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ARTICLE

Three-dimensional context rather than NLS amino
acid sequence determines importin α subtype
specificity for RCC1
Rajeshwer S. Sankhala1, Ravi K. Lokareddy1, Salma Begum1, Ruth A. Pumroy1,2, Richard E. Gillilan3

& Gino Cingolani1,4

Active nuclear import of Ran exchange factor RCC1 is mediated by importin α3. This pathway
is essential to generate a gradient of RanGTP on chromatin that directs nucleocytoplasmic

transport, mitotic spindle assembly and nuclear envelope formation. Here we identify the

mechanisms of importin α3 selectivity for RCC1. We find this isoform binds RCC1 with one

order of magnitude higher affinity than the generic importin α1, although the two isoforms

share an identical NLS-binding groove. Importin α3 uses its greater conformational flexibility

to wedge the RCC1 β-propeller flanking the NLS against its lateral surface, preventing steric

clashes with its Armadillo-core. Removing the β-propeller, or inserting a linker between NLS

and β-propeller, disrupts specificity for importin α3, demonstrating the structural context

rather than NLS sequence determines selectivity for isoform 3. We propose importin α3
evolved to recognize topologically complex NLSs that lie next to bulky domains or are masked

by quaternary structures.
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Eukaryotic cells maintain an intracellular gradient of the
small GTPase Ran that is predominantly bound to GTP in
the nucleus and GDP in the cytoplasm1–3. This gradient is

generated by the asymmetric distribution of Ran effectors: the
guanine exchange factor RCC1 (regulator of chromatin con-
densation 1) is sequestered in the nucleus bound to chromatin,
while the GTPase-activating protein specific for Ran, RanGAP,
and various accessory Ran-binding proteins (RanBPs) reside in
the cytoplasm. The Ran gradient promotes active, signal-
mediated trafficking of macromolecules through the permeable
barrier formed by nuclear pore complexes (NPCs) and is also
essential for mitotic spindle assembly and nuclear envelope for-
mation, all defining features of eukaryotic cells4.

Cytoplasmic cargos bearing a nuclear localization signal (NLS
cargos) are escorted through the NPC by soluble transport factors
of the importin β-superfamily (or β-karyopherins), which share a
conserved N-terminal Ran-binding domain5. β-karyopherins like
the prototypical importin β6 move through the NPC by inter-
acting with phenylalanine-glycine (FG) repeats exposed by many
nucleoporins in a RanGTP-dependent manner7. Importin β can
recruit NLS cargos directly8 or via the adaptor importin α9, as in
the ‘classical’ import pathway. The association between importin
α and β is mediated by the N-terminal importin β-binding (IBB)
domain10 of importin α, which also binds NLS cargos via a
C-terminal helical core composed of 10 Armadillo repeats (the
‘Arm-core’)11. Two NLS-binding pockets known as ‘major’ and
‘minor’ have been identified on the concave surface of importin α,
spanning Arm repeats 2–4 and 6–8, respectively11–14. Classical
monopartite NLSs like the SV40 T-antigen NLS generally bind at
the major NLS binding pocket and, to a lesser extent, at the minor
site, while bipartite NLSs like the nucleoplasmin NLS or mem-
brane protein NLSs15, 16 span both sites. In addition, several
monopartite NLSs have been shown to preferentially17 or exclu-
sively18–20 bind the minor NLS pocket of importin α. Interest-
ingly, the human genome encodes seven isoforms of importin α,

divided into three subtypes (or subfamilies), of which importin α1
functions as the generic adaptor for NLS cargos21–24. A growing
number of specialized cellular NLS cargos like RCC124–27,
STAT128, NF-kB29, 30 as well as viral factors influenza PB231 and
Ebola VP2432 enter the nucleus in complex with specific importin
α isoforms. These isoforms play an important role in cell differ-
entiation33, disease states, especially cancer21 and viral
infections21, 34.

RCC1 is the founding member of the RCC1 superfamily that
includes diverse cell cycle regulators containing one or more
RCC1-like domains35. RCC1 consists of a C-terminal seven-bla-
ded β-propeller36 and N-terminal regulatory tail, which harbors a
bipartite NLS25, 26, 37 and a chromatin binding domain38–40.
RCC1 can be imported into the nucleus in a classical
Ran-dependent pathway that preferentially uses the isoform 3 of
importin α24, 25 and in a Ran-independent pathway that is not
dependent on passive diffusion26. The RCC1 tail is post-
translationally modified throughout the cell cycle. Methylation
of the N-terminal Ser/Pro2 on its α-amino group by the
α-N-methyltransferase NRMT41 is important for high affinity
binding to chromatin39. Mitotic phosphorylation of Ser11 by
Cdc2 kinase reduces interaction with importin α3/β42, 43,
elevating the concentration of RanGTP on mitotic
chromosomes and promoting binding of the RCC1:Ran complex
to mitotic chromosomes, which is required for spindle
assembly and chromosome segregation44. RCC1 interaction with
chromatin is dynamic: RCC1 continuously binds to and
dissociates from chromosomes to promote GTP exchange
and this activity is dependent on its N-terminal tail43. Deletion
of the RCC1 basic tail prevents RCC1 interaction with
chromatin from being stabilized by Ran45. Likewise, Ran
association with RCC1 regulates binding to both histones and
DNA possibly by inducing an allosteric change in the tail that
facilitates association of the binary Ran:RCC1 complex with
chromatin45, 46.
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Fig. 1 Calorimetric analysis of the interaction of human RCC1 with importin α isoforms. Titration of 300 μM RCC1 (in syringe) in a cell containing 100 μM a
ΔIBB-importin α3 or b ΔIBB-importin α1. Top panel: raw injection heats. Bottom panel: integrated, buffer-subtracted binding enthalpy plotted as a function of
the RCC1:importin αmolar ratio. Bottom panel insert: overall variation of enthalpy (ΔH), entropy (TΔS), and Gibbs (ΔG) energy associated with each binding
titration
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In this paper, we have determined the mechanisms by which
RCC1 is selectively recognized and translocated into the cell
nucleus by importin α3.

