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Molecular Landscape and Actionable Alterations
in a Genomically Guided Cancer Clinical Trial:
National Cancer Institute Molecular Analysis for
Therapy Choice (NCI-MATCH)
Keith T. Flaherty, MD1; Robert J. Gray, PhD2; Alice P. Chen, MD3; Shuli Li, PhD2; Lisa M. McShane, PhD3; David Patton, MS4;

Stanley R. Hamilton, MD5; P. Mickey Williams, PhD6; A. John Iafrate, MD, PhD1,7; Jeffrey Sklar, MD, PhD8; Edith P. Mitchell, MD9;

Lyndsay N. Harris, MD3; Naoko Takebe, MD, PhD3; David J. Sims, BS6; Brent Coffey, MS, MBA10; Tony Fu, MS6;

Mark Routbort, MD, PhD5; James A. Zwiebel, MD3; Larry V. Rubinstein, PhD3; Richard F. Little, MD3; Carlos L. Arteaga, MD11;

Robert Comis, MD12,†; Jeffrey S. Abrams, MD3; Peter J. O’Dwyer, MD13; and Barbara A. Conley, MD3 for the NCI-MATCH team

abstract

PURPOSE Therapeutically actionable molecular alterations are widely distributed across cancer types. The
National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) trial was designed to evaluate
targeted therapy antitumor activity in underexplored cancer types. Tumor biopsy specimens were analyzed
centrally with next-generation sequencing (NGS) in amaster screening protocol. Patients with a tumormolecular
alteration addressed by a targeted treatment lacking established efficacy in that tumor type were assigned to 1 of
30 treatments in parallel, single-arm, phase II subprotocols.

PATIENTS AND METHODS Tumor biopsy specimens from 5,954 patients with refractory malignancies at 1,117
accrual sites were analyzed centrally with NGS and selected immunohistochemistry in a master screening
protocol. The treatment-assignment rate to treatment arms was assessed. Molecular alterations in seven tumors
profiled in both NCI-MATCH trial and The Cancer Genome Atlas (TCGA) of primary tumors were compared.

RESULTS Molecular profiling was successful in 93.0% of specimens. An actionable alteration was found in
37.6%. After applying clinical and molecular exclusion criteria, 17.8% were assigned (26.4% could have been
assigned if all subprotocols were available simultaneously). Eleven subprotocols reached their accrual goal as of
this report. Actionability rates differed among histologies (eg, . 35% for urothelial cancers and , 6% for
pancreatic and small-cell lung cancer). Multiple actionable or resistance-conferring tumor mutations were seen
in 11.9% and 71.3% of specimens, respectively. Known resistance mutations to targeted therapies were
numerically more frequent in NCI-MATCH than TCGA tumors, but not markedly so.

CONCLUSION We demonstrated feasibility of screening large numbers of patients at numerous accruing sites in
a complex trial to test investigational therapies for moderately frequent molecular targets. Co-occurring re-
sistance mutations were common and endorse investigation of combination targeted-therapy regimens.

J Clin Oncol 38:3883-3894. © 2020 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License .

INTRODUCTION

The first targeted therapy successes in oncogene-
driven cancers were specific to single cancer histol-
ogies (eg, BCR-ABL translocations in chronic mye-
logenous leukemia1; ERBB2 gene amplification in
breast cancer2; BRAF mutations in melanoma3; and
EGFR mutations and ALK translocations in lung
adenocarcinoma4,5). BRAF-inhibitor therapy was ex-
plored across a spectrum of BRAF-mutated can-
cers and yielded high response rates in melanoma,
non–small-cell lung cancer (NSCLC), and Langerhans
cell histiocytosis but unanticipated resistance in co-
lorectal cancer, despite ample preclinical evidence

favoring efficacy.6,7 More recently, the US Food and
Drug Administration (FDA) has approved the pro-
grammed death-1 inhibitor pembrolizumab for any
patient with mismatch repair deficiency and high
microsatellite instability. This abnormality occurs in
approximately 2% of patients.8,9 Larotrectinib was
approved for any patient whose tumor harbors
a neurotrophic tropomyosin receptor kinase (NTRK)
fusion, which, although common in several rare tu-
mors, occurs in , 1% of most tumor histologies.10,11

