that for these patients increased DNM3OS
was presumably due to genomic amplification. However, the 304
patients that did not have DNM3OS amplification suggest that
elevated DNM3OS expression in these patients is more likely to be
the consequence of transcription factor dysregulation. The
TWIST1 transcription factor was previously reported to regulate
the DNM3OS locus. Specifically, in Twist knockout mice, the
DNM3OS locus was downregulated38. Moreover, overexpression
of TWIST1 in neuroblastoma cells resulted in increased DNM3OS
levels, and luciferase reporter assays showed that the TWIST1-
binding domain in the promoter of the DNM3OS locus was
necessary for expression39. TWIST1 is overexpressed in ovarian
cancer and a known ovarian cancer EMT marker40,41. In TCGA
and independent validation (GSE9891) patient cohorts both
TWIST1 (Fig. 7a) and DNM3OS (Figs. 1e, 2b) were significantly
overexpressed (>twofold change with BH adjusted P< 0.05;
TWIST1 in TCGA was determined by edgeR and remaining data
were determined by two-tailed t-test) in the mesenchymal sub-
type compared with the epithelial subtype of ovarian cancer. We
observed that knockdown of TWIST1 resulted in significantly
reduced levels of DNM3OS in SKOV3 ovarian cancer cells
(Fig. 7b; two-tailed t-test P< 0.008). The shRNA that was the
most effective in knocking down TWIST1 resulted in the largest
decrease in DMN3OS. Analysis of TCGA and an independent
microarray mRNA expression profiling data set (GSE9891) both
showed a strong positive correlation between DNM3OS and
TWIST1 (0.526 and 0.449, respectively; Spearman’s ρ) (Fig. 7c).
Our results together with previously published data indicate
TWIST1 regulates the expression of DNM3OS in ovarian cancer
cells.

In addition to transcriptionally inducing the expression of
DNM3OS, TWIST1 also induces the miR-199/214 cluster, which
resides within the human DNM3OS gene locus32. Analysis of
miRNA-seq expression profiling data from the same TCGA
patient cohort showed that the miRNA within the miR-199/-214
cluster (miR-214-5p, -214-3p, 199a-5p, and 199a-3p)
were also significantly upregulated (>twofold change; BH
adjusted P< 10−18, determined by edgeR) in the mesenchymal
subtype compared with the epithelial subtype (Fig. 7d). Analysis
of TCGA matched miRNA-seq and mRNA-seq expression data
revealed strong positive correlations for all four mature miRNA
with DNM3OS (0.602 ~ 0.682; Spearman’s ρ) and TWIST1 (0.322
~ 0.457; Spearman’s ρ) (Fig. 7e). Therefore, overall, our results
indicate lncRNA participate in ovarian cancer cell EMT, and
specifically, increased DNM3OS expression by amplification or by
TWIST1 overexpression contributes to EMT in ovarian cancer.

Discussion
Ovarian cancer is a deadly disease, and EMT is believed to be a
significant contributor to its aggressiveness42. EMT is a compli-
cated process that remains incompletely resolved, making it dif-
ficult to target therapeutically. Therefore, it is important to
identify critical molecules that regulate EMT. In this study, we
leveraged large-scale multidimensional TCGA genomic and
protein expression data as well as multiple independent molecular
profiling data for high-grade serous ovarian cancer to infer active
lncRNA and their regulation potential in ovarian cancer EMT.
Our comprehensive study identified three novel lncRNA
(DNM3OS, MEG3, and MIAT) associated with ovarian cancer
EMT. Genes predicted to be regulated by these lncRNA had
significantly enriched association with the EMT-linked pathways.
Several of these genes are known epithelial or mesenchymal
markers whose reduced or elevated mRNA expression were
strongly associated with expression changes of the inferred
lncRNA in both TCGA and independent validation data. Addi-
tionally, genome-wide mapping of MEG3 binding sites revealed
that 73% of EMT-linked pathway genes that were deregulated in
EMT in TCGA cohort are bound by MEG3, suggesting MEG3 is
likely involved in EMT in ovarian cancer. Previously, it was
reported that MEG3 regulated EMT in lung cancer29. MIAT had
not been previously linked to EMT, but was shown to be upre-
gulated in chronic lymphocytic leukemia and neuroendocrine
prostate cancer43,44. Our experimental data showed alterations in
DNM3OS expression were linked to EMT in ovarian cancer
through changes in cell migration and invasion and EMT-linked
RNA and protein levels, and ovarian cancer patient survival.
Therefore, these specific lncRNA regulate EMT in ovarian cancer
and likely contribute to metastasis and the high mortality of this
disease.