Results
Structure of the importin α3:RCC1 complex. RCC1 is pre-
ferentially imported by importin α3, though in vitro it can also
bind the universal importin α125, 26. Using nano isothermal
titration calorimetry (ITC), we established that isoform 3 has one
order of magnitude higher binding affinity for RCC1 than
importin α1 (KD= 0.62± 0.1 μM vs. 5.4± 0.3 μM) (Fig. 1a, b). To
shed light on the structural basis for importin α3 selectivity, we
crystallized the predominant isoform of human RCC1 (or
RCC1α47) in complex with importin α3 lacking the IBB-domain.
Large crystals containing eight copies of the α3:RCC1 complex in
the asymmetric unit were obtained in the triclinic space
group. The structure was solved by maximum likelihood
molecular replacement using individual atomic models of
ΔN-RCC136 and ΔIBB-importin α331. Flexible torsion-angle
non-crystallographic symmetry restrains48 among the eight
copies in the asymmetric unit were used throughout refinement.
This yielded an accurate atomic model (Rwork/Rfree ~27.8/29.6)
(Table 1), despite the modest resolution of crystallographic data
(~3.45 Å). The importin α3:RCC1 complex (Fig. 2a) is shaped like
a number ‘nine’. Clear electron density was observed for the
RCC1 N-terminal tail, which is missing in our phasing model,
and contains a bipartite NLS between residues 4 and 26 (Fig. 2b).
The tail occupies the entire NLS-binding groove of importin α3,
spanning ~50 Å between Arms 2 and 9 (Fig. 2a). It continues into
a seven-bladed β-propeller (residues 30–421) that packs against

the lateral surface of importin α3, making minimal contacts with
Arms 1–4. The β-propeller has a disk-like structure with two
faces: one face that binds Ran49 is solvent exposed, while the
opposite face contacts the C-terminal portion of the tail (residues
21–29), including the major NLS box, which is sandwiched
between the importin α3 helical groove and the β-propeller
(Fig. 2a). Significant structural differences (RMSD 2.1 Å) exist in
the eight importin α3:RCC1 complexes in the triclinic cell
(Supplementary Fig. 1a), although there is no obvious
correlation between crystal contacts and the RMSD of RCC1
protomers crystallized in the P1 cell. Normal mode analysis50

identifies a hinge-axis between the β-propeller and the N-terminal
tail running along residues 23–27, which results in a hinge-
bending movement of the β-propeller toward importin α3 of up
to 8 Å.

To determine whether the eight importin α3:RCC1 complexes
trapped in the crystal structure reflect a physiologically significant
stoichiometry, we investigated the oligomeric state of the purified
complex in solution using Small angle X-ray analysis (SAXS)
(Fig. 2c). At physiological salt and in a range of concentrations
between 3.5 and 7.5 mgml−1 (Supplementary Fig. 2a), the
importin α3:RCC1 complex has a radius of gyration (RG) of
34.6± 0.9 Å (maximum diameter, Dmax ~115.3 Å) and a Porod
volume of ~177,403 Å3, consistent with a heterodimer in
1:1 stoichiometry (expected MW ~91.2 kDa) (Supplementary
Table 1). The Kratky plot of SAXS data has a bell-shaped profile
with a single pronounced maximum suggestive of a well-folded
biopolymer51 (Supplementary Fig. 2a). An ab initio shape
reconstruction from merged scattering data revealed an asym-
metric ellipsoidal shape, similar to a number ‘nine’ (Fig. 2d). We
interpreted this envelope by docking an ensemble of the eight
slightly different importin α3:RCC1 complexes observed in the
triclinic unit cell, yielding a very good agreement between
observed and calculated SAXS data (χ2= 1.6) (Fig. 2c). The hinge
region between the β-propeller and N-terminal tail is larger in the
SAXS envelope than in the crystallographic model, reflecting a
flexible connection between these domains (Supplementary
Fig. 1a). The SAXS envelope is also slightly more elongated than
the crystallographic model, consistent with the notion that
importin α3 stretches in solution31.

Importin α3:RCC1 binding interface. Two of the eight com-
plexes in the asymmetric unit have better electron density and
were used as references for structural analysis. In these two
complexes, RCC1 buries 1880.8 Å2 of the exposed surface of
importin α3: 23 residues of RCC1 interact with 39 residues of
importin α3, which account for a predicted binding energy of
−12.6 kcal mol−1. RCC1 makes contacts with three regions of
importin α3, schematically illustrated in Fig. 3a. The first region
includes the RCC1 minor NLS box, which is remarkably extended
in this import cargo and includes three basic residues (8-KRR-10)
bound at positions P1′–P3′, plus two additional basic residues (4-
KR-5) at P−3′ and P−2′ (Supplementary Table 2). The critical S11,
which is phosphorylated during mitosis to reduce association of
RCC1 with importin α342, 43, occupies position P4′. The second
region of contacts includes RCC1 residues (20-SKKVK-24) that
occupy the major NLS-binding pocket at positions P1–P45, with
K21 at the crucial P2 site. This NLS is somewhat different than
classical NLSs52: it contains a basic residue (K19) at position P0
and two non-basic residues at P1 and P4 (S20 and V23) with K24
at P5 making extensive contacts with importin α3 (Fig. 3a). The
portion of the RCC1 tail where the major NLS lies is sandwiched
between importin α3 helical core and the β-propeller that possibly
destabilizes the interaction with α3. Accordingly, the refined B-
factor of RCC1 atoms is lower at the minor NLS box than at the

Table 1 Crystallographic data collection and refinement
statistics

ΔIBB-importin α3:
RCC1

IBB-Kap60: yRCC1

Data collection
Space group P1 P212121
Cell dimensions
a, b, c (Å) 127.4, 162.5, 161.6 91.1, 99.2, 125.0
α, β, γ (°) 75.7, 85.6, 72.2 90.0, 90.0, 90.0
Wavelength (Å) 0.97 1.18
Resolution (Å) 50–3.45 (3.53–3.45) 50–2.63

(2.72–2.63)
No. of reflections
(tot/unique)