The National Cancer Institute–Molecular Analysis for
Therapy Choice (NCI-MATCH) trial was the first
national-scale trial in the United States incorporating
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centralized diagnostic testing and geographically distrib-
uted clinical investigation of dozens of treatment options in
parallel. We hypothesized that this platform would provide
the most expedient approach to understanding the ho-
mogeneity or heterogeneity of response across oncogene
and targeted-therapy pairs. We investigated treatments that
had shown clear evidence of clinical benefit or at least
promising preliminary efficacy in the proposed eligibility
genotype in any tumor histology. We describe the fre-
quency with which actionable genetic alterations occurred
in a US population of 5,954 patients with advanced re-
fractory cancer.

PATIENTS AND METHODS

The study was designed and co-administered by the Di-
vision of Cancer Treatment and Diagnosis, NCI, and the
ECOG-ACRIN Cancer Research Group (ECOG-ACRIN) with
the participation of the NCI National Clinical Trials Network
and NCI Community Oncology Research Program (Data
Supplement).

Patient Selection

Adult patients (age $ 18 years) with any solid tumor,
lymphoma, or myeloma that had progressed on standard
treatment or without prior therapy if no curative treatment
existed were eligible for screening. There was no limita-
tion on the number of prior treatments (Data Supplement).
The NCI-MATCH study (ClinicalTrials.gov identifier:
NCT02465060) was approved by the NCI Central In-
stitutional Review Board, the institutional review board of
record for all participating institutions. All patients signed
a written informed consent document.

Selection of Drugs

Treatments included in NCI-MATCH were single agents or
combinations, FDA-approved or investigational, and re-
quired to have a recommended phase II dose as well as
a molecular alteration that might predict response on the

basis of preclinical or clinical data, and at least provisional
evidence of clinical activity (Data Supplement).

Definition of Molecular Alterations

Actionable molecular alterations in the NCI-MATCH clinical
trial met one of the definitions outlined in the Data Sup-
plement and the rates of actionable alterations reported
here reflect all biomarker and therapy pairs regardless of
our ability to gain access to the investigational agents
(the only relevant case being IDH mutations). The next-
generation sequencing (NGS) platform also surveyed an
expanded set of tumor-suppressor genes and other on-
cogenes either associated with therapeutic resistance or for
which we did not have a targeted agent included in the NCI-
MATCH subprotocols (eg, IDH1/2 mutations).

Biopsy Specimens and Tumor Profiling

Patients were required to have either a clinically indicated
or low-risk core needle biopsy specimen (risk of severe
adverse event,, 2%). Tumor that was removed for clinical
indication within the prior 6 months, without a response to
subsequent therapy, was permitted. All specimens were
shipped for processing to the central Clinical Laboratory
Improvement Amendments–accredited Tissue Qualifica-
tion Laboratory at MD Anderson Cancer Center (MDACC).
Medical Dictionary for Regulatory Activities coding provided
by the accruing institution was used for pathologic clas-
sification. The tumors of all patients who were accrued to
a treatment arm had central review of pathology classifi-
cation performed at the ECOG-ACRIN Central Biorepository
and Pathology Facility at MDACC and were coded with
International Classification of Diseases for Oncology 3.1.

NGS and Immunohistochemistry Assays

Central NGS assay was an adapted Oncomine AmpliSeq
panel (ThermoFisher Scientific, Waltham, MA) performed
as reported previously.12 The assay was performed on the
Ion Torrent PGM or S5 and sequenced 143 genes and

CONTEXT

Key Objective
To determine the likelihood of identifying molecular alterations by next-generation sequencing that points to approved or

investigational targeted therapies.
Knowledge Generated
In this multiarm phase II trial, all available investigational therapies known with evidence of efficacy in biomarker-defined

populations were simultaneously deployed. With centralized molecularly screening performed on freshly procured tumor
biopsy specimens, 38% of patients had actionable alterations and 18% were assigned to actively enrolling
treatment arms.

