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Safety and improved efficacy signals
following gene therapy in childhood blindness caused
by GUCY2D mutations

Samuel G. Jacobson,1,6,* Artur V. Cideciyan,1 Allen C. Ho,2 Igor V. Peshenko,3 Alexandra V. Garafalo,1

Alejandro J. Roman,1 Alexander Sumaroka,1 Vivian Wu,1 Arun K. Krishnan,1 Rebecca Sheplock,1

Sanford L. Boye,4 Alexander M. Dizhoor,3 and Shannon E. Boye5

SUMMARY

A first-in-human clinical trial of gene therapy in Leber congenital amaurosis due to
mutations in the GUCY2D gene is underway, and early results are summarized. A
recombinant adeno-associated virus serotype 5 (rAAV5) vector carrying the hu-
manGUCY2D genewas delivered by subretinal injection to one eye in three adult
patients with severe visual loss, nystagmus, but preserved retinal structure.
Safety and efficacy parameters were monitored for 9 months post-operatively.
No systemic toxicity was detected; there were no serious adverse events, and
ocular adverse events resolved. P1 and P2 showed statistically significant rod
photoreceptor vision improvement by full-field stimulus testing in the treated
eye. P1 also showed improvement in pupillary responses. Visual acuity remained
stable from baseline in P1 and P2. P3, however, showed a gain of 0.3 logMAR in
the treated eye, indicating greater cone-photoreceptor function. The results
show safety and both rod- and cone-mediated efficacy of this therapy.

INTRODUCTION

Childhood blindness from retinal disease, clinically grouped as Leber congenital amaurosis (LCA), is

caused by mutations in more than 25 genes (Kumaran et al., 2018). Three of these molecular subtypes of

LCA have been early targets for gene-specific therapies because of evidence for potential improvement

in vision (Cideciyan and Jacobson, 2019). Dissociation of photoreceptor structure and function is one of

the keys to candidacy. In clinical trials of two subtypes, RPE65- and CEP290-LCA, there was evidence of

safety and efficacy (Cideciyan et al., 2008, 2019; Bainbridge et al., 2008; Maguire et al., 2008; Jacobson

et al., 2012). Clinical trial results for the remaining candidate, LCA caused by GUCY2D mutations, have

not been reported to date.

Disease mechanisms of the three molecular forms of LCA differ. RPE65-LCA is a retinoid cycle disease of the

retinal pigment epithelium (RPE); gene augmentation led to dramatic changes within days of treatment mostly

in rod photoreceptor-mediated vision as vitamin A became available to the treated region of the retina. There

were also improvements in extra-foveal cone vision. CEP290-LCA is a photoreceptor ciliopathy, and the human

disease causes early loss of rod photoreceptors but leaves an intact central island of cone photoreceptors (Cide-

ciyan et al., 2007, 2011, 2019; Jacobson et al., 2017a, 2017b). Cone photoreceptor-mediated vision improved

within a month after an antisense oligonucleotide intravitreal injection (Cideciyan et al., 2019).

A human GUCY2D gene codes for retinal guanylyl cyclase isozyme-1, RetGC1 (Dizhoor et al., 1994; Lowe

et al., 1995). A spectrumof retinal disease is associated withmutations in theGUCY2D gene, including auto-

somal dominantly inherited cone-rod and cone degenerations and autosomal recessive LCA. GUCY2D is

one of the major causes of LCA (Sharon et al., 2018). GUCY2D-LCA is due to the insufficient rate of

cGMP production, incapable of maintaining the normal photocurrent in both rods and cones (Boye,

2014). Patients can manifest more cone than rod dysfunction, more rod than cone dysfunction, or equal los-

ses. A key feature in GUCY2D-LCA is that despite severe rod and cone dysfunction, there is relatively pre-

served photoreceptor integrity (Cideciyan and Jacobson, 2019; Jacobson et al., 2013, 2017a, 2017b). A

treatment trial inGUCY2D-LCA could thus lead to improvements in rod- or cone-mediated vision, or both.
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In the present study, three patients withGUCY2D-LCA were treated in a first-in-human gene augmentation

clinical trial and followed for 9 months post-therapy. There was an acceptable safety profile and preliminary

evidence of vision improvement. These early results provide guideposts for conducting ongoing and future

trials in GUCY2D-LCA.

RESULTS

A non-randomized Phase I/II single center, open-label safety and efficacy study of uniocular subretinally

injected AAV5-GUCY2D (Figure S5) in patients with LCA caused by biallelic mutations in the GUCY2D

gene is ongoing (ClinicalTrials.gov Identifier: NCT03920007). Upon observing substantial rod and cone im-

provements, we decided to perform an interim analysis of the results from the first three patients (P1, fe-

male, 45 years old; P2, male, 35 years old; and P3, female, 23 years old) to receive treatment. These Cohort 1

patients were administered the lowest dose planned within the trial. All patients were compound hetero-

zygotes for disease-causing mutations in the GUCY2D gene (Table 1).

GUCY2D mutant alleles in vitro did not code for an active enzyme with one exception

In all three patients, one of the two LCA alleles harbored a mutation (either a missense or a frameshift/trun-

cation) in the catalytic domain of the enzyme, and the other, in a kinase homology domain. Only in P1, prod-

ucts of both alleles retained the dimerization and the catalytic domains of the cyclase, whereas in P2 and P3

one of the alleles would be a priori unable to produce catalytically active enzyme (see Figure S1). Those

RetGC1 mutants that could possibly possess catalytic activity were expressed in HEK293 cells and assayed

in the presence of the photoreceptor-specific guanylyl cyclase-activating protein, Mg2+ GCAP1 (Figure 1)

(Palczewski et al., 1994; Dizhoor et al., 2010). None of the GUCY2D alleles in P1 and P2 coded for an active

enzyme. For one allele (p.Arg955Gln) of P3, however, traces of guanylyl cyclase activity were detectable

(Figure 1B). Co-expression of the two LCA alleles in P1 also failed to produce an active enzyme

(see Figure S1E).