935,054/143,482 160,524/33,934

Rsym 13.1 (65.5) 4.9 (64.4)
Rpim 11.2 (65.9) 2.2 (42.8)
I/σI 12.2 (1.8) 49.9 (3.4)
Completeness (%) 90.4 (71.5) 96.0 (85.8)
Redundancy 2.0 (1.6) 4.7 (2.7)
Refinement
PDB ID 5TBK 5T94
Resolution (Å) 20–3.45 15–2.63
No. of reflections 118,199 31,489
Rwork/Rfree* 27.8/29.6 21.7/25.9
No. of complexes in AU 8 1
No. of protein atoms 50,677 6808
Ramachandran
Favored/allowed/outliers 96.1/3.9/0.0 95.3/4.6/0.1
MolProbity Clashscore 8.8 11.6
R.m.s deviations
Bond lengths (Å) 0.005 0.002
Bond angles (°) 0.684 0.496

Values in parentheses are for highest-resolution shells
*Rfree was calculated using ~5% randomly selected reflections

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01057-7 ARTICLE

NATURE COMMUNICATIONS |8:  979 |DOI: 10.1038/s41467-017-01057-7 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


C

C

CN

N

C

90°

ba

β-propeller

P2

P2′

C

N

C

N

C

N

d

N

c

I (q
) (

a.
u.

) 

Data

Model

q (Å–1)

P
(r

)

r (Å)

0.5

0.05

0.005

0.0005

5E–05
0 0.1 0.2 0.3

0.0007

0.0005

0.0003

0.0001

–0.0001 0 20 40 60 80 100 120

Fig. 2 Structure of human importin α3 bound to RCC1. a A representative structure of the human importin α3:RCC1 complex with RCC1 (ribbon diagram)
and importin α3 (solvent surface) colored in green and gray, respectively. RCC1 hinge residues (23–27) are colored in red. b Eight-fold non-crystallographic
symmetry averaged 2Fo − Fc electron density map of the RCC1 NLS displayed at 1σ above background. The density (in blue) is overlaid to residues 4–24 of
the final refined model (in green). c SAXS analysis of the importin α3:RCC1 complex. Experimental scattering data (shown in black) obtained by merging
scattering data at 3.5, 5.0, and 7.5 mgml−1 (top panel) and corresponding distance distribution function P(r) (bottom panel). Scattering profile and P(r)
function calculated from the average of the eight importin α3:RCC1 complexes observed crystallographically are shown in red. d. Ab initio SAXS
reconstruction of the importin α3:RCC1 complex calculated from merged scattering intensities at 3.5, 5.0, and 7.5 mgml−1. Overlaid to the SAXS envelope
is a composite of all complexes in the triclinic unit cell

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01057-7

4 NATURE COMMUNICATIONS |8:  979 |DOI: 10.1038/s41467-017-01057-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


major site (85 vs. 105 Å2), suggesting the minor NLS-binding site
is the main site of interaction with importin α3. Finally, two
residues in the β-propeller, E119 and H257 contact R218 and
D102, respectively, in importin α3 (Fig. 3a) although the long
bonding distance (3.5–5 Å) suggests a minor energetic contribu-
tion to the binding interface.

We used a quantitative pull-down assay to determine how
mutations in the RCC1 NLS disrupt binding to importin α3
in vitro. Purified GST-tagged importin α3 (lacking the IBB) and
RCC1 were incubated at physiological concentrations (~1 and
0.75 μM, respectively53) and after reaching equilibrium, the
complex was immobilized on glutathione beads, washed to
remove unbound RCC1 and eluted with reduced glutathione.

Identical elution volumes were analyzed by SDS-PAGE and
quantified in triplicates. As expected, ΔIBB-importin α3 bound
RCC1 in a 1:1 molar ratio (or 100% of importin α bound to
cargo) (Fig. 3b, c). Six RCC1 mutants were generated and tested
for binding to importin α3: three mutants that disrupt the P2 and/
or P2’ sites (RCC1-K21A; RCC1-R9A; RCC1-R9A/K21A); two
deletion mutants that lack either the post-translationally modified
N-terminal moiety or the entire minor NLS box (Δ5-RCC1 and
Δ10-RCC1), and a phospho-mimetic RCC1-S11E, which mimics
a phosphorylation at S1142, 43. We found that point mutations at
either P2 or P2′ reduced RCC1-binding to importin α3 by 25%
and combining these two mutations had a synergistic effect54

reducing binding by ~85% (Fig. 3b, c). A phospho-mimetic
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mutation at S11 or deletion of the first five residues (Δ5-RCC1)
reduced association with importin α3 by ~10%. More pro-
nounced (~60%) was the loss of importin α3 binding to Δ10-
RCC1, which lacks R9 at position P2′ as well as other important
residues at the minor NLS box (Fig. 3b, c). Finally, deletion of the
entire NLS completely disrupted RCC1 binding to importin α3
and Ran-dependent nuclear import of GFP-RCC126.

Importin α3 conformational flexibility promotes RCC1 bind-
ing. A structural superimposition of the universal importin α1
with importin α3 bound to RCC1 and PB231 reveals both
α3-specific cargos have NLSs that run antiparallel to the
Arm-core occupying similar positions in the NLS-binding groove
(Fig. 4a). However, the RCC1 β-propeller projects toward the N
terminus of importin α3 rather than the C-terminus, as the PB2
globular domain does. Importin α1 is essentially identical to
importin α3 bound to PB2 (RMSD 1.01 Å) but differs from
importin α3 in complex with RCC1 (RMSD 1.36 Å), which
undergoes two local conformational changes at its N terminus
(Fig. 4b): first, Arms 1–2 rotate ~20° away from the RCC1 β-
propeller adopting a more open conformation than in α1; second,
the helix C of Arm 1 unfolds in the importin α3:RCC1 complex,
while it rests folded as a canonical α-helix in importin α1 and in
the importin α3:PB2 complex. Modeling RCC1 bound to

importin α1 reveals severe clashes between Arms 1–2 and the
β-propeller (Supplementary Fig. 1b), explaining the low micro-
molar binding affinity measured by ITC (Fig. 1b). On the con-
trary, the extended importin α3 solenoid, which has a hinge-
bending region near Arms 3–431, allows the first three repeats to
open up and accommodate the β-propeller while making close
contacts with the bipartite NLS.

