

Department of Biochemistry and Molecular Biology Faculty Papers Department of Biochemistry and Molecular Biology

10-1-2017

Detection and molecular status of Isospora sp. from the domestic pigeon (Columba livia domestica).

Ryuma Matsubara Thomas Jefferson University; Tohoku University

Yasuhiro Fukuda Tohoku University

Fumi Murakoshi Tohoku University

Osamu Nomura Ushihama Pet Clinics

Toru Suzuki Odagawa Animal Hospital Follow this and additional works at: https://jdc.jefferson.edu/bmpfp

Part of the Medicine and Health Sciences Commons See next page for additional authors Let US Know now access to this document benefits you

Recommended Citation

Matsubara, Ryuma; Fukuda, Yasuhiro; Murakoshi, Fumi; Nomura, Osamu; Suzuki, Toru; Tada, Chika; and Nakai, Yutaka, "Detection and molecular status of Isospora sp. from the domestic pigeon (Columba livia domestica)." (2017). *Department of Biochemistry and Molecular Biology Faculty Papers*. Paper 123. https://jdc.jefferson.edu/bmpfp/123

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Authors

Ryuma Matsubara, Yasuhiro Fukuda, Fumi Murakoshi, Osamu Nomura, Toru Suzuki, Chika Tada, and Yutaka Nakai

- 1 **Title:**
- 2 Detection and molecular status of *Isospora* sp. from the domestic pigeon (*Columba*
- 3 *livia domestica*)
- 4
- 5 Authors: Ryuma Matsubara^a, Yasuhiro Fukuda^a, Fumi Murakoshi^a, Osamu Nomura^b,
- 6 Toru Suzuki^c, Chika Tada^a, Yutaka Nakai^a* (*: Corresponding author)
- 7

8 Affiliations and addresses of the authors:

- 9 a: Laboratory of Sustainable Environmental Biology, Graduate School of
- 10 Agricultural Science, Tohoku University. 232-3 Yomogida, Naruko-Onsen, Osaki,
- 11 Miyagi 989-6711, Japan.
- 12 b: Ushihama Pet Clinics, 2547-11 Ninomiya, Kumagawa, Fussa, Tokyo 197-0002,
- 13 Japan.
- 14 c: Odagawa Animal Hospital, 2129 Noborito, Tama, Kawasaki, Kanagawa 214-0014,
- 15 Japan.

17 E-mail address, telephone and fax numbers of the corresponding author:

- 18 E-mail: nakai@bios.tohoku.ac.jp
- 19 Telephone/Fax: +81-229-84-7391

21 Abstract

22	The domestic pigeon, Columba livia domestica, is reared for meat
23	production, as a pet, or for racing. Few reports have characterized the parasitic
24	protists from the genus Isospora isolated from Columbiformes. We detected
25	Isospora-like oocysts from C. livia reared for racing. The oocyst contained two
26	sporocysts, and each sporocyst included four sporozoites. The sporulated oocysts
27	(n=4) were spherical; their mean diameters were 25.6 (24.0–27.2) \times 24.7 (23.4–26.0)
28	μ m. Micropyles, polar granules, and oocyst residuum were absent. The mean length
29	and width of the sporocysts (n=8) were 19.5 (18.5–20.5) and 11.2 (10.2–12.1) μ m,
30	respectively. Stieda and sub-Stieda bodies were observed. Single-oocyst PCR
31	revealed two different 18S rRNA gene sequences and one 28S rRNA gene sequence
32	in a single oocyst of Isospora sp. Based on a phylogenetic analysis of the 18S rRNA
33	gene, the two sequences made a group which fell within a cluster of known avian
34	Isospora species. A tree based on the 28S rRNA gene sequence indicated that
35	sequences from the pigeon Isospora sp. fell within a cluster of avian Isospora
36	species. Both trees failed to clarify the phylogenetic relationships among the avian

37	Isospora species due to limited resolution. Because the morphological description of
38	Isospora sp. is based on only four oocysts, Isospora sp. is not proposed as a novel
39	species here. This is the first description of Isospora sp. isolated from the domestic
40	pigeon C. livia.