Human phenotype of the patients with GUCY2D-LCA shows rod and cone photoreceptor

dysfunction to different degrees pre-treatment

Visual acuity was severely impaired (worse than 1.0 logMAR in the study eyes) with nystagmus from early

life. Rod photoreceptor-mediated sensitivities measured by FST (full-field stimulus test) were abnormally

Table 1. Clinical trial of gene therapy for GUCY2D-LCA

Age at

baseline

(y)/Sex

GUCY2D mutations

Allele 1/Allele 2

Treated

Eye

Injection

sitea
Concentration

(vg/mL)

Total

volumeb

(mL)

Entry VA,

(logMAR)c Entry FST (log10)d

Study

eye

Control

eye

Study

eye

Control

eye

P145/F c.2943delG, p.Ser981del1bpe,f/

c.2302C>T, p.Arg768Trpe,f,g

Right Macula 3.3 3 1010 300 2.6 2.6 4.3 4.5

P235/M c.1780_1783delCTCT,

p.Leu594Thrfs*42f/

c.3160T>A, p.Phe1054Ilef

Right Superior

retina

3.3 3 1010 200 1.25 1.19 4.4 4.2

P323/F c.1978C>T, p.Arg660*h/

c.2984G>A, p.Arg995Glni
Left Macula 3.3 3 1010 300 1.27 0.65 5.2 5.3

aPlanned for the macula; the bleb in P2 was unable to be raised in the macula and was in the superior retina instead.
bIntended subretinal volume was 300 mL, but P2 received approximately 200 mL, the estimate at time of surgery.
cBest-corrected visual acuity at baseline visit, measured from back-lit Early Treatment Diabetic Retinopathy Study charts adjusted for distance (0.00 logMAR = 20/

20 Snellen VA at 4 m) in P2 and P3; BVRT (Berkeley Rudimentary Vision Test) was used for P1.
dRod sensitivity (in log10 1/(phot-cd.m-2)) at baseline visit, measured by full-field stimulus testing (FST) with blue stimulus.
eJacobson et al. (2013).
fJacobson et al. (2017b).
gHanein et al. (2004).
hLi et al. (2009).
iNovel.
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reduced by�0.7–1.8 log units (l.u.) from the normal mean of 6.03 log10 1/(phot-cd.m
�2) (2SD =G0.6; n = 9,

ages 22–58) (Table 1) (Jacobson et al., 2013; Roman et al., 2007; Csaky et al., 2008).

Are there photoreceptor structural abnormalities in these patients? Cross-sectional retinal imaging with

optical coherence tomography (OCT) across the horizontal meridian of the patients through the fovea

was compared with that of normal (Figure 2). The patients represent a spectrum of foveal ONL (outer nu-

clear layer) loss. P1 had the most profound foveal ONL thinning (8.2 mm versus normal average thickness of

98 mm, 2SD = 21.5 mm). P2 had foveal ONL of 43 mm; and P3 had 79 mm, which is within normal limits (Figures

2B–2D). ONL eccentric to the fovea was generally retained; at 10� in the nasal retina, for example, P1, P2,

and P3 had 49.1, 53.8, and 54.5 mm thickness, all of which are within normal limits (average 55.7 mm, 2SD =

11.5 mm). Quantitation of theONL illustrates the differences between the patients (Figure 2E). The rod:cone

ratio across this expanse of central retina illustrates that central cell loss is mainly a loss of cone nuclei,

whereas outside the foveal region, the patients have ONL thickness that is within normal limits. These ex-

trafoveal areas are rod-dominated, attaining rod:cone ratios of 20:1 (Figure 2F).

Systemic and ocular parameters indicate an acceptable safety profile of the therapy

The patients underwent retinal surgery (including vitrectomy and subretinal injection of vector) (Hauswirth

et al., 2008) in one eye and were evaluated post-operatively with complete eye examinations, general phys-

ical examinations, and laboratory tests (see Table S1 for study schedule). Physical examinations were un-

changed from baseline, and no clinically significant abnormalities were detected in hematology, serum

chemistry, coagulation parameters, and urinalysis after retinal gene transfer. Ocular adverse events (AEs)

shared by all patients post-operatively were in the treated eyes (and all resolved): some discomfort,

Figure 1. Loss of the activity in RetGC1 variants coded by GUCY2D LCA alleles in the patients

(A) Western immunoblotting of HEK293 cell membranes expressing RetGC1 variants harboring amino acid substitutions

coded by the GUCY2D LCA alleles; probed by anti-RetGC1 antibody.

(B) The guanylyl cyclase activity of RetGC1 (mean average G SD, from 2 to 4 independent measurements) using different

preparations of HEK293 membranes reconstituted with Mg2+ GCAP1; wild type (C), Arg768Trp (:), Ser981del1bp (>),

Arg995Gln (,), and Phe1054Ile (�); the activities of RetGC1 in each case were corrected by the levels of their expression

relative to wild type.
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subconjunctival hemorrhage, and reduced intraocular pressure (see Table S2). P3 showed other surgery-

related AEs: minimal increase in vitreous cellularity (prompting use of oral steroids for 8 days post-opera-

tively, which was 6 days longer than by the protocol), then steroid-induced ocular hypertension (leading to

discontinuation of steroids and use of a topical antiglaucoma medication for 5 days), and a retinal hole

noted at surgery and treated with intraoperative laser. All AEs in P3 were resolved within 14 days.

We asked if there was any evidence of retinal damage from the surgical procedure, specifically in the region

of the induced retinal detachment (i.e., bleb). OCT scans were recorded before and at five visits after sur-

gery spanning 1 month to 9 months post-operatively (Figure S2). The site and extent of the injection are

drawn on near-infrared fundus images of the treated eyes (OD in P1, OD in P2, and OS in P3). Despite

A

B

C

D

E

F

Figure 2. Photoreceptor structural disease in the patients with GUCY2D-LCA compared with normal

(A–D) OCT scans across the horizontal meridian through the fovea in a normal subject, and in P1�P3. ONL, photoreceptor

outer nuclear layer, is highlighted in blue for visibility.