To validate this idea experimentally, we probed the association
of importin α3 and α1 (lacking the autoinhibitory IBB) with
either the full length GST-RCC1 or just the bipartite RCC1 NLS
(GST-RCC1-NLS). A pull-down assay carried out using physio-
logical concentrations of importin αs (~1 μM) and RCC1 (~0.75
μM)53 confirmed importin α3 binds the full-length
RCC1 significantly better than the isoform α1 (Fig. 4d, e). A
stoichiometric quantity of isoform 3 was pulled-down by RCC1
vs. less than ~12% of importin α1, consistent with a ~10-fold
lower KD measured by ITC (Fig. 1). In contrast, a slightly longer
construct of RCC1 (RCC1-long) that bears a 12 residue linker
(GSAGSAAGSGEF) between residues S26 and H27, right at the
junction between the β-propeller and NLS, efficiently bound both
importin α1 and α3, showing no selectivity for the isoform 3
(Fig. 4d, e). As expected, the interaction of RCC1 with either
isoform was completely disrupted by a dual point mutation at
P2/P2′. Unlike the full-length RCC1, the isolated RCC1 NLS
bound either importin α isoform with high affinity and this
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interaction was reduced, but not completely disrupted, by
mutations at P2/P2′ (Fig. 4d, e). Thus, the enhanced affinity of
importin α3 for RCC1 results from the ability of this isoform to
bind the RCC1 NLS in the context of the full-length import cargo,
which contains a bulky β-propeller domain flanking the NLS.

RCC1 NLS samples multiple conformations in solution. Intri-
gued by the extended conformation observed crystallographically,
we investigated the structure of the full-length RCC1 in solution,
in the absence of importin α3. SAXS analysis in a concentration
range between 2.5 and 5.0 mgml−1 (Fig. 5a, Supplementary
Fig. 2b) revealed a RG= 27.8± 0.7 Å and Dmax ~102.5 Å, similar
to the total length of RCC1 co-crystallized with importin α3.
Likewise, the Porod volume is ~100,732 Å3, which is also con-
sistent with a monomer (expected MW ~49.0 kDa) (Supple-
mentary Table 1). The Kratky plot has a slightly broad bell-
shaped profile, suggestive of a flexible protein51 (Supplementary
Fig. 2b). The P(r) function calculated from SAXS has a distinct
symmetric peak indicative of a globular domain ~50 Å in dia-
meter flanked by a less ordered moiety (Fig. 5a). An ab initio

shape reconstruction from scattering data (at 2.5 mgml−1) sug-
gests RCC1 looks like a “tennis racket” (Fig. 5b). The β-propeller,
~44 Å in diameter, fits remarkably well inside the globular por-
tion of this envelope with the extended (~50 Å) N-terminal tail
occupying the “racket handle”. The elongated shape suggested by
SAXS was also validated by hydrodynamic analysis using analy-
tical ultracentrifugation sedimentation velocity (AUC-SV) (Sup-
plementary Table 1) that, at comparable concentration, yields a
frictional ratio f/f0 ~1.7, indicative of an elongated macro-
molecule. RCC1 N-terminal moiety is susceptible to proteolysis in
solution and likely samples multiple conformations in the absence
of importin α3. A molecular dynamics (MD) simulation using the
crystallographic structure of RCC1 as the initial state revealed the
N-terminal tail is the most dynamic region of RCC1 with root
mean square fluctuation (RMSF) up to 5 Å2 (Supplementary
Fig. 4). Good agreement between observed SAXS data and the
crystallographic model (χ2= 2.6) was obtained using a docked
ensemble of the eight RCC1 structures observed in the triclinic
unit cell (Fig. 5b), aligned globally using the β-propeller as a
template. In this ensemble model, the eight β-propellers occupy
nearly identical positions (RMSD 0.9 Å), while the RCC1 tails are
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displaced up to 10 Å with RMSD >4 Å between residues 1 and 7.
Thus, the NLS of human RCC1 samples different conformations
in solution in the absence of importin α3.

The structure of yeast RCC1 in complex with Kap60. Unlike
humans that express seven isoforms of importin α, Saccharomyces
cerevisiae has only one importin α gene encoding Kap60. This
karyopherin is phylogenetically more similar to human importin
α3/4 than α1 and falls in the α2-subfamily21, 22 (Supplementary
Fig. 5). To determine how Kap60 binds the yeast homolog of
mammalian RCC1 (Prp20p, herein referred to as yRCC1), we co-
expressed the two proteins in bacteria, purified a homogeneous
1:1 complex and obtained large orthorhombic crystals of the
Kap60:yRCC1 complex, which diffracted X-rays to high resolu-
tion. The structure of the Kap60:yRCC1 complex was solved by
molecular replacement and refined to an Rwork/Rfree of 21.7/
25.9%, at 2.63 Å resolution (Table 1, Fig. 6a). Difference maps
revealed strong electron density at the N terminus of the β-pro-
peller, which allowed us to model yRCC1 residues at the major
and minor NLS-binding sites of Kap60 (residues 41–47 and 3–6,
respectively) (Fig. 6b). Unexpectedly, in the yeast complex the β-
propeller is positioned onto the surface of Arms 1–2 of Kap60,
making the complex more elongated and slender than the human
counterpart (~135 vs. ~115 Å) (Fig. 2a, Supplementary Fig. 6a).
To validate the crystallographic structure, we attempted con-
ventional SAXS analysis. However, the strong tendency of the
Kap60:yRCC1 complex to aggregate, even at low concentration,
precluded meaningful SAXS analysis. We then turned to size
exclusion chromatography coupled SAXS (SEC-SAXS)55 that
allows to separate aggregates from monodisperse species during
SAXS analysis. This analysis revealed an RG= 45.9± 0.5 Å and a
Dmax ~137.0 Å (Fig. 6c, Supplementary Table 1), in good agree-
ment with the crystallographic structure (maximum length
~135.0 Å). The Porod mass of the yRCC1:Kap60 complex cal-
culated from SAXS data is ~99,000 kDa, also consistent with a
1:1 stoichiometry (expected MW ~103.0 kDa) (Fig. 6c, Supple-
mentary Table 1), which was independently validated using AUC
sedimentation velocity analysis (Supplementary Fig. 7g, h). Small
differences between the P(r) function calculated from SAXS data
and computed from the crystallographic model persist in the data
(Fig. 6c) and likely reflect an intrinsic tendency of the Kap60:
yRCC1 complex to self-associate in solution forming aggregates.
An ab initio shape reconstruction from SEC-SAXS data reveals an
elongated shape (Fig. 6d), in reasonable agreement with the
crystallographic structure (χ2 ~2.15). The SAXS envelope is
however broader than the crystallographic model, especially in
the region where yRCC1 was docked, possibly due to motion of
the C-terminal helix that could swing by 180° toward the Arm
core (Fig. 6d). Thus, SEC-SAXS analysis supports the crystal-
lographic description of the Kap60:yRCC1 complex (Fig. 6a),
whereby the yRCC1 β-propeller is positioned onto Arms 1–2 as
opposed to leaning against the lateral surface of Arms 1–4, as seen
in the importin α3:RCC1 complex (Fig. 2a).