Relevance
Performance of next-generation sequencing in biopsy specimens from patients with relapsed-refractory advanced permits

triaging nearly one-fifth of patients to evidence-based investigational therapy.
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. 4,000 annotated variants, including single nucleotide
variants (SNVs), insertion and deletions, amplifications,
and selected translocations, with a minimum read depth of
5003. The assay achieved concordant results in all four
competitively chosen NCI-MATCH Network Clinical Labo-
ratories: (1) the MDACC Molecular Diagnostics Laboratory;
(2) Massachusetts General Hospital Center for Integrated
Diagnostics; (3) Yale Clinical Molecular Pathology Labo-
ratory; and (4) the Molecular Characterization Laboratory at
the Frederick National Laboratory for Cancer Research.12

The MDACC Clinical Immunohistochemistry Laboratory
performed immunohistochemistry for PTEN expression, for
nuclear expression of MLH1 and MSH2, and for Rb ex-
pression if cases matched to a cyclin inhibitor.13 All assays
also received approval from the New York State Department
of Health, for which the MDACC was the permitted
laboratory.

Comparison of NCI-MATCH Molecular Alterations to The

Cancer Genome Atlas

To assess descriptively whether SNV frequency and type
were similar in the relapsed/refractory advanced cancer
population of the NCI-MATCH trial and primary tumors, we
compared NCI-MATCH sequencing results with those of
The Cancer Genome Atlas (TCGA)14 for seven tumors that
were assessed in both databases (Data Supplement).

RESULTS

Demographics

NCI-MATCH opened on August 12, 2015; 1,117 sites
registered 6,391 patients until registration for centralized
molecular screening closed on May 22, 2017 (Data Sup-
plement). Patient characteristics are summarized in
Table 1. The four most common tumors in the US pop-
ulation (NSCLC, breast, colorectal, and prostate cancers)
represented 37.5% of the accrual (Table 2; Data Sup-
plement). The median number of prior therapies was three,
and , 25% of patients had no or one prior therapy.

Biopsy and Assay Performance

Of 6,391 registered patients, 5,954 submitted a tumor
specimen. Of these, 4,629 patients had a biopsy performed
specifically for NCI-MATCH screening, 1,211 had an ar-
chived specimen from prior tumor biopsy or excision, and
source of tissue was unknown for 121 patients. Adverse
consequences of the screening biopsy were assessed
within 30 days after the biopsy (Data Supplement). Of
4,627 patients with data, 26 (0.6%) and seven (0.2%)
experienced grade 3 and 4 events, respectively. No deaths
were related to the biopsy procedure. Of the 5,954 samples
submitted, 5,540 (93.0%) were sequenced successfully.
Molecular testing could not be performed on some tumors
for a variety of different reasons. Absence of or insufficient
amount of tumor in the specimen and/or presence of only
necrotic tumor explained the vast majority. Themedian and

75th percentile times from receipt of samples to return of
results were 16 days and 23 days, respectively.

Treatment Subprotocol Assignment Rates

The subprotocols available at some time during the
screening portion of the trial are summarized in the Data
Supplement. Molecular alterations for assignment to an
NCI-MATCH subprotocol were present in 37.6% of patients
(Data Supplement). When molecular, prior treatment, and
specific cancer exclusions were accounted for, the match
rate was 26.4%. Lack of subprotocol availability, because
the subprotocol had reached accrual or because of the limit
on certain histologic types was reached, led to a treatment
assignment rate of 17.8% (n5 985 of 5,540; 95% CI, 16.8
to 18.8).

Assignment rates for NSCLC, colorectal, breast, and
prostate cancer were 17.4%, 13.7%, 17.8%, and 23.0%,
respectively (Table 2). Assignment rates. 25%were found
in patients with CNS cancer (37.2%), urothelial cancer
(36.0%), cholangiocarcinoma pancreaticobiliary (25.9%),
cervical cancer (28.4%), gastroesophageal cancer (27.8%),
melanoma (26.3%), uterine cancer (26.2%), and anal cancer
(25.5%). Conversely, assignment rates were low in patients
with pancreatic cancer (5.8%), small-cell lung cancer (5.1%),
and lymphoma (5.0%; Table 2).

Seventy percent of assigned patients received treatment on
a subprotocol. Eleven of 30 subprotocols reached the
accrual goal of at least 31 eligible patients. No subprotocol
whose targeted alteration had a prevalence of , 1.5%
reached the accrual goal in this phase of the trial (18
subprotocols).