(E) Quantitation of the ONL in the patients compared with normal limits (gray bar; meanG2SD; n = 12, ages 8–48 years;

Jacobson et al., 2013) further illustrates the depressed foveal ONL in P1 and less so in P2. In P3, ONL is within the lower

limits of normal.

(F) Ratio of rods to cones across the scanned retinal area emphasizes that outside the cone-dense fovea, rods become the

dominant photoreceptor population.
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difficulties of recording such images due to nystagmus, scans were able to be performed and quantified.

P1’s bleb was in the macula and sampling of photoreceptor laminar thicknesses (ONL, IS [inner segment],

and OS [outer segment]) were at 10� in the temporal retina. P2’s bleb was not able to be placed in the mac-

ula, and the therapeutic vector was delivered (with lesser volume, Table 1) in the superior retina (see Fig-

ure S2). Measurements of ONL, IS, and OS thicknesses were at 28� superiorly. P3’s bleb was in the macula;

the importance of foveal ONL in this patient led to sampling at the fovea. All measurements made after

injection in the treated eye (compared with baseline and with the untreated eye) did not reveal any loss

of photoreceptor laminar thickness at the loci sampled in each patient (see Figure S2).

Rod photoreceptor-mediated vision improves post-therapy in P1 and P2

Visual sensitivities to chromatic stimuli in the dark-adapted state at baseline and for 9 months after unioc-

ular gene therapy were measured in treated and untreated eyes of all patients. Common to all three pa-

tients, treated eyes immediately after surgery had abnormally reduced FST sensitivities relative to baseline

(reductions ranged from 0.2 to 1.0 l.u. during the first week after surgery). By 30–60 days post-operatively,

baseline levels were regained in treated eyes of P2 and P3, whereas an improvement was already evident in

P1 (Figure 3). P1 showed functional improvements in excess of 1 l.u. in the treated eye at all post-operative

visits from 30–270 days (median 1.34, range 1–1.4 l.u., p < 0.01). Objective pupillary light responses also

improved in the treated eye of P1 (see Figure S3). P2 showed a lesser perceptual efficacy signal that ap-

peared to be delayed until the 60-day time point, but then increased steadily over subsequent visits (me-

dian of visits from 60–270 days, 0.59, range 0.33–0.78 l.u.). P3 showed no post-operative improvement by

FST (median 0.06, range �0.1 to 0.15 l.u.) (Figure 3A). Objective pupillary light responses of P2 and P3 did

not demonstrate improvements (see Figure S3).

There can be some visit-to-visit long-term fluctuation in the perceptual judgments made by subjects, and

some fluctuations were apparent in the sensitivities recorded in untreated eyes of patients (Figure 3A).

Examination of differences between eyes can account for these fluctuations. The interocular differences

of perceptual FST sensitivities related to baseline (Figure 3B, green arrows and asterisks) were statisti-

cally significant for all post-operative visits of P1 (post-operative mean 0.97 l.u., p < 0.01) and most of

the visits of P2 (post-operative mean 0.48 l.u.; p=<0.01 for all except for day 89 where it was not signif-

icant, p = 0.13).

Results of short- (blue) and long- (red) wavelength sensitivity changes from baseline are both plotted (Fig-

ure 3B), and the photoreceptor mediation of these responses are shown (Figure 3C). In all patients at all

time points, the FST responses were rod photoreceptor-mediated.

Improvement in visual acuity post-therapy in P3

Visual acuity, a conventional assay of efficacy in clinical trials of ocular disease (Ferris et al., 1982), is severely

reduced inGUCY2D-LCA (Jacobson et al., 2013, 2017b). The inclusion criterion was that visual acuity could

be no better than 20/200 (1.0 logMAR) in the eye to be treated. Best-corrected acuities were able to be

measured in P2 and P3 using ETDRS (Early Treatment of Diabetic Retinopathy) and E charts. P1 had light

perception (LP) vision only and was unable to read ETDRS letters or see the direction of the tumbling E; low

vision BVRT (Berkeley Rudimentary Vision Test) gratings were used instead (Bailey and Lovie-Kitchin 2013).

The acuity task was challenging for P1, and there was variability of results throughout the trial; in addition to

wandering eye movements, there was bilateral loss of foveal outer retinal structure (Figure 2B). Before sur-

gery, the average of screening (2.3) and baseline (2.9) results was 2.6 logMAR in each eye. Thereafter for

9 months, both eyes were most often at 2.3 logMAR than any other value (Figure 4A). Clinically, the patient

remained LP throughout the trial. P2 hadmeasurable acuities of 1.19 logMAR in the right eye and 1.25 in the

left eye at baseline. There was no major improvement or decrement in acuities in the two eyes over the

9 months of observation. P3 had asymmetry of visual acuities; the eye with worse acuity is conventionally

chosen for the subretinal injection, and this was the left eye in P3. By day 32, there was an improvement

in acuity of this eye above baseline by about 0.3 logMAR, and this persisted for the 270 days post-treat-

ment. At 9 months, the acuity of the treated eye was significantly different than baseline (Figure 4B). The

untreated eye remained at baseline levels. This degree of change in the treated eye has been considered

a conservative estimate of clinically significant improvement (Sieving et al., 2006).

Was the improved visual acuity evidence of cone photoreceptor-mediated efficacy? The final visual acuity

in P3’s treated eye cannot be definitively attributed to cone or rod mediation (Hecht, 1927; Lamb, 2016;
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Figure 3. Rod-mediated vision improves in treated eyes of patients with GUCY2D-LCA.

Dark-adapted chromatic full-field stimulus test (FST) results in P1, P2, and P3.