One main issue in identifying EMT-linked lncRNA in large-
scale data is to minimize false-positives. To achieve this goal, we
started from the analysis of only ‘known lncRNA’ that are most
reliable and well annotated in leading databases45. Second, we
applied stringent thresholds to infer key lncRNA and their reg-
ulations. Finally, we required the lncRNA to be conserved across
the primate species, which is an important filtering step since
EMT is an evolutionary conserved process. More importantly,
with the use of completely independent high-quality validation
data, we highlighted lncRNA-mediated reproducible regulations
in EMT. Reproducible results are expected to more likely reflect
the true biological regulations in cellular system17,28. Due to the
rapid growth of high-throughput genomic data, our integrated
computational framework can be applied to other complex dis-
eases for the purpose of deciphering their regulatory systems and
identifying critical biomolecules.
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DNM3OS was the top ranked deregulated lncRNA in ovarian
cancer EMT, as well as the top ranked lncRNA among the
lncRNA that had enriched association with the deregulated genes.
DNM3OS has been reported to be a transcriptional target of
TWIST1, which regulates ovarian cancer EMT40,41, and was
overexpressed in the mesenchymal subtype of ovarian cancer.
Expression data also indicate a significant positive correlation
between DNM3OS and TWIST1 expression in ovarian cancer. We
also showed that knockdown of TWIST1 in ovarian cancer cells
led to reduced DNM3OS. Additionally, the miR-199/-214 cluster
encoded within the human DNM3OS gene locus41 was also
overexpressed in the mesenchymal subtype. Of note, elevated
miR-214 expression promotes lung adenocarcinoma EMT, cell
migration, invasion, and metastasis46. We showed that knock-
down of DNM3OS reduces EMT-linked proteins and inhibited
ovarian cancer cell migration and invasion, suggesting that miR-
214 and DNM3OS may both contribute to EMT. Furthermore,
increased expression of DNM3OS significantly correlated with
reduced overall survival for patients with ovarian cancer. How-
ever, there was no correlation between patient survival andMEG3
or MIAT levels. Therefore, of the three lncRNA associated with
EMT we identified in our analyses, DNM3OS appeared to have a
more significant impact. To determine the functional significance
of altered DNM3OS levels in ovarian cancer cell EMT, we eval-
uated the effects on RNA and protein of knocking down
DNM3OS in ovarian cancer cells. Pathway analysis of the dif-
ferentially expressed genes from RNA-sequencing data revealed
that multiple EMT-linked pathways were affected. Importantly,
these pathways were highly overlapping with the pathways
deregulated in the mesenchymal subtype compared with the
epithelial subtype in both TCGA and an independent patient data
set. Subsequent meta-analysis revealed that several known EMT
markers had consistent expression changes that favorably induce
EMT, in multiple independent data sets with the DNM3OS
expression change. Moreover, Western blot results confirmed
DNM3OS-mediated repression of epithelial markers and elevated
expression of mesenchymal markers. Collectively, reproducible
results both at the gene and pathway levels provide strong evi-
dence for DNM3OS inducing ovarian cancer EMT. Taken toge-
ther, our comprehensive analysis provides essential insights into
ovarian cancer EMT and reveal the critical lncRNA and specifi-
cally, DNM3OS that regulate it. Our results open new avenues for
targeting EMT in ovarian cancer.