Distribution of Genomic Alterations and Co-Occurring

Potential Resistance Alterations

Deleterious or activating mutations in TP53 (47.4%), KRAS
(21.2%), and APC (12.4%)15,16 were commonly observed.
Themost prevalent co-occurring mutations were KRAS and
TP53 in 12.1% of tumors. The most frequently observed
actionable alterations were in PIK3CA (11.8%) and PTEN
(6.3%); all other actionable alterations were observed in
# 3% (Fig 1, showing only those patients with a mutation of
interest). Patients with single eligible alterations and without
other actionable or nonactionable alterations (34.1%) were
hypothesized to be the most likely to be responsive to the
assigned targeted therapy.

Of patients with the most commonly identified actionable
alterations, 37.6% (n 5 723 of 2,083) were excluded from
treatment due to co-occurring mutations known to con-
fer resistance. For example, patients whose tumors had
PIK3CA alterations were excluded from an NCI-MATCH
treatment addressing these mutations if there were co-
occurring RAS or PTEN resistance-conferring alterations
(31.3% of PIK3CAmutant cases). However, 42.2% of these
patients had co-occurring alterations in TP53 that did not

Journal of Clinical Oncology 3885
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TABLE 1. National Cancer Institute Molecular Analysis for Therapy Choice Patient Characteristics (reflecting data collected at screening
enrollment)

Characteristic
Enrolled at Screening

(N 5 6,391)
Assay Complete
(n 5 5,540)

Assigned to Trial Arms
(n 5 985)

Enrolled in a Trial Arm
(n 5 686)

Female sex 3,843 (60.1) 3,348 (60.4) 600 (60.9) 430 (62.7)

Median age, years (range) 62 (18-94) 62 (18-94) 62 (18-92) 61 (19-85)

IQR 54-69 54-69 54-69 54-68

Age categories, years

18-39 344 (5.4) 300 (5.4) 51 (5.2) 33 (4.8)

40-50 796 (12.5) 709 (12.8) 131 (13.3) 99 (14.4)

51-65 2,865 (44.8) 2,472 (44.6) 430 (43.7) 309 (45.0)

. 65 2,386 (37.3) 2,059 (37.2) 373 (37.9) 245 (35.7)

Race

White 5,160 (85.0) 4,484 (85.1) 811 (86.5) 578 (88.4)

Black 593 (9.8) 506 (9.6) 85 (9.1) 49 (7.5)

Asian 244 (4.0) 214 (4.1) 27 (2.9) 21 (3.2)

Native Hawaiian 23 (0.4) 20 (0.4) 7 (0.7) 1 (0.2)

Native American 24 (0.4) 19 (0.4) 4 (0.4) 2 (0.3)

Multirace 28 (0.5) 24 (0.5) 4 (0.4) 3 (0.5)

Unknown 319 273 47 32

Ethnicity

Hispanic 359 (5.8) 308 (5.8) 59 (6.3) 42 (6.4)

Not Hispanic 5,778 (94.2) 5,010 (94.2) 885 (93.8) 610 (93.6)

Unknown 254 222 41 34

Performance status

0 2,079 (37.2) 1,824 (37.3) 335 (36.1) 242 (36.8)

1 3,516 (62.8) 3,070 (62.7) 594 (63.9) 416 (63.2)

Unknown 796 646 56 28

No. of prior therapies

0-1 1,109 (21.2) 976 (21.2) 213 (22.8) 154 (22.5)

2 1,224 (23.4) 1,046 (22.8) 214 (22.9) 168 (24.6)

3 1,022 (19.5) 895 (19.5) 170 (18.2) 122 (17.8)

. 3 1,882 (35.9) 1,680 (36.5) 337 (36.1) 240 (35.1)

Unknown 1,154 943 51 2

Institution type

NCORPa 2,770 (43.3) 2,425 (43.8) 380 (38.6) 253 (36.9)

LAPSb 1,585 (24.8) 1,355 (24.5) 271 (27.5) 187 (27.3)

Non-LAPS mainc 1,237 (19.4) 1,073 (19.4) 211 (21.4) 153 (22.3)

Non-LAPS affiliated 630 (9.9) 533 (9.6) 90 (9.1) 69 (10.1)

Other 169 (2.6) 1,54 (2.8) 33 (3.4) 24 (3.5)