(A) Sensitivity changes from baseline for the short-wavelength stimulus, shown separately for untreated and treated eyes.

In the treated eye, P1 had improvements greater than 1.0 log unit at all post-operative visits; P2 reached 0.78 l.u. at the last

visit. P3 did not show improvement. Sensitivity levels at baseline are indicated in log10(1/cd.m
�2) to the left of the zero-

change dashed line.

(B) Change in sensitivity from baseline in treated (up-triangles) and untreated (down-triangles) eyes for the photopically

matched targets (blue and red lines, respectively for short and long wavelength). Localization of up-triangles above

down-triangles indicates a post-treatment improvement of the treated eye relative to the untreated eye. Green arrows

indicate interocular differences with respect to baseline; there is an asterisk when significantly different than zero

(a = 0.05, eye/visit interaction term in a linear model).

(C) Chromatic difference between sensitivities to the two targets (short-minus long-wavelength, blue minus red).

Differences near 2.54 log10 indicate rod mediation (rods detecting both colors); values near zero would imply cone

mediation. Rod mediation was observed in both eyes of the three patients at all visits. BL, baseline visit.
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Foote et al., 2018). The question of cone versus rod mediation was asked informally at baseline and post-

treatment visits when assessing fixation stability with a microperimeter (Cideciyan et al., 2009; Luo et al.,

2015). The red fixation target for the task was consistently described by the patient as red or orange

with either eye, suggesting that there was color perception mediated by L/M (long/medium wave-

length-sensitive) cone photoreceptors. Cone sensitivity was formally measured in each eye at baseline,

30 days, and after 270 days post-treatment using light-adapted static perimetry profiles across the central

visual field (see Figure S4) (Roman et al., 2005; Matsui et al., 2015; Jacobson et al., 2016). P3 was the only

patient with sufficient fixation to perform this test. Both eyes, compared with normal, were reduced to a

central island only, but the asymmetry of function in the two eyes at baseline was evident with the untreated

eye showing higher peak sensitivity than the eye later treated (see Figure S4A). Baseline and 32-day post-

operative profiles in the untreated eye were nearly identical; the treated eye at 32 days, however, had

higher sensitivity at fixation and at nearby loci within the island than at baseline. At 270 days post-opera-

tively, the untreated eye remained the same as at baseline. The treated eye continued to show a positive

difference from baseline (see Figure S4B). Average sensitivity change within 40� of field at baseline versus

two post-operative visits for untreated and treated eyes is shown graphically for light-adapted cone func-

tion (see Figure S4C, left panel). The interocular differences related to baseline were statistically significant

for the post-operative visits (p < 0.01 and p = 0.025 for 32 and 270 days, respectively). Perimetric and visual

acuity results taken together imply increased cone photoreceptor function at the locus of fixation with

treatment. Dark-adapted chromatic perimetric profiles were also performed at these visits, and there

was also a difference between untreated and treated eyes (see Figure S4C, right panel, p = 0.02 and

p = 0.023 for 32 and 270 days, respectively) suggesting improvement of parafoveal rod-mediated function

after treatment.

A

B

Figure 4. Visual acuities for untreated and treated eyes in the patients

(A) Light perception (LP) vision in P1 did not allow for standard ETDRS visual acuity measures, as in P2 and P3. A low-vision

method, BVRT (Berkeley Rudimentary Vision Test) charts, was used instead. Scores from BVRT sessions are plotted.

(B) P2 and P3 had ETDRS (Early Treatment of Diabetic Retinopathy), and tumbling E data collected and visual acuity

change from baseline are plotted. Labels on the left and right of each panel indicate the average best-corrected visual

acuity at baseline and at month 9, respectively, where formal statistics were performed. Horizontal dashed lines

correspond to no change; +3 and�3 ETDRS chart lines for reference. Change of one line in the ETDRS chart corresponds

to 0.1 logMAR. Symbols: up-triangles, untreated eye results; down-triangles, treated eye results. The vertical line at day

0 of Treated Eye graphs represents the day of surgery. Post-operative reduction in acuity of the treated eye occurred in all

patients (not plotted) but then recovered to baseline by day 7. *, Mean at last visit significantly different than at baseline

(two sample, two-tailed t test, a = 0.05); n.s., difference not significant.
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DISCUSSION

More than a century of basic research has led to detailed understanding of the vertebrate phototransduc-

tion cycle—the biochemical cascade in rod and cone photoreceptors that occurs when light is absorbed

and vision signaling begins. Activation and amplification of the process is followed by deactivation, which

allows phototransduction to repeat and vision to continue (Ebrey and Koutalos, 2001; Vinberg et al., 2018).

With knowledge of the molecular mechanisms of these early stages of vision came elucidation of many

candidate genes for inherited photoreceptor diseases. TheGUCY2D gene encodes retinal membrane gua-

nylyl cyclase (RetGC1), a key enzyme in the deactivation path of phototransduction. Mutations in GUCY2D

are now known to be a relatively common cause of the severe childhood-onset autosomal recessive retinal

blindness, LCA (Perrault et al., 1996; den Hollander et al., 2008).

Before the current report, there were only two other molecular forms of LCA with evidence of visual

improvement in early cohorts of clinical trials of gene-based therapy. The first-in-human results from ocular

subretinal gene augmentation therapy in RPE65-LCA were reported from three patients each in nearly

contemporaneous Phase I/II clinical trials about 12 years ago (Cideciyan et al., 2008; Bainbridge et al.,

2008; Maguire et al., 2008; Hauswirth et al., 2008). There was safety; AEs were attributable to the ocular sur-

gery. Efficacy in most RPE65-LCA trials has been in rod photoreceptor-mediated vision in the region of the

subretinal injection. Visual acuity improvement to a level that was clearly from cone photoreceptors has

been lacking (Jacobson et al., 2012; Maguire et al., 2019; Pennesi et al., 2018). The form of LCA caused

by CEP290 mutations showed an adequate safety profile from a gene-based intravitreal therapy in Phase

I/II (Cideciyan et al., 2019). In contrast to RPE65-LCA, the visual improvement in CEP290-LCA was all cone

mediated with prominent visual acuity gain; this was consistent with the early loss of rod structure and func-

tion and retained central-foveal cone photoreceptors in this disorder.