Methods
Analysis of TCGA genomic and transcriptomic data. Gene copy number and
DNA methylation profiles, and lncRNA, mRNA, and miRNA expression profiles of
high-grade serous ovarian cancer patient samples were extracted from TCGA.
Normalized lncRNA and mRNA (RNA-seq) expression profiling data in terms of

reads per kilobase per million mapped reads (RPKM), and gene copy number data
are available in Akrami et al.47. Additionally, we extracted and processed TCGA
RNA-seq and miRNA-seq raw read counts to identify differentially expressed genes
and miRNA, respectively. Level 4 TCGA DNA methylation data were extracted
from the UCSC cancer browser48. Data from Illumina Infinium HumanMethyla-
tion27 platform were used since larger set of DNA methylation profiles was
available for this platform compared to Illumina Infinium HumanMethylation450
platform at the time of analysis. Relative DNA methylation levels were measured as
β-values ranging from 0 to 1 that represent the ratio of the intensity of the
methylated bead type to the combined locus intensity. Here the β-values were offset
by −0.5 to shift the whole data set to values between −0.5 and +0.5, as explained in
ref. 48. If multiple methylation probes mapped to a promoter region of a gene, a
representative probe was selected that showed strongest negative correlation of
methylation β-value and mRNA expression of that gene49. Genes commonly
present in DNA methylation, gene copy number, and mRNA expression profiling
data were selected for the analysis.

TCGA ovarian cancer patient samples subtype classification. A consensus
clustering analysis of mRNA expression profiles of TCGA ovarian cancer patients
classified four subtypes: differentiated, immunoreactive, proliferative, and
mesenchymal50. Subsequently, considering miRNA-associated genes, Yang et al.
reclassified the data into epithelial and mesenchymal subtype5. A fraction of the
samples denoted as mesenchymal subtype by Yang et al. was classified as non-
mesenchymal in original TCGA analysis, and these samples were excluded to retain
high-quality data.

Detection of lncRNA, mRNA, and miRNA in TCGA cohort. To detect lncRNA,
we applied two filters as mentioned in ref. 23. First, lncRNA were eliminated if 50th
percentile RPKM value= 0; second, lncRNA were selected if 90th percentile RPKM
value is >0.1. Subsequently, 120 lncRNA with status ‘known lncRNA’ in GEN-
CODE database (v21)45 were selected for downstream analyses. We selected
mRNA or miRNA if at least 75% of the samples had a normalized expression value
≥1.

Differentially expressed mRNA, lncRNA, and miRNA in TCGA. Both RNA-seq
and miRNA-seq expression profiles of 231 epithelial and 89 mesenchymal patients
were analyzed for identifying differentially expressed mRNAs and miRNA,
respectively. We employed the R/Bioconductor package edgeR51, which was
designed to analyze digital gene expression data. Read counts were imported into
edgeR for differential expression analysis. The data were normalized based on
negative binomial distribution. Differential expression of mRNA or miRNA
between mesenchymal and epithelial subtypes was assessed by estimating an exact
test P-value, which is similar to the Fisher’s exact test. The results were further
adjusted using the Benjamini–Hochberg (BH) multiple testing correction
method16. We quantified differential expression of lncRNA using t-test. Similar to
mRNA or miRNA, P-values were adjusted using the BH method.

Inferring lncRNA-associated mRNA in TCGA cohort. The lncRNA-mRNA
association strength was estimated by the corresponding coefficient score and P-
values in a multivariate linear regression model. The model estimated mRNA
expression changes due to copy number, DNA methylation, and lncRNA expres-
sion changes. Let Yi,t and xlncRNAk;t denote the expression of gene i and lncRNA k,
respectively in sample t,

Yi;t ¼ β0 þ βDMi xDMi;t þ βCNi xCNi;t þ βlncRNAi;k xlncRNAk;t ;

where β0 is the bias. βDMi and βCNi are the offsets accounting for the gene’s
expression changes at RNA level due to DNA methylation and gene copy number
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changes, respectively. The coefficient of interest βlncRNAi;k indicates the association
strength between lncRNA k and gene i. Regression P-values were adjusted using
multiple test correction method (FDR) and significantly associated lncRNA and
mRNA pairs were selected after applying the strict criteria of regression coefficient
cutoff ±0.3 and BH adjusted P< 10−6.

Inferring the impact of lncRNA in gene co-expression. Let us assume that, at the
transcript level, a co-expressed gene pair has two genes, gx and gy. Let us also
assume that one lncRNA is mutually co-expressed with gx and gy. The Spearman’s
ρ is denoted by rgxgy. The first-order partial correlation between gx and gy

conditioning on lncRNA is:

rgxgy:lncRNA ¼ rgxgy � rgx lncRNArgy lncRNA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2gx lncRNAÞð1� r2gy lncRNAÞ
q :

Genome-wideMEG3 binding sites inferred by ChOP-Seq. We obtained genome-
wide mapping of MEG3 binding sites determined by a modified chromatin oligo
affinity precipitation (ChOP) method from the author30. As explained in the ori-
ginal study, we identified genes having MEG3 bound genomic regions using the
tool GREAT52.
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Detection of conserved lncRNA. A sliding window of 200 nucleotides was chosen
along the lncRNA transcript and conservation levels were measured using the
average phastCons score across the primate species. The maximally conserved 200
nucleotides sliding window was selected as the representative conservation score53.