42 Keywords:

- 43 Isospora sp., Columba livia domestica, domestic pigeon, coccidia, Atoxoplasma
- *columbae*

46	The genus Isospora (Coccidia: Eimeriidae) comprises parasitic protists
47	belonging to the phylum Apicomplexa and is distributed worldwide. Coccidian
48	parasites are highly host specific and taxonomic studies have relied mostly on host
49	specificity [1]. The domestic pigeon, Columba livia domestica, is reared for meat
50	production, as pets, and for racing. Coccidian parasites are important pathogens in
51	pigeon rearing because the parasites cause intestinal disease, such as diarrhea, and
52	are sometimes lethal [2]. Two Eimeria species have been characterized as causative
53	agents of coccidiosis in pigeons, while no Isospora species have been isolated from
54	C. livia [3]. Recently, we found Isospora-like oocysts detected in the feces of C.
55	livia. In this report, we describe morphological characteristics and perform a
56	phylogenetic analysis of the Isospora sp. from C. livia based on the single-oocyst
57	method.
58	Unsporulated coccidian oocysts were obtained from droppings gathered from
59	16 domestic pigeons reared in Tokyo, Japan, and kept at 4°C within a humid tube.
60	To identify these oocysts, we performed sporulation by referring to a standard
61	technique for avian coccidia [4] equipping some modifications. In brief, the feces

62	were placed in 2.5% (w/v) potassium dichromate solution (K ₂ Cr ₂ O ₇) and incubated
63	at 25°C for 5 days under aerobic conditions. The material was then passed through a
64	fine mesh and the oocysts were purified by sucrose gradient centrifugation [5] and
65	identified. In a result, Eimeria oocysts were dominant and oocysts of Isospora sp.
66	were hardly detectable. We identified the <i>Eimeria</i> oocysts as <i>E. labbeana</i> [6] and <i>E.</i>
67	columbarum [7] based on morphological features. Despite Isospora sp. was less
68	frequent in the population, we could identify these based on the size, and the number
69	of sporocysts per oocyst. The purified oocysts were stored at 4°C in
70	phosphate-buffered saline until examination.
71	Sporulated oocysts were suspended in Milli-Q purified water (Millipore,
72	Billerica, MA, USA). Diluted drops containing oocysts were placed on plastic
73	dishes. Each Isospora oocyst was isolated from the drops under an inverted
74	microscope (TMD300; Nikon, Tokyo, Japan) using a micropipette or glass capillary.
75	To eliminate additional oocysts as contamination picked up oocysts were passed
76	through several water drops, and we checked contamination at each step by
77	microscopic observation. The isolated oocysts were individually placed onto a cover

78	glass and verified by thorough observation, and were then photographed using a
79	differential interference contrast inverted microscope (TMD300) with a $\times 40$
80	objective lens. In total, four oocysts were observed for the morphological
81	description.
82	A representative oocyst is shown in Fig. 1. Table 1 summarizes the
83	morphological features of four isolated oocysts and eight isolated sporocysts. The
84	oocysts were spherical, consisted of two sporocysts, and each sporocyst included
85	four sporozoites. The mean oocyst diameters were 25.6 (24.0–27.2) \times 24.7 (23.4–
86	26.0) μ m, and the length/width (L/W) ratio was 0.99–1.1. The monolayer wall was
87	~1.5 μ m thick. The oocysts were light pink and with a rough surface. The average
88	diameters of the sporocysts were 19.5 (18.5–20.5) \times 11.2 (10.2–12.1) $\mu m,$
89	respectively, the L/W ratio was 1.6–2.0, and the wall was ~0.5 μ m thick. The texture
90	was that of a single, smooth layer. The Stieda body was nipple-like and 1.8 (1.4–2.2)
91	μm in width, the sub-Stieda body was 5.1 (4.6–5.6) \times 2.9 (2.6–3.2) μm in width, and
92	the sporocyst residuum consisted of loosely clustered homogeneous granules of
93	various sizes. The sporozoites (n=16) contained two refractile bodies: the smaller at