NOTE. The table reflects data collected at screening enrollment. Data are reported as No. (%) unless otherwise indicated.
Abbreviations: IQR, interquartile range; LAPS, lead academic participating site; NCORP, National Cancer Institute Community Oncology

Research Program.
aA national NCI-supported network, where the NCORP community sites are consortia of researchers, public hospitals, physician practices,

academic medical centers, and other groups that provide health care services in communities across the United States.
bUS academic research institutions selected to receive a LAPS grant (most of the awardees are NCI-designated Cancer Centers).
cNot a lead academic participating site main member institution; may have affiliate and/or subaffiliate members or may be a stand-alone institution.
dInstitutions that by themselves do not meet the requirements for membership but are granted membership through formal association with

a non-LAPS main member.
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preclude treatment assignment but could potentially cause
resistance.

Of patients assigned to NCI-MATCH subprotocols, 54.0%
of patients with actionable alterations also had co-occurring
mutations in tumor-suppressor genes that have been im-
plicated in therapeutic resistance in settings such as PI3Ka
inhibitors in PIK3CA-mutant cancers and BRAF inhibitors
in BRAF-mutant melanoma and colorectal cancer (TP53,
45.0%; KRAS, 13.8%; or APC, 12.5%), but these did not
preclude treatment assignment.17,18 Activating mutations
in genes that also contribute to oncogenesis—ERBB2,
CCND1, and NF1—were found in 13.2% of patients.
In patients assigned to the NCI-MATCH subprotocol
addressing ERBB2 mutations, 29.3% had a co-occurring
TP53, PIK3CA, KRAS, EGFR, or PTEN loss or mutation that

did not preclude assignment but potentially could con-
tribute to resistance.

Comparison of Molecular Alterations in NCI-MATCH

and TCGA

We hypothesized that the genetic complexity of the NCI-
MATCH cohort, with a median of three lines of prior, mostly
cytotoxic, chemotherapy, would be far greater than that
seen in the largely untreated primary tumors of TCGA.
However, we found that the frequencies of the 10 genes
most commonly harboring mutations (SNVs) in the seven
tumor types compared across both cohorts were broadly
similar (Data Supplement). We found that 52.8% of NCI-
MATCH tumors had co-occurring mutations, as contrasted
with 44.1% for TCGA (Fig 2). The frequency of TP53
mutations and RAS mutations was numerically greater in

TABLE 2. National Cancer Institute Molecular Analysis for Therapy Choice Primary Disease Sites of Patients (N 5 5,540)

Disease Site
No. of Patients

Screened
Patients Screened

(%)
No. Assigned
to Trial Arm

Patients
Screened (%)

No. Enrolled in
Trial Arm

Assigned
Patients (%)

Commonest cancers

Colorectal cancer 848 15.3 116 13.7 85 73.3

Breast 685 12.4 122 17.8 85 69.7

NSCLC 407 7.3 71 17.4 51 71.8

Prostate cancer 139 2.5 32 23.0 25 78.1

Total common cancers 2,079 37.5 341 16.4 246 72.1

Other cancers

Ovarian 530 9.6 75 14.2 50 66.7

Pancreas 344 6.2 20 5.8 14 70.0

Uterine cancer 344 6.2 90 26.2 65 72.2

Sarcoma 255 4.6 31 12.2 21 67.7

Head and neck 214 3.9 47 22.0 36 76.6

Neuroendocrine cancer 185 3.3 26 14.1 18 69.2

Gastroesophageal cancer 176 3.2 49 27.8 25 51.0

Cholangiopancreaticobiliary 158 2.9 41 25.9 31 75.6

Liver/hepatobiliary, other 113 2.0 20 17.7 13 65.0

CNS 94 1.7 35 37.2 23 65.7

Bladder/urothelial 89 1.6 32 36.0 21 65.6

Cervical cancer 88 1.6 25 28.4 19 76.0

Small-cell lung cancer 79 1.4 4 5.1 2 50.0

Melanoma 76 1.4 20 26.3 14 70.0

Kidney 69 1.2 11 15.9 7 63.6

Anal cancer 47 0.8 12 25.5 10 83.3

Mesothelioma 46 0.8 9 19.6 5 55.6

Lymphoma 40 0.7 2 5.0 2 100.0

Othera 514 9.3 95 18.5 64 67.4

Total 5,540 100.0 985 17.8 686 69.6

NOTE. Distribution of disease sites for patients screened.
Abbreviation: NSCLC, non–small-cell lung cancer.
aSee Data Supplement.
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the NCI-MATCH cohort for each histology, as has been
observed in other populations with advanced cancer.19,20

However, these alterations did not correlate with number of
previous treatments (Data Supplement).