Kap60:yRCC1 binding interface. Yeast RCC1 buries a large
exposed surface of Kap60, comparable to the human RCC1:
importin α3 complex (1916.2 vs. 1880.8 Å2). This binding inter-
face is stabilized by 27 residues in yRCC1 that interact with 47
residues of Kap60, which in total account for a predicted binding
energy of −12.8 kcal mol−1 (Fig. 7a). The binding interface is
more complex than seen for human RCC1 and can be divided
into four regions. First, at the minor NLS-binding pocket, yRCC1
residues K3 and R4 make close contacts at positions P1′ and P2′ of
Kap60 (Fig. 6b, Supplementary Table 2). Unlike the human
complex (Fig. 2b), residues connecting major and minor NLS

boxes are invisible in the crystal structure, possibly due to the lack
of specific contacts with Kap60. Second, at the major NLS pocket,
seven yRCC1 residues make extensive contacts with Kap60. The
NLS major box of yRCC1 is unusual (17-RAKKMSK-23), lacking
basic residues at both P3 and P4, but with R17 at position P−1 that
makes a strong bidentate contact with D276 (Supplementary
Table 2). The electron density for the major NLS box is very
strong (Fig. 6b), as suggested by the relatively low B-factor of
refined atoms, lower than the average B-factor of the complex
(~60 vs. 85 Å2). Third, a ‘loop-helix’ motif (residues 24–46) lies
immediately C-terminal of the yRCC1 major NLS box and con-
nects it to the first β-strand of the β-propeller (residues 47–51)
(Fig. 7b). While the loop (residues 24–32) makes no contacts with
Kap60, the short α-helix (residues 33–40) packs against helixes B
of Arms 1–2, sandwiched between the yRCC1 β-propeller and the
concave groove of Kap60 (Fig. 7a, c). This interaction is stabilized
by 4 bonds with the notable contribution of two acidic residues in
yRCC1, E34 and D35, that make salt bridges with Kap60 residues
R112, Q113 (Fig. 7a, c) and H106. The α-helix in yRCC1 is not
present in human RCC1, where the linker is 13 residues shorter
than in yeast (Fig. 7b, Supplementary Fig. 6b). Finally, several
residues scattered throughout the yRCC1 β-propeller (e.g., L41,
V43, K166, K397, R333, and Q411) make additional contacts with
Kap60 outside the NLS-binding grove (Fig. 7a).

To probe the importance of each of the four regions described
above, we generated seven RCC1 constructs carrying mutations in
the NLS and subjected them to pull-down analysis with GST-
tagged Kap60 lacking the autoinhibitory IBB, as described for
human RCC1. In this experiment, purified GST-ΔIBB-Kap60 and
yRCC1 were incubated in solution at the same concentrations
used for human factors (e.g., 1 μM ΔIBB-Kap60 and 0.75 μM
yRCC1), followed by pull-down, SDS-PAGE analysis, and
quantification (Fig. 7d, e). Strikingly, we found all point
mutations at P2 and P2′ as well as the double P2/P2′ mutant
completely disrupted yRCC1 association with Kap60, while
mutations in the α-helix (E34/D35) did not affect binding to
Kap60 (Fig. 7d, e). Likewise, deletion of the minor NLS-box alone
(Δ10-yRCC1) or minor plus major NLS boxes (Δ23-yRCC1)
completely obliterated association with Kap60 at the concentra-
tions used in the assay (Fig. 7d, e). Thus, binding of yRCC1 to
Kap60 is critically dependent on the minor NLS-box and requires
a linker between the RCC1 NLS and β-propeller to position the
latter domain onto the Arm-core.

Discussion
This paper establishes the structural basis for nuclear import of
RCC1, a cargo essential to generate a RanGTP gradient on
chromatin4. Crystallographic and SAXS structures of human and
yeast RCC1 in complex with importin α3 and Kap60 reveal the
RCC1 NLS makes conserved contacts spanning the entire concave
surface of importin α, while the β-propeller is recognized in
different ways. It is flexibly wedged against the lateral surface of
Arms 1–4 in humans (“backpack” conformation) (Fig. 8a), while
sits onto Arms 1–2 of Kap60 in the yeast complex (“hat” con-
formation), rotated by ~60° with respect of human complex
(Fig. 8b). This work not only sheds light on the structural evo-
lution of RCC1 recognition by importin α but also provides clues
to rationalize the diversification of importin α isoforms that took
place in higher eukaryotes.

There are three factors that contribute to the increased com-
plexity of the human RCC1 import signal compared to classical
NLS sequences recognized by importin α1. First, RCC1 NLS is
structurally and topologically complex. It lies in a flexible
extended tail that samples multiple conformations in solution
(Fig. 5) and is flanked by a bulky β-propeller domain folding back
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onto the major-NLS box (Figs. 2a and 8a). Second, RCC1 NLS has
multiple binding activities. It is involved in association with
chromatin (both DNA and histones39, 46), importin α (Fig. 3b),
and Ran46 that allosterically regulates the RCC1 tail by binding to
the β-propeller face opposite to importin α3 (Fig. 2a). Third,
RCC1 NLS is post-translationally modified at multiple sites
throughout the cell cycle39, 42, 43, especially in the proximity of the
minor NLS box (e.g., phosphorylation at S11, methylation at
position 2–3) (Fig. 2a, b). Overall, RCC1 has poor structural
complementarity for importin α1, explaining the low micromolar
KD measured in vitro (Fig. 1b), insufficient to sustain nuclear
import at physiological concentration of both factors53.