94	the apical end and the larger at the posterior end. None of the pigeons presented with
95	clinical symptoms in the poultry house; therefore, the Isospora sp. would be
96	nonpathogenic or rarely pathogenic. However, to address the pathogenicity, an
97	experimental infection to pathogen-free pigeons will be required.
98	We then reviewed the literature on <i>Isospora</i> spp. infecting birds of the genus
99	Columba or related genera. Isospora gallicolumbae was previously isolated from
100	Beccari's ground dove, Gallicolumba beccarii, in Papua New Guinea [8]. We
101	compared the taxonomic information of <i>I. gallicolumbae</i> with that of the <i>Isospora</i> sp.
102	from domestic pigeons. The reported sizes of oocysts and sporocysts of <i>I</i> .
103	gallicolumbae are 16.0 \times 20.0 μm and 8.0 \times 12.0 μm , respectively. These sizes are
104	smaller than those of the Isospora sp. detected in this study. Furthermore, sporocysts
105	of <i>I. gallicolumbae</i> possess no sub-Stieda bodies, while such structures were clearly
106	observed in the pigeon Isospora sp. (Fig. 1). Gallicolumba beccarii and C. livia
107	belong to different genera in the family Columbidae, suggesting different host ranges
108	of I. gallicolumbae and the pigeon Isospora sp. due to the strict host specificity of
109	isosporoid species. In addition, we observed that the morphological features of the

110	pigeon Isospora sp. differed in many ways from I. gallicolumbae. Thus, the pigeon
111	Isospora sp. is morphologically and biologically distinguishable from I.
112	gallicolumbae.
113	After recording the morphological features, each oocyst was subjected to
114	single-oocyst polymerase chain reaction (PCR) according to previously described
115	methods with modifications [9]. Prior to freeze-fracture we carefully observed drops
116	again and verified no additional oocyst existed. Each isolated oocyst was transferred
117	to a PCR tube; the tubes were then subjected to five freeze-thaw cycles to rupture the
118	oocyst wall. To improve the efficiency of PCR amplification, we used a total
119	genomic DNA amplification technique with a GenomiPhi V2 Whole-Genome
120	Amplification Kit (GE Healthcare, Tokyo, Japan). The enriched DNA product was
121	diluted 10–100-fold with Milli-Q water and used as the PCR template. The 18S
122	rRNA gene was amplified with the primers E18SF and E18SR [10], and the 28S
123	rRNA gene was amplified with the forward and reverse primers E28S-4Fw
124	(5'-GACCTGAAATCAGTCGAGGTTAC-3') and E28S-974Rv
125	(5'-CTTGGTCCGTGTTTCAAGACGC-3'), respectively. The primers targeting the

126	28S rRNA gene (corresponding to positions 4–974 bp of Eimeria tenella) were
127	designed manually based on an alignment of the 5' region of the 28S rRNA gene
128	sequences of related species Eimeria tenella (AF026388), E. alabamensis
129	(AF076861), Atoxoplasma sp. (AY283869), Toxoplasma gondii (AF076901,
130	L25635), Plasmodium falciparum (U48228), and Cryptosporidium parvum
131	(AF040725).
132	We subjected all four oocysts to single-oocyst PCR; however, for both genes
133	PCR amplification was successful for only one same oocyst. The low efficiency of
134	PCR amplification was probably due to the small amount of genomic DNA in a
135	single oocyst. Because direct sequencing was not able to clearly determine the
136	sequence of the 18S rRNA gene, which exhibited heterogeneity, we used the
137	standard TA cloning technique prior to sequencing and obtained two sequences. In
138	contrast, the nucleotide sequence of the 28S rRNA gene could be determined by
139	direct sequencing. The sequences have been deposited in the DNA Data Bank of
140	Japan (DDBJ) with accession numbers AB757860 and AB757862 for the 18S rRNA,
141	and AB757865 for 28S rRNA genes, respectively. Two different 18S rRNA gene