We then looked for evidence of genetic evolution specifi-
cally in tumor types for which molecularly targeted thera-
pies are broadly applied. Indeed, we detected frequent
androgen receptor alterations (46%) in prostate cancer
and estrogen-receptor alterations (25%) in breast cancer
(Fig 3). EGFR T790Mmutations were found in nearly half of
the patients with EGFR-mutant NSCLC who had previously
received EGFR-inhibitor therapy.

We noted the greatest difference between the frequency of
actionable alterations in cholangiocarcinoma cases in
TCGA and NCI-MATCH, likely a consequence of our much
larger sample size in NCI-MATCH (n5 153) versus that of
TCGA (n 5 23). NCI-MATCH data confirm that these
patients had tumors rich in molecular targets21 for which
investigational agents are available, as follows: IDH1
mutations (17%), CDKN2A mutations (10%), BRAF
mutations (7%), ERBB2 alterations (6%), NRAS muta-
tions (6%), IDH2 mutations (5%), and FGFR2 alterations
(3%), which segregated largely by site of origin of the

cholangiocarcinoma. Intrahepatic cholangiocarcinoma
had an assignment rate of 29.1% to 12 different NCI-
MATCH subprotocols.

DISCUSSION

To our knowledge, NCI-MATCH represents the first attempt
to establish the likelihood of identifying targeted in-
vestigational therapeutic options within a clinical trial cohort
representative of the population of patients with advanced
refractory cancer. We demonstrated the feasibility of na-
tionwide accrual of patients with successful biopsy at local
facilities, a high rate of technical success using a specific
NGS platform addressing most of the relevant molecular
alterations found in cancers, timely return of results, and, if
eligible, protocol treatment. A stringent definition of ac-
tionable molecular alterations for which promising in-
vestigational agents existed was developed and 37.8% of
patients had an actionable alteration in their tumor, similar
to an analysis of a large sample of patients from individual
major academic medical centers.20,22 When exclusion
criteria were applied to this broad population with advanced
cancer, for whom # 30 treatment subprotocols were
available, the assignment rate was 17.8%.

Altered in 4,072 (86.88%) of 4,687 samples

56
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FIG 1. Gene alterations observed in National Cancer Institute Molecular Analysis for Therapy Choice trial. A genomic waterfall plot displaying the top 15 most
frequently mutated genes ranked by their rate of mutation and categorized by variant type—amplification, deletion, missense, nonsense, in-frame insertion,
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Specificity of the NGS assay was prioritized, and minimum
variant allele and copy number values were put into place to
optimize that feature. The assay reported on a finite gene
list that was fit for purpose to identify targets for the agents
selected for the trial and was deemed more than adequate

to support required inclusionary actionable variants as well
as exclusionary variants required for the trial. Resulting
limitations include the limited number of and breadth of
coverage of genes, which reduced the potential to char-
acterize off-target pathways of effects or resistance. Fusions
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were detected by sequencing RNA of known and previously
reported fusions; the assay was not capable of detection of
novel fusion variants. The lower rate of severe complica-
tions from the required screening tumor biopsy procedures
(, 1% grade 3 or 4 events; no fatal complications) was
achieved by providing guidelines directed to interventional
radiologists in the protocol and a scoring system to qualify
metastatic lesion by location, size, and radiographic fea-
tures as predicted safe sites for core needle biopsy (Data
Supplement).

Thematch rate varied widely across tumor types. More than
25% of patients with cholangiocarcinoma, melanoma, and
cancers of the prostate, uterus, gastroesophageal junction,
urothelium, CNS, or cervix matched to a treatment. By
contrast, only 5.8% of those with pancreatic cancer did,
reflecting the lack of targeted treatments for the com-
mon mutations in this group of patients. Among the
tumor profiles we compared with those in TCGA, chol-
angiocarcinoma stands out as a tumor type with the most
actionable alterations. Given that standard treatments for
this tumor are few, exploration of targeted treatments in
multiarm master protocols may aid development of more
effective treatment of this group of patients with poor
prognosis.