Pathway enrichment analysis. Differentially expressed genes significantly co-
expressed with a specific lncRNA were selected to conduct pathway enrichment
analysis using the canonical KEGG pathway database34, which is embedded into
the software WebGestalt54. Pathways showing significantly enriched (BH adjusted
hypergeometric test P< 0.05) number of differentially expressed genes were
recognized as the lncRNA associated pathways.

Analysis of microarray mRNA and lncRNA expression data. Three independent
microarray gene expression profiling data (accession numbers GSE9891,
GSE18520, and GSE26193) for ovarian cancer patients were downloaded from the
GEO database36. The data were generated on the Affymetrix Human Genome
U133 Plus 2.0 platform following standard Affymetrix protocol. The data were
normalized using the robust multi-array average (RMA) algorithm55 in the Affy
package for R56. We mapped the probe set IDs to the NetAffx annotation file to
extract lncRNA expression. Probes were averaged to calculate a single-expression
intensity measure per gene/lncRNA per array. Differential expression was mea-
sured using unpaired t-tests. lncRNA and mRNA association was established by
Spearman rank correlation.

siRNA, shRNA, and western blotting. Human ovarian cancer SKOV3 cell lines
(mycoplasma free, authenticated) from Dr. Dineo Khabele were cultured as pre-
viously described57 in RPMI1640 media, 10% fetal bovine serum, penicillin, and
streptomycin. SKOV3 cells were transfected with 50 nM of non-targeting control
or DNM3OS siRNA Smartpool (Dharmacon) containing 4 siRNA using Lipo-
fectamine 2000 (Thermo Fisher Scientific). Lysate from SKOV3 cells grown in ≤2%
fetal bovine serum was prepared as previously reported59 with RIPA-buffer con-
taining protease inhibitors. For TWIST1 knockdown, SKOV3 cells were infected
with TWIST1-specific shRNA encoded lentivirus or non-targeting control59

(obtained from Dr. Andrew Aplin, Thomas Jefferson University); 3 days after

puromycin selection, cells were lysed as indicated above. Proteins were subjected to
SDS-PAGE, transferred to nitrocellulose, and Western blotted with the following
antibodies: E-CADHERIN, N-CADHERIN, SNAIL, and SLUG (1:1000; Cell Sig-
naling), TWIST1 (1:500; Santa Cruz), and β-ACTIN (1:2000; Sigma). Uncropped
scans of the blots are in Supplementary Fig. 10.

Cell migration and invasion analysis. SKOV3 ovarian cancer cells were trans-
fected with DNM3OS siRNA or non-targeting control (described above), re-
suspended in serum free RPMI1640. For migration assays, cells were placed into
upper chamber inserts (70,000 cells per well, 8.0 μm pores, BioCoat insert). For
invasion assays, cells were seeded in matrigel invasion chambers (150,000 cells per
well, 8.0 μm pores, Corning BioCoat Matrigel invasion chamber). After 18 h
(migration) or 24 h (invasion) incubation at 37 °C, migrated or invaded cells,
respectively, were fixed and stained with Siemens Diff-Quik stain kit (Siemens
Healthcare Diagnostic). Using a fixed grid, migrated and invaded cells were
counted in 4 and 8 independent fields, respectively, using an Olympus CKX53
inverted microscope (×10), and images were taken by Cytation 5 cell imaging
reader (×4 magnification).