After a decade of gene therapy clinical trials, clinicians and scientists working in this nascent field of treat-

ments of rare and incurable genetic retinal disorders have few successes to claim (Garafalo et al., 2020). The

results of the initial cohort of our Phase I/IIGUCY2D-LCA subretinal gene augmentation therapy trial brings

the total of ‘‘successes’’ (safety and visual improvement) to three forms of LCA, all representing different

molecular mechanisms (Garafalo et al., 2020). How do we explain the efficacy signals in these patients in

terms of rod and cone vision? Function-structure relationships in this severe retinal disease established

GUCYD-LCA as having potential for both rod and cone visual improvement (Cideciyan and Jacobson,

2019; Jacobson et al., 2017b; Garafalo et al., 2020). P1 had a long-standing foveal loss of photoreceptors,

but the remainder of the macula and surrounding retina was intact; there was no expectation of foveal cone

improvement, based on the central retinal pathology. Visual acuity was severely impaired in both eyes at

baseline, and there were no data trends suggesting consistent improvement in the post-operative period.

Themacular injection, however, would be expected to transduce the residual parafoveal cone and rod pho-

toreceptors. Rod photoreceptor function improved by �1 log unit in the treated eye both by perceptual

and objective measures. Outside of the foveal region, cone structure is not able to be quantified indepen-

dent of rods. So, whether or not there were surviving parafoveal cones to transduce is unknown.

P2 had measurably decreased foveal ONL thickness at baseline but not to the degree of the defect in P1.

Baseline visual acuity of 1.25 logMAR did not change after treatment. Consistent with the lack of all catalytic

activity from both alleles, only rod function was measurable and baseline acuity likely originated from rods

(Jacobson et al., 2013). The superior retinal injection site would not test any hypothesis about transducing

and improving visual acuity of central cones. Rod photoreceptor-mediated vision, however, did improve.

The lesser degree of perceptual improvement than in P1 may be due to the lesser volume of vector-gene

able to be surgically delivered (Table 1), although �0.8 l.u. is still a substantial increase.

P3 had normal foveal ONL thickness and received a macular subretinal injection. The visual acuity at base-

line of 1.27 logMAR improved to 0.92 logMAR and persisted near this level for the subsequent 9 months;

the �0.3 logMAR change (3 ETDRS lines) has been considered a clinically meaningful endpoint for ocular

clinical trials (Sieving et al., 2006). The caveat is that, having chosen the worse eye (by acuity) to treat, this

significant change from baseline does not improve central vision to a level considered definitively to be

mediated by L/M (long/medium wavelength-sensitive) cone photoreceptors (Hecht, 1927; Lamb, 2016;

Foote et al., 2018). Increased understanding of the photoreceptor basis of P3’s acuity came with chromatic

light-adapted sensitivity measures across the central retina, which showed partially retained cone function

consistent with remnant catalytic activity from one of the two alleles (Jacobson et al., 2013). In contrast to
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the untreated eye, which did not change throughout the trial, the treated eye improved in cone-mediated

sensitivity after treatment. The improved acuity in P3 can be considered due to increased cone photore-

ceptor-mediated function. Of interest, there was also some evidence of an increment in perceptual rod

function within this retinal area.

Were such results expected fromproof-of-concept research inmurinemodels that led to the clinical trial? Hu-

manGUCY2D-LCA, causedby the deficiency of RetGC1 (Jacobson et al., 2013), does not fully match a pheno-

type in the RetGC1 knockout murine model (Yang et al., 1995). Just like a human retina that has two RETGC

isozymes (Lowe et al., 1995), a murine retina also has the two guanylyl cyclases, RetGC1 and RetGC2 (respec-

tively, coded by Gucy2e and Gucy2f genes) (Garbers, 1999; Yang et al., 1995, 1996). However, a mouse

RETGC1 knockout model (Yang et al., 1999) serves mainly as a model for cone photoreceptor therapy

(Boye, 2014), because rod activity in the RetGC1-deficient mice, albeit strongly reduced, remains well detect-

able by ERG, whereas cone activity is completely missing (Yang et al., 1999). AAV-mediated gene augmenta-

tion indicated restoration of cone-mediated function and visual behavior in RetGC1 knockout mice (Boye

et al., 2011, 2013; Mihelec et al., 2011). Cone function in human retina could in theory be positively affected.

The potential for restored rod function was realized because of the proof-of-concept studies conducted in

mice that lacked both RetGC1 and RetGC2 (Boye, 2014; Baehr et al., 2007; Boye et al., 2013).

In a mouse model lacking both RetGC1 and RetGC2, photoreceptors degenerate (Baehr et al., 2007),

whereas rods lacking only RetGC1 survive while cones become diminished in numbers (Yang et al.,

1999). RetGC2 is an ancillary enzyme in mouse rods (Peshenko et al., 2011; Olshevskaya et al., 2012) and

is almost undetectable in cones (Baehr et al., 2007; Xu et al., 2013). The contribution of RetGC1 and RetGC2

in human rod and cone physiology remains unclear, but RetGC1 evidently very strongly dominates both,

because the lack of RetGC1 catalytic activity (Figure 1) incapacitates rod and cone vision in patients with

LCA. However, some mutations that inactivate RetGC1 (Peshenko et al., 2020) selectively affect rod but

not cone vision (Stunkel et al., 2018). One of the possible explanations for that paradoxical phenotype is

that, in some individuals, RetGC2 strongly contributes to the cone function. Hence, the efficacy of gene

augmentation therapy in GUCY2D-LCA could be potentially influenced by the content of RetGC2 in

photoreceptors.