A wealth of structural studies has shown the rigid31 arch-like
structure of importin α1 efficiently accommodates NLSs that are
stretched in a helical groove by making mainchain and sidechains
contacts with importin α1 sidechains11–14. This recognition is
stereochemically possible and energetically favored for cargos that
have a linear, bead-on-a-string topology such as the CAP80
complex56, whereby the NLS is neighbored by discrete, non-
interacting secondary structure elements (Fig. 8c). In contrast, the
β-propeller of human RCC1 folds back onto the major NLS box,
clashing with Arms 1–2 and preventing high-affinity association
with importin α1 (Fig. 4b, Supplementary Fig 1B). Higher
eukaryotes solved the RCC1 recognition problem by developing
importin α3. This isoform is significantly more flexible than α1
and behaves in solution like a ‘soft-spring’31, stretching and
extending akin to the receptor importin β57, 58. We previously
identified a hinge-bending axis near Arms 3–4 of importin α3
that allows the first three repeats to ‘flap’ dynamically, opening up
in a way other importin α isoforms are unlikely to do. The crystal
structure of the importin α3:RCC1 complex presented in this
paper (Fig. 2a) provides a direct structural validation of importin
α3 built-in flexibility. The open conformation of Arms 1–3
accommodates the β-propeller domain of RCC1, while making
high-affinity contacts with the NLS. This interaction is dynamic,
as demonstrated by the eight, slightly different RCC1 conformers
trapped in the triclinic cell (Supplementary Fig. 1a). Importin α3
plasticity and improved structural complementarity for RCC1
results in one order of magnitude higher binding affinity than
importin α1 (KD= 0.62± 0.1 vs. 5.4± 0.3 μM) (Fig. 1), explaining
the specificity observed in live cells24–27 where the total con-
centration of importin α is ~1 μM53. Importin α3 selectivity for
RCC1 is therefore a direct consequence of a flexible solenoid that
undergoes local conformation changes at the N terminus to avoid
steric clashes with the RCC1 β-propeller (Fig. 4b). Paradoxically,
the amino acid sequence of the RCC1 NLS is not responsible for
importin α3 selectivity, as demonstrated by replacing the β-
propeller with GST or by introducing a 12-residue linker between
the β-propeller and NLS that yield chimeras recognized equally
well by importin α1 and α3 (Fig. 4d, e). Importin α3 selectivity for
RCC1 is dictated by the ability of this isoform to accommodate
the β-propeller rather than making more contacts with the NLS
than other isoforms. Thus, the structural neighborhood where an
NLS sequence lies rather than its primary sequence determines
specificity for importin α3.

Other importin α3-specific cargos such as the influenza PB2
polymerase subunit and the NF-κB p50:p65 heterodimer bear
topologically complex NLS sequences, also poorly compatible
with importin α1. PB2 is part of a multisubunit polymerase
complex that undergoes dramatic conformational changes to
expose its NLS and become visible to the import machinery31, 59.
Intriguingly, PB2 is also phosphorylated at S74260, a residue that
occupies a structurally equivalent position to S11 in RCC1
(Fig. 4c). It is remarkable that both PB2 and RCC1 show pre-
ferential binding to importin α3, make strong contacts at the
minor NLS-binding site and are phosphorylated C-terminal of

this site. Likewise, the NF-κB p50:p65 heterodimer29, 30 contains
a complex NLS sequence formed at the heterodimeric interface of
p65 and p50 and masked by the cytoplasmic inhibitor IκB under
resting conditions. We propose the flexible solenoid of importin
α3 has evolved to recognize import cargos that contain topolo-
gically complex NLS sequences, where considerable conforma-
tional rearrangement is required to unmask the NLS and recruit
import factors. This perhaps explains why classical biochemical
and structural studies with isolated NLS-peptides (so called
“divide-and-conquer” approach) have failed to decipher the
mechanisms of NLS-cargo specificity for importin α isoforms,
which were identified nearly two decades ago24.

Importin α isoforms have appeared throughout the evolution
of eukaryotes, in parallel with the increasing complexity of higher
organisms21, 22. An apparent conundrum is how baker’s yeast
achieves efficient nuclear import of RCC1 using the generic
Kap60, without a dedicated isoform such as α3 (Supplementary
Fig. 5). In this paper, we identified a “loop-helix” motif flanking
the yRCC1 NLS that directly contacts Arms 1–2 of Kap60
(Fig. 7c). Mutations in this motif did not destabilize yRCC1
binding to Kap60 (Fig. 7d, e), suggesting it functions like a
“spacer” rather than a binding determinant, used to position the
β-propeller onto the N terminus of Kap60 and avoid steric clashes
with the Arm-core (Fig. 8b, Supplementary Fig. 6a). Thus, the
reduced genetic complexity of yeast, which has only one importin
α gene vs. seven in humans, is compensated by a greater com-
plexity of the RCC1 NLS. This suggests the RCC1 NLS and
importin α co-evolved throughout evolution to minimize steric
hindrance and maximize molecular recognition, essential to
promote active nuclear import. While importin α specialized in
multiple isoforms in higher eukaryotes, the RCC1 NLS became
simpler (e.g., shorter) and likely more dependent on regulation by
post-translational modification. Similarly, complex membrane
protein NLSs promoting nuclear import of ER-synthesized
membrane proteins appear to be more conserved in yeast than
metazoa15, 16, also pointing to a simplification of NLS sequences
during evolution, accompanied by an expansion of trans-acting
regulatory mechanisms of nuclear import.