qRT-PCR and RNA sequencing. Total RNA was isolated with Trizol (Sigma) from
SKOV3 cells transfected with DNM3OS siRNA or non-targeting control and cDNA
generated as we previously reported60 with Superscript III (Invitrogen) as per
manufacturer’s instructions. qRT-PCR (triplicates) performed for DNM3OS and β-
ACTIN as previously described60 with RT2 SYBR Green qPCR Mastermixes
(Qiagen). DNM3OS forward: 5′-GGTCCTAAATTCATTGCCAGTTC-3′ and
reverse: 5′-ACTCAAGGGCTGTGATTTCC-3′ primers. RNA sequencing profiles
(48 h; triplicates) were generated using the Illumina TrueSeq platform. Maximum
likelihood estimates of transcript read count for each sample were computed with
Kallisto v0.43.061. Human transcriptome fasta file was downloaded from Kallisto
(Ensembl version GRCh38) and used to create a Kallisto index. On paired fastq
files, for each sample, the Kallisto quantification algorithm was run to estimate
transcript abundance. Using tximport the transcript level abundances were sum-
marized into gene level abundances62. The read counts obtained from tximport
were imported into edgeR for differential expression analysis51. In edgeR, data were
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Fig. 7 TWIST1 regulates DNM3OS expression in ovarian cancer cells. a Expression of TWIST1 in mesenchymal (Mes; n= 89 for TCGA and n= 97 for GSE9891)
subtype compared with the epithelial (Epi; n= 231 for TCGA and n= 136 for GSE9891) subtype in two independent patient cohorts. BH adjusted *P< 10−19;
determined by edgeR for TCGA and two-tailed t-test for GSE9891; mean± SEM. b SKOV3 ovarian cancer cells expressing one of three TWIST1 shRNA or
control non-targeting shRNA were Western blotted and DNM3OS levels were evaluated by qRT-PCR (data presented are one of two independent
experiments performed); error bars are± SEM *P< 0.008; two tailed t-test. c Spearman’s correlation coefficient (y-axis) between TWIST1 and DNM3OS
expression in two data sets (x-axis); *P= 4.16 × 10−13, **P< 2.2 × 10−16. d Volcano plot of miRNA in TCGA mesenchymal subtype compared with epithelial
subtype that are at least twofold upregulated (red dots) or downregulated (blue dots). Gray dots represent remaining miRNA. miRNA in the miR-199/-214
cluster are labeled. X-axis is miRNA expression fold-change, and Y-axis is differential expression P-values determined by edgeR. e Expression correlation
between DNM3OS and miRNA or TWIST1 and miRNA in TCGA cohort. X-axis represents DNM3OS or TWIST1 and indicated miRNA pair. Y-axis represents
Spearman’s rank correlation coefficient (Spearman’s ρ) for each pair. *P< 3.6 × 10−09; **P= 1.41 × 10−15; ***P< 2.2 × 10−16
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normalized based on negative binomial distribution. The differential expression of
genes between DNM3OS knockdown and non-targeting control samples was
assessed by estimating an exact test P-value.

lncRNA cellular localization evaluation. The nuclear and cytoplasmic RNA from
SKOV3 cells were separated as previously reported63, except lysis buffer was
10 mM Tris (pH 8.0), 140 mM NaCl, 1.5 mM MgCl2, 0.5% Igepal, 3 μl/ml RNa-
seout. cDNA was synthesized and RT-PCR performed as described above. Primers
included the DNM3OS primers described above, 7SL primers previously repor-
ted64, and 45S rRNA forward: 5′-GTCAGGCGTTCTCGTCTC-3′ and reverse 5′-
CACCACATCGATCACGAAGA-3′ primers.

GSEA. We conducted GSEA33 using the KEGG suite34 and the Hallmark gene set
embedded in GSEA to identify signaling pathways that were differentially activated
in DNM3OS knockdown cells compared to non-targeting siRNA control cells.
GSEA was run on pre-ranked list of the genes obtained from the edgeR analyses.
Ranking was based on fold-change induction in DNM3OS knockdown cells
compared to control cells. GSEA results were assessed as being statistically sig-
nificant by permutation of 1000 samples.

Data availability. The RNA-sequencing data have been deposited in the
Gene Expression Omnibus (GEO) and NCBI Sequence Read Archive (SRA)
databases under the accession code GSE104295 and SRP118934, respectively. All
other publicly available data referenced during the study can be retrieved
from GEO (https://www.ncbi.nlm.nih.gov/gds/), TCGA (https://cancergenome.nih.
gov/), or respective authors’ websites. The other data supporting the findings of this
study are available within the article and its Supplementary Information and
Supplementary Data files.
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