In conclusion, there is evidence of both safety and efficacy in this first-in-human subretinal gene therapy for

GUCY2D-LCA. The sample size is small and this was not a placebo-controlled trial, but that has been the

case in all early phases of gene-based orphan retinal disease trials to date. There was significantly improved

rod function, and in one patient, cone function also improved at this dose, the lowest intended for the trial.

This bodes well, efficacy-wise, for future cohorts in the treatment of this severe childhood-onset photore-

ceptor disease.

Limitations of study

This interim report is limited by the number of patients and the duration of the follow-up period. The clinical

trial is ongoing, and more patients will be enrolled; the three patients who are described here will also

continue to be followed per the study protocol, and future measures of safety and efficacy will be made

at subsequent study visits.

Resource availability

Lead contact

Requests for additional information can be directed toward the lead contact, Samuel G. Jacobson, MD,

PhD (jacobsos@pennmedicine.upenn.edu).

Material availability

All materials that were generated and data that were generated are included in the manuscript. The

GUCY2D coding sequence used in the generation of the vector can be viewed with the following accession

information: GenBank NM_000180.4.

Data and code availability

All data are published in this manuscript and supplement; additional requests for data can bemade by con-
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Figure S1: RetGC1 dimer combinations that can be produced by the GUCY2D alleles in the 

patients. Related to Figure 1. (A) The schematics of the normal RetGC1 primary structure and its 

catalytically active dimer; SP- the removable N-terminal signal peptide, ECD- extracellular domain, TM- 

transmembrane fragment, KHD- kinase homology domain, DD- dimerization domain, CAT- catalytic 

domain (Garbers, 1999). RetGC1 becomes catalytically active only as a dimer (Yang et al., 1997), when 

the catalytic domains of the two subunits form a common active site converting GTP to cGMP (Liu et l., 

1997). (B) In P1 (Table 1), the Ser981del1bp frame-shift truncates the C-terminal portion of the catalytic 

domain, but the products of both alleles harbor the normal dimerization domain and hence can produces 

homodimers Ser981del1bp:Ser981del1bp or Arg768Trp:Arg768Trp and a heterodimer Ser981del1bp: 

Arg768Trp. (C) One of the two LCA alleles in the patient P2, Phe1054Ile, retains both the dimerization 

domain and the catalytic domain. The Leu594Thr fs42* RetGC1 coded by the second LCA allele has a 

truncated kinase homology domain and lacks both the dimerization and the catalytic domains altogether. 

Hence, this RetGC1 mutant cannot create the active site and likely fails to dimerize, neither as a 

homodimer nor as a heterodimer.  (D). In P3, also only one of the two GUCY2D LCA alleles, Arg995Gln, 

can form a homodimer Arg995Gln: Arg995Gln. The second allele product, Arg660*, is truncated in the 

middle of the kinase homology domain, hence it lacks the dimerization and the catalytic domains and 

would be unable to dimerize and form the active site. Asterisks indicate position of the mutations in the 

primary structure of the polypeptides. (E) HEK293 cells co-transfected with RetGC1 cDNAs coding for the 

two LCA allele products in P1 do not produce active enzyme. RetGC activity was assayed in the 

presence of 20 µM GCAP1. 



Figure S2: Quantitation of the photoreceptor sublayers in the patients at Baseline and post-

operative visits spanning 9 months. Related to Figure 2. Representative OCT scans at (A) Baseline, 

(B) visit 3 and (C) visit 5 after the surgery. Above the scans are near-infrared fundus images of the 

treated eyes with site of bleb (injection location) marked (delimited by dashed line). White lines on the 

fundus images represent the position of the OCT scan. The white up-triangle along the line on the fundus 

images and on the eccentricity axes of the scans show the location selected for quantitation of 

photoreceptor layers in D-F. (D) Bar graphs are a measurement of ONL (outer nuclear layer), (E) IS (inner 

segment), and (F) OS (outer segment) thickness at baseline and at five visits after surgery for the treated 

eye (dark gray bar) and control eye (light gray bar). Dashed and solid black lines delimit intravisit 

variability in the treated and untreated eye, respectively. 



Figure S3: Dark-adapted pupillary light reflexes in the patients at baseline and post-operative 

visits spanning 9 months. Related to Figure 3. (A) Non-linear functions best fit to pupillary response 

amplitudes measured at 0.9 s after the start of 1 s long red stimuli over a 6 log unit dynamic range of 

luminances presented to dark-adapted eyes. Thicker lines represent the pre-treatment time points, 

thinner black and green lines represent the post-treatment time points in untreated and treated eyes, 

respectively. Horizontal dashed lines demarcate criterion amplitude of 0.3 mm used to define response 

thresholds. (B) Change in response threshold from average pre-treatment values. Black up-triangles are 

treated eyes; gray down-triangles are untreated control eyes. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Cone and rod function at baseline and post-op visits in P3. Related to Figure 4. (A) 

Light-adapted (600 nm stimulus) sensitivity profiles across the vertical meridian in untreated (left panel) 

and treated (right panel) eyes at baseline (symbols connected by gray lines) and post-op day 32 (symbols 

connected by black lines) visits in P3. Normal data, shaded area ±2 SD from mean. (B) Light-adapted 

profiles comparing baseline and 270 days post-op visit data in P3. Plots and symbols as in A. F, fixation; 

I, inferior, S, superior visual field; bracket below profiles represents the data averaged and plotted for the 

horizontal profile. Data from vertical profiles within the central 40⁰ were also averaged and plotted in C.  

(C) Sensitivity changes (average of horizontal and vertical profiles across central 40
o
) are shown as bars 

for untreated and treated eyes. Left panel: light-adapted 600 nm data. Right panel: dark-adapted 500 nm 

data. All dark-adapted 500 nm sensitivities were rod-mediated. Asterisks on the treated eye bars indicate 

when interocular differences with respect to baseline were significantly different than zero (α=0.05, 

eye/visit interaction term in a linear model). 