Interestingly, three splicing isoforms of RCC1 exist in humans:
the predominant isoform “α” that we crystallized with importin
α3 (Fig. 2a) and two slightly longer, minor isoforms known as “β”
and “γ”. Putative loop-helix insertions, previously named NTR,
for N-terminal regions61, are also present in RCC1β and RCC1γ
(Supplementary Fig. 6b). We speculate yRCC1-like insertions in
RCC1β and γ function as extendable “spacers” that promote
binding to importin α1 or α5 in those cell types that do not
express significant quantities of importin α3. A more thorough
and systematic analysis of importin α and RCC1 isoforms
expression in human tissues is required to validate this hypothesis
and shed light on nuclear transport of RCC1 minor splicing
isoforms.

In conclusion, this paper defines molecular rules for nuclear
import of human and yeast RCC1. We demonstrate that isoform
α3 recognizes the three-dimensional context of human RCC1
rather than just its NLS amino-acid sequence. This work solves a
long-standing problem in the biology of nuclear transport and
paves the way to decipher how other importin α isoforms
recognize NLS cargos vital to cell physiology (e.g., STATs) or
associated with disease states (e.g., Ebola virus p24).

Methods
Molecular biology techniques. A synthetic gene encoding human RCC1
(Supplementary Table 3) was synthesized by GenScript, while yeast RCC1 was PCR
out from a Saccharomyces cerevisiae (strain S288C) genomic library. Both human
and yeast RCC1 genes were cloned in vectors pET28a (Novagen) and pGEX-6P
(GE Healthcare) between restriction sites Bam HI and Xho I. All deletion mutants
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of human and yeast RCC1 (Δ5-RCC1, Δ10-RCC1, Δ10-yRCC1, Δ23-yRCC1,
Δ42-yRCC1) were generated by PCR using loop-out primers. Site-directed muta-
genesis was used to introduce point mutations in human RCC1 (S11E, R9A, K21A,
R9A/K21A) and yeast RCC1 (R4A, K20A, R4A/K20A, E34A/D35A). GST-RCC1-
long, constructed by insertion PCR, contains a 12-residue linker (GSAGSAAGS-
GEF) between S26 and H27 of wild type (WT) GST-RCC1.
GST-RCC1-NLS and GST-RCC1-NLS (P2/P2′) were constructed be introducing a
stop codon at position 25 of the full-length GST-RCC1 plasmid. All constructs
generated in this study were entirely sequenced to ensure the correctness of the
DNA sequence. The nucleotide sequences of all primers used in this study is
provided in Supplementary Table 3. Mouse importin α118, human importin α3,31
and yeast Kap6016 (with and without the IBB domain) were cloned in vectors
pGEX-6P (GE Healthcare) and pET28a (Novagen). All plasmids were expressed in
BL21(DE3) AI cells (Invitrogen) or regular BL21(DE3). To form stoichiometric
complexes of RCC1 and importin α, plasmids encoding human GST-RCC1 and
untagged ΔIBB-importin α3 or yeast GST-RCC1 and ΔIBB-Kap60 were
co-expressed in BL21-AI cells (Invitrogen). Expression of recombinant proteins
was induced with 0.5 mM IPTG (supplemented with 0.2% arabinose in BL21(DE3)
AI cells), and grown overnight at 20°C. Cell pellets were suspended in Lysis buffer
(20 mM Tris-HCl pH 8.0, 250 mM NaCl, 5 mM BME, 1 mM PMSF, and 0.2%
Tween-20) and lysed by sonication. Clarified lysates expressing GST-tagged pro-
teins were incubated with glutathione resin (GenScript) and beads were washed
with Complex buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 5 mM
BME, 0.1 mM PMSF). Clarified lysates expressing His-tagged proteins were incu-
bated with Ni-agarose resin (GenScript) and beads were washed with High Salt
buffer (20 mM Tris-HCl pH 8.0, 600 mM NaCl, 3 mM BME, 0.1 mM PMSF) and
eluted with Imidazole Elution buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 100
mM Imidazole, 3 mM BME). The RCC1:importin α and yRCC1:Kap60 complexes
were cleaved off beads by overnight digestion with PreScission Protease and further
purified by size exclusion chromatography on a Superdex 200 16/60 (GE Health-
care) pre-equilibrated in Complex buffer. All species were concentrated by ultra-
filtration using Millipore concentrators.

Isothermal titration calorimetry. ITC experiments were carried out at 20 °C using
a nano-ITC calorimeter (TA Instruments). Prior to ITC analysis, both GST-RCC1
and ΔIBB-importin αs were dialyzed overnight against Gel Filtration (GF) buffer
(20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM BME, 0.1 mM PMSF) at 4 °C.
GST-RCC1 (300 µM) was injected in 2.0 µl increments into a calorimetric cell
containing 195 µl of ΔIBB-importin α3 or α1 (100 µM). The spacing between
injections was 180 s. Titrations were performed in triplicate and data were analyzed
using the NanoAnalyze data analysis software (TA Instruments). Heats of dilution
were determined from control experiments carried out by injecting GF buffer
against importin α3/α1 and subtracted from enthalpies obtained by titrating RCC1
against importin α3/α1. Curve fitting was done in NanoAnalyze data analysis
software using a single set of binding sites model. The concentration of samples
used for ITC was accurately determined using amino acid analysis, Lowry assay
and spectrophotometric determination with the theoretical extinction coefficient ε.
In both titrations in Fig. 1, the N-value at the midpoint point is <1, as expected for
a 1:1 interaction, because the active fraction of recombinant importin α isoforms in
cell is likely <1.