NCI-MATCH differs from other recently reported NGS-
guided clinical trials in several respects. Some studies
have focused on exploring targeted agents approved in at
least one tumor type across other cancer types when
routine clinical NGS testing identifies such patients.23,24

Single-center trials have generally used molecular tumor
boards to adjudicate the off-label use of approved agents or
triaging to available clinical trials, with widely varying rates
of treatment assignment.25,26 The largest reported multi-
center trial sought to evaluate the benefit of offering ther-
apies based on characterization of hormone receptor
expression and genetic alteration in the PI3 kinase and
MAP kinase pathways compared with physicians’ choice of
therapy. Forty percent of patients were assigned to one of
10 available treatment regimens on the experimental arm
(n 5 293 of 741 patients).27 To our knowledge, NCI-
MATCH is the only trial that used uniform, centralized
molecular testing and a rules algorithm to assign treatments
systematically based on predetermined molecular eligibil-
ity, rather than a tumor board. Unlike other studies eval-
uating the clinical utility of NGS, NCI-MATCH was designed
to investigate both approved and investigational agents
broadly across cancer types, beyond established biomarker-
defined indications.

Most of the actionable alterations in NCI-MATCH occurred
at frequencies of, 5%, consistent with other analyses.19,20

The striking responses occasionally observed with drugs
targeting rare mutations such as NTRK fusions motivate
broad screening across cancer types, but the logistics of
conducting research in these populations in a single trial
are daunting. The investigation of novel therapies in less

common molecular subgroups is made more efficient by
investigating many therapies in parallel in an NGS-guided
platform trial. For alteration frequencies , 1.5%, however,
a much larger screening population is needed to identify
enough patients to enroll a typical, single-arm, phase II trial
cohort. For these molecular subgroups, we have now used
external academic and commercial sequencing platforms
that are being used in routine practice, to continue accrual
in NCI-MATCH, and will confirm the outside NGS result
with the NCI-MATCH assays.

The requirement for fresh tumor biopsy specimens was
driven by the desire to have an accurate assessment of
tumor somatic genetic make-up at the time of study entry.
This is not necessary for the purpose of detecting founder or
truncal mutations that are present in all tumor cells but was
considered important for the purpose of identifying addi-
tional genetic changes that manifest during tumor evolution
and are enriched under selective pressure of other therapies.

Among those tumors with an actionable alteration and
available investigational agent in NCI-MATCH, co-
occurring alterations in genes with evidence that they
mediate resistance in other settings (ie, TP53, KRAS, or
APC) or that activate potentially competing survival path-
ways were common. At the time NCI-MATCH was
designed, these co-alterations lacked evidence of degra-
dation of response to the specific targeted therapies and did
not preclude treatment assignment to many of the sub-
protocols. For patients with TP53 and APC mutations
(62% harbored at least one of these alterations), indirect
therapeutic strategies are needed to address the conse-
quences of loss of function in these critical tumor-
suppressor mechanisms.15,16 Although we have not yet
compared the NCI-MATCH specimens with the patients’
primary tumors, the available data from TCGA and NCI-
MATCH suggest there is not substantial evolution in the
genetic features from primary to metastatic cancers. Fur-
thermore, surprisingly, cytotoxic chemotherapy does not
significantly alter the genomic landscape. Pending the
results of ongoing whole-exome sequencing of patients who
were assigned to treatment subprotocols, we cannot yet
conclude whether important information is gained from
tumor biopsy specimens at baseline versus sequencing of
archival tumor specimens. Therapies that place significant
selective pressure (eg, hormonal therapy for prostate and
breast cancer; EGFR inhibitors in EGFR-mutated NSCLC) do
produce clear, pathway-convergent resistance mutations.

Our findings support the feasibility and efficiency of
using NGS to triage patients to investigational therapy,
provided that a sufficiently large pool of agents is made
available. The molecular landscape of a population of
patients with relapsed, refractory advanced cancer
strongly endorses a shift to investigation of combination
targeted-therapy regimens in such genetically complex
tumors, most notably those harboring multiple action-
able alterations.
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