 

 

 

 



 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Schematic diagram of the gene therapy vector. Related to Table 1. AAV ITR= Adeno-
associated virus type 2 inverted terminal repeat; hGRK1= human rhodopsin promoters (Khani et al. 
2007); splicing signal= SV40 splice donor, splice acceptor sites; hGUCY2D= full coding region of human 
guanylate cyclase 1; bGH polyA= bovine growth hormone poly-adenylation signal 
 

 



Table S1. Schedule of Study Visits. Related to Table 1. 

Visit: 
Pre-therapy Days Years 

Screening Baseline 1 2 3 4-7 8-14 30 60 90 180 270 365 1.5 2 

Informed consent/assent ■               

LCA genetic testing (if needed) ■               

Medical and surgical history ■               

Physical examination ■               

Electrocardiogram ■               

Pregnancy test ■ ■      ■        

Vital signs measurements ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

Study agent administration   ■             

Hematology, chemistry, 
urinalysis 

■ ■    ■  ■     ■  ■ 

Ophthalmic exam  ■ ■  ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

Best corrected visual acuity ■ ■  ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

Full-field stimulus testing ■ ■   ■  ■ ■ ■ ■ ■ ■ ■ ■ ■ 

Fundus imaging ■ ■  ■ ■   ■ ■ ■ ■ ■ ■ ■ ■ 

Optical coherence tomography ■       ■ ■ ■ ■ ■ ■ ■ ■ 

Pupillometry ■ ■      ■ ■ ■ ■ ■ ■ ■ ■ 

Oculomotor instability ■ ■      ■ ■ ■ ■ ■ ■ ■ ■ 

Questionnaire  ■      ■  ■ ■  ■ ■ ■ 

Adverse event recording ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 

 
Note: Electroretinography (ERG) was not performed due to the facts that ERGs are non-detectable in most of these patients and nystagmus can 

make recording and interpretation difficult. 

Note: Dosing and cohort information is as follows: 

Part A: Dose Escalation 

Part B: Patients will be treated with the maximum tolerated dose or the maximum administered dose based on Part A. 

Total enrollment will be approximately 15 patients. 

Cohorts 1-4: patients ≥18 years old 

Cohort 5: patients ≥6 years old and <18 years old 

  



Table S2. Ocular Adverse Events. Related to Table 1.  

Description of adverse event 
No. of patients 

experiencing event 
(n=3) 

Intensity 

Discomfort  3 Mild 

Subconjunctival hemorrhage  3 Mild 

Hypotony 2 Mild 

Vitreous cells  1 Mild 

Steroid induced ocular hypertension 1 Mild 

Retinal hole  1 Mild 

 

  



TRANSPARENT METHODS 
 
REGULATORY APPROVALS AND OVERSIGHT 

The open label clinical trial, registered on ClinicalTrials.gov (NCT03920007), is being performed at Scheie 

Eye Institute of the University of Pennsylvania (UP) and Wills Eye Institute (WEI) of Thomas Jefferson 

University Hospital. The trial protocol was reviewed and accepted by the United States Food and Drug 

Administration (Investigational New Drug application IND 18659). Approvals were obtained from the 

Institutional Review Boards and Institutional Biosafety Committees of UP and WEI. A Data and Safety 

Monitoring Committee oversees the trial. The tenets of the Declaration of Helsinki were followed. 

Informed consent was obtained from the participants. 

METHOD DETAILS 

The gene therapy vector (Figure S5). The AAV5-GUCY2D vector comprises the human rhodopsin kinase 

promoter (Khani et al.,2007), followed by the human GUCY2D coding sequence (accession # 

NM_000180.4) and a poly adenylation signal derived from bovine growth hormone, all flanked by AAV2 

inverted terminal repeats and contained within AAV5 capsid. Virus was manufactured under good 

manufacturing practices (GMP) and purified as previously described (Nass et al., 2017).  

Molecular diagnosis. GUCY2D mutations in the patients were certified by CLIA (Clinical Laboratory 

Improvement Amendments) approved molecular laboratories.  

Surgical procedure. Three port pars plana vitrectomy (core and peripheral; intravitreal triamcinolone was 

used) was performed and a posterior vitreous detachment was induced. The subretinal injection needle 

(41-gauge) was guided to the region around the superior vascular arcades and the surgeon placed a 

retinotomy within the boundaries of the arcades (MicroDose Injection Kit, MedOne Surgical, Inc). The 

study drug was injected slowly to form a subretinal bleb in the macula. After study drug administration, the 

fundus was examined for any retinal breaks. A partial air-fluid exchange was performed. Sclerotomy sites 

were inspected for leakage and no sclerotomies required suturing. A normal intraocular pressure was 

verified. Triamcinalone acetonide (20mg in 0.5mL) was injected periocularly. Patients took oral 

prednisone (dose at investigator discretion, but a maximum dose of 1mg/kg up to 80mg) daily starting the 

day before surgery through the second day following surgery. Prednisolone 1% drops and trimethoprim 

and polymyxin B drops were also administered to the study eye four times per day starting the day after 

surgery through day 9. 

Safety evaluations. Ocular safety was assessed with standard eye examinations at two baseline visits, 

and daily for the first 14 days after treatment and at 5 visits post-treatment spanning 9 months. OCT was 

performed to assess retinal integrity during the pre- and post-treatment evaluations. Systemic safety at 

baseline and post-operative visits was assessed with physical examinations, routine hematology, serum 

chemistry, coagulation parameters, and urinalysis. To document fundus appearance, photographs (using 

an infrared camera to avoid excess visible light exposure) were taken at baseline and at post-treatment 

visits.  