Pull-down assay. Pull-down assays in Figs. 3b and 7d were carried out by
pre-incubating physiological concentrations of purified GST-ΔIBB-Importin
α/GST-ΔIBB-Kap60 (1 µM) and RCC1/yRCC1 (0.75 µM)53 for ~60 min at 4 °C. A
volume of 700 μl of this mixture was then incubated with 100 µl of glutathione
resin beads (GenScript) pre-packaged in a mini spin-column, for 1 h at 4 °C. Beads
were then washed three times with 700 μl of complex buffer and
GST-Importin α/Kap60:RCC1/yRCC1 complexes were eluted with 100 µl of
complex buffer containing 25 mM reduced glutathione. 20 μl of this elution was
then analyzed by SDS-PAGE (15%): gels were stained with Coomassie Brilliant
Blue-G-250, destained overnight and quantified. An uncropped image of the gels
shown in Figs. 3b and 7b is provided in Supplementary Fig. 8. Pull-down
experiments to determine the specificity of importin α1/α3 for RCC1 (Fig. 4d) were
carried out by pre-incubating physiological concentrations of GST-RCC1, GST-
RCC1-long, GST-RCC1-P2/P2′, GST-RCC1-NLS (residues 1–24), GST-RCC1-NLS
(P2/P2′) with His-tagged ΔIBB-importin α1 or α3, as described above. For quan-
tification of pull-downs in Figs. 3b and 7d, the intensity of WT RCC1/yRCC1
bands pulled-down by GST-ΔIBB-importin α3/GST-ΔIBB-Kap60 was normalized
to 100% and pixel intensities of bands corresponding to RCC1 mutants were
compared to the WT protein. Conversely, for quantification of pull-downs in
Fig. 4d, the pixel intensity of ΔIBB-importin α3 pulled down by GST-RCC1 was
normalized to 100% and pixel intensities of bands corresponding to ΔIBB-importin
α3 and α1 pulled down by GST-RCC1 mutants and GST-RCC1-NLS constructs
were compared accordingly.

Crystallographic methods. ΔIBB-importin α3:RCC1 and ΔIBB-Kap60:yRCC1
were crystallized by mixing equal volumes of protein complex at 20 mgml−1 with
crystallization solutions containing 0.1 M sodium cacodylate buffer (pH 6.5), 0.2 M
calcium, 8% PEG 8000, galactose 3% and 0.1 M Na cacodylate, 0.1 M NaCl and 1.1

M ammonium sulfate, respectively. Crystals were harvested in nylon cryo-loops,
cryo-protected with 27% ethylene glycol and flash-frozen in liquid nitrogen.
Crystals were diffracted at LS-CAT Beamline 21-ID-F at Argonne Photon Source
on a MARMOSAIC 225 CCD detector and at beamline 14-1 at SSRL on a Rayonix
MX325 CCD detector. Data indexing, integration, and scaling were carried out
with HKL200062. Initial phases were obtained by molecular replacement using
Phaser61 and PDB 3Q5U and 4PVZ as search models. Atomic models were built
using Coot63 and refined using phenix.refine64. Final stereochemistry was validated
using PROCHECK65. Data collection and refinement statistics are summarized in
Table 1.

SAXS analysis and ab initio shape reconstruction. The monodispersity of all
samples used for SAXS analysis was validated using AUC-SV and SEC (Supple-
mentary Fig. 7, Supplementary Table 1). SAXS data for the importin α3:RCC1
complex and human RCC1 were measured using a Rigaku BioSAXS-2000 instru-
ment at the Sidney Kimmel Cancer Center X-ray Crystallography and Molecular
Interaction Facility, at Thomas Jefferson University. A volume of 30 μl of sample
was pipetted into 1.0-mm quartz capillary cells that were sealed at each end with
screw caps and O-rings for measurement under vacuum. All samples were dis-
solved in GF buffer at concentrations between 1.0 and 7.5 mgml−1. Samples were
centrifuged at 16,000 × g for 10 min prior to exposing to X-rays, which was done
for 5–30 min in triplicates. The scattering of GF buffer alone was subtracted from
all protein sample scattering data. Guinier analysis between the triplicate exposures
was used to attentively control for radiation damage and protein aggregation. Data
reduction was carried out by circular averaging of the images and scaling to obtain
the scattering curve (scattering intensity (I) as a function of the momentum
transfer vector q (q= 4π(sinθ)/λ) using the Rigaku Automatic Data Analysis
Pipeline software. The program GNOM66 was used to calculate P(r) plots from
scattering data. SEC-SAXS data for the Kap60:yRCC1 complex were collected at
G1 station at MacCHESS, which usually operates at 9.8 keV and has a 1.5 m
camera length and typically reaches q_min= 0.007 to q_max= 0.3. SEC was
performed using an AKTA FPLC system equipped with a Superose 12 10/300 GL
column (GE Healthcare). Data were recorded on a Pilatus 100K-S detector. The
Kap60:yRCC1 complex at 5.0 mg ml−1 was loaded onto the size exclusion column
previously equilibrated in a buffer containing 20 mM Tris-HCl pH 7.5, 150 mM
NaCl, 5% glycerol and 3 mM BME. Primary reduction of the SAXS data was
performed using RAW67, and ATSAS software68. Frames 710–750 were used to
calculate experimental scattering intensities. Ab initio model calculations to gen-
erate a scattering envelope were done using DAMMIF69. Twenty solutions
obtained from DAMMIF were used to check consistency and averaged together to
obtain the final model using the DAMAVER program suite70. This final averaged
model was then converted to a surface map using the SITUS program suite71.
Theoretical solution scattering curves of all crystallographic structures determined
in this work were calculated using the FoXS web server72. SAXS data collection and
analysis statistics are summarized in Supplementary Table 1.

SEC and AUC. Analytical SEC was carried out on a Superpose 12-column equi-
librated with Gel Filtration buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM
BME, 0.1 mM PMSF). AUC-SV analysis was carried out in a Beckman XL-A
Analytical Ultracentrifuge out at the Sidney Kimmel Cancer Center X-ray Crys-
tallography and Molecular Interaction Facility at Thomas Jefferson University.
Importin α3:RCC1 complex, human RCC1 and Kap60:yRCC1 complex were dis-
solved at 0.8–2.5 mgml−1 in 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5% glycerol,
3 mM BME and were spun at 201,600 × g (equal to 50,000 r.p.m. in the AN-50 Ti
analytical rotor) at 10 °C. Absorbance values at 280 nm were fit to a continuous
sedimentation coefficient (c(s)) distribution model in SEDFIT73.

Structure analysis. Molecular interactions were analyzed using PISA74 and
binding energies between RCC1 and importin α/Kap60 were predicted using
PRODIGY75. All figures in the paper were prepared using the program PyMol76.

Data availability. Coordinates and structure factors for the importin α3:RCC1 and
Kap60:yRCC1 complexes have been deposited in the protein Data Bank (accession
codes 5TBK and 5T94). Other data are available from the corresponding author
upon reasonable request.
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