Visual function and retinal structure. Visual function was measured using ETDRS visual acuity (Ferris et 

al., 1982) in two of the patients. One patient’s severe visual disability precluded use of standard ETDRS 

methods and the Berkeley Rudimentary Vision Test was used (Bailey et al., 2012). Dark-adapted 

chromatic full-field stimulus testing (FST) was performed with short- (blue) and long-wavelength (red) 

stimuli (200 ms duration) (Jacobson et al., 2017; Roman et al., 2007) Dark-adapted transient pupillary 

light reflexes were performed with red (1 s duration) full-field stimuli (Charng et al., 2017; Krishnan et al., 



2020). In each patient, baseline data were available from screening and baseline pre-treatment visits; 

post-treatment data were obtained up to 9 months after surgery. 

 For FST, the dependent variable was visual threshold expressed in log10 phot-cd m
-2

. Multiple 

measurements (median n=18) were obtained for both conditions (blue and red) at each visit. Linear 

models were used separately for each condition with treatment-by-visit interactions as fixed effects. The 

treatment factor had two levels (treated and untreated eyes), and the visit factor had 5 or 6 levels 

(baseline and subsequent study visits). The visits where the interactions were significant (α=0.05) are 

marked with asterisks (Figure 3), indicating where the interocular difference was significantly different 

than the one at baseline, and 95% confidence intervals for the visit means (±2 SEM) are shown in 

brackets. In these instances the treated eye showed better relative performance than the untreated. 

 For visual acuity, ETDRS and tumbling E charts read from left-to-right, and right-to-left were used 

in each eye to attempt to minimize learning effects. 5 to 8 independent acuity estimates were obtained 

pre-treatment on different days, 2 to 3 estimates were obtained post-treatment. Comparisons were 

performed between all available pre-treatment and post-treatment samples at month 9 (two sample, 2-

tailed t-test, α=0.05). The dependent variable was the Minimum Angle of Resolution expressed in log10 

(logMAR). Levels of change from baseline in logMAR and in ETDRS equivalent lines (no change, 3 lines 

improvement or decrease, these corresponding to ±0.3 logMAR changes; Figure 4) enabled comparison 

with other clinical trials of retinal degenerations that used ETDRS as an outcome (Sieving et al., 2006). 

 Chromatic light-adapted (600 nm) and dark-adapted (500 and 650 nm) sensitivity profiles were 

performed with a modified automated perimeter and using published methods (Roman et al., 2005; 

Matsui et al., 2015; Jacobson et al., 1986). A comparison of sensitivity changes from baseline (averaged 

over horizontal and vertical profiles within the central 40⁰, Fig. 5) was performed as described for FST, 

with visit factor having three levels (baseline, Day 32 and Day 270), separately for 500- and 600 nm data. 

 Retinal structure was assessed by cross-sectional imaging using spectral domain optical 

coherence tomography (OCT; RTVue-100, Optovue Inc., Fremont, CA) (Jacobson et al., 2013; Jacobson 

et al., 2017; Sumaroka et al., 2016). The OCT images were recorded routinely in the macula and 

extramacular retina of each eye of the patients. Scans at post-operative visits were compared by 

observation with those at baseline; measurements were also made of outer nuclear layer (ONL), inner 

segment (IS) and outer segment (OS) thicknesses. Post-acquisition processing of OCT data was 

performed with custom programs (MATLAB Release, 2020, MathWork, Natick, MA). Three 30°-wide B-

scans composed of 1,019 A-scans or longitudinal reflectivity profiles (LRPs) were selected from both eyes 

of each subject at each visit. All scans were aligned by straightening the major hyperreflective signal 

believed to originate near the interface between the basal aspect of the retinal pigment epithelium and 

Bruch’s membrane; the foveola was identified manually as the maximum depression. Quantitative 

measurements of retinal laminae were performed after reduction of lateral sampling density by averaging 

seven neighbors (sampling bins were 0.2 degrees).  Three retinal layers were identified and manually 

segmented with a computer-assisted algorithm using LRPs. The hyposcattering ONL was defined 

between the hyperscattering outer plexiform layer (OPL) and the maximum of hyperscattering outer 

limiting membrane (OLM); the foveal ONL thickness was defined as the distance between the internal 

limiting membrane and outer limiting membrane; IS length was defined as the distance between OLM 

peak and peak of IS/OS; and OS as distance between IS/OS peak and inner boundaries of RPE.  From 

this segmentation, thickness of ONL, IS and OS layers were extracted. At selected eccentricities, single 

value of layer thickness represents the average of 3 measurements along the horizontal scan at 0.2-

degree increments centered at the foveal pit, or 5 measurements with the same increment centered 10
o
 

temporal and 28
o
 superiorly. 

Biochemical studies. Human RetGC1 was expressed in HEK293 cells from a modified pRCCMV vector 

containing RetGC1 cDNA transfected using calcium-phosphate precipitation method and the membranes 

containing RetGC1 were isolated as previously described in detail (Peshenko et al., 2015). Mutations 

https://www.frontiersin.org/articles/10.3389/fnins.2020.00800/full#B24


were introduced in RetGC1 cDNA using ‘splicing by overlap extension’ site-directed mutagenesis in vitro 

or by using chemically synthesized fragments harboring the desired mutations to replace portions in the 

RetGC1 cDNA that harbored new restriction endonuclease sites not altering the encoded protein 

sequence (Peshenko et al., 2020). Recombinant human GCAP1 was expressed and purified as 

described (Peshenko et al, 2008) with modifications (Peshenko et al., 2019). Guanylyl cyclase activity 

was assayed using [alpha-
32

P]GTP as a substrate (Peshenko et al., 2020; Peshenko et al., 2004)
 
in the 

presence of 2 mM EGTA and 10 mM MgCl2. [32P]cGMP was quantified using thin-layer chromatography 

and liquid scintillation counting as described previously (Peshenko et al., 2020). 

Schedule of Study Visits.  The schedule of study visits and the study activities performed at each visit are 

summarized in Table S1. 
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