142	sequences were obtained from one oocyst suggesting two alternative possibilities.
143	Coccidian oocyst is formed from diploid zygote. During sporogony, eight haploid
144	sporozoites are produced as the result of meiosis and mitosis. The two individual
145	sequences might be derived from each haploid genome of sporozoites within one
146	oocyst. The other possibility is the heterogeneity of the 18S rRNA genes existing in
147	the haploid genome of <i>Isospora</i> sp. It has been suggested that the rapid
148	birth-and-death evolution of the apicomplexan genome generated multiple
149	heterogeneous copies of the 18S rRNA gene in the haploid genome [11]. Ikarashi et
150	al. (2013) discovered that Cryptosporidium andersoni carries two different
151	genotypes heterogeneously in its haploid genome [12].
152	There were other eimerian oocysts in the same pigeon-stool specimen. We
153	also isolated more than 15 eimerian oocysts, performed the single-oocyst PCR and
154	sequencing (Matsubara et al., Unpublished). The 18S rRNA gene sequences obtained
155	from E. labbeana showed high homology (99%; 1218–1227 nucleotides were
156	identical among 1229 bp) to the available sequence of E. labbeana-like oocyst
157	(KT305927) [13]. These sequences of the coexisting pigeon Eimeria were not

158	identical to the two sequences from Isospora sp. This evidently indicated that the
159	Isospora was not insufficiently or abnormally sporulated oocyst of Eimeria
160	coexisting in the pigeon-stool specimen.
161	Multiple alignment analyses of the 18S rRNA gene were performed using
162	both Clustal-Omega [14] and MUSCLE [15] in the SeaView 4.6 application [16],
163	and the MUSCLE alignment generated superior results. Gaps and ambiguous
164	positions were edited and eliminated manually. After editing, 1,162 nucleotides of
165	the 18S rRNA gene remained and were subjected to a phylogenetic analysis. A
166	maximum likelihood (ML) tree was constructed using RAxML v8.1.17 [17] with the
167	GTRGAMMAI substitution model (a thorough bootstrap analysis was conducted). In
168	total, 1,000 tree replicates were generated to evaluate bootstrap support. The
169	constructed tree is depicted in Fig. 2A. Pigeon Isospora sequences 1 and 3, located
170	beside the Isospora/Atoxoplasma clade, formed a monophyletic clade but were not
171	identical to other known species, indicating that the sequences of pigeon Isospora are
172	distinct from the others. However, the Isospora/Atoxoplasma clade was not strongly
173	supported by bootstrap values. Also, we could not determine the relationships of

174	operational taxonomic units (OTUs) within the Isospora/Atoxoplasma clade due to
175	the low bootstrap support throughout. Nevertheless, E. labbeana and pigeon
176	Isospora belonging to the different clades again indicates that pigeon Isospora was
177	not the insufficiently or abnormally sporulated oocyst of E. labbeana.
178	For the 28S rRNA gene, the sequence from the isolated Isospora oocysts
179	(using the same oocyst that provided the 18S rRNA information) did not show
180	heterogeneity. The ML tree based on the 28S rRNA gene sequences was constructed
181	using the same method as the 18S rRNA gene tree, and the MUSCLE alignment
182	provided superior results. The constructed tree is depicted in Fig. 2B. The overall
183	branch lengths are short, suggesting that this locus is not suitable for analyses of the
184	phylogenetic relationships of Isospora.
185	Based on our results, we cannot clearly discuss the phylogenetic
186	characteristics of pigeon Isospora. Other loci, including mitochondrial COIa and
187	COIb [18, 19], or other protein-coding genes may help increase the phylogenetic
188	resolution. In this study, we attempted to amplify these sequences but the trials were
189	unsuccessful, probably due to limitations of the template genome. Further

190	improvement of whole-genome amplification techniques may increase the efficacy
191	of PCR amplification and enable us to improve our understanding of Isospora.
192	Mandour et al. (1986) described Atoxoplasma columbae as a parasite from
193	Columbiformes in Assiut, Egypt [20]. The genus Atoxoplasma was previously
194	recognized as a blood parasite and was recently divided into two groups: one
195	transmitted by mites considered to be a synonym of Lankesterella and the other with
196	fecal-oral transmission as a synonym of Isospora [21, 22]. In the original description
197	of A. columbae, only a rough line drawing of intra-erythrocyte merozoites from the
198	thin blood smear of a pigeon was available; none of the morphological features of
199	other stages were recorded, and no molecular information is available. In particular,
200	the lack of oocyst information raises the question of whether A. columbae can be
201	transmitted via an insect vector or fecal oocyst; in the latter case, it would be
202	recognized as Isospora. In the present study, we did not make blood smears or
203	perform a dissection to clarify the infection site of the pigeon Isospora sp. Hence we
204	only mention the possibility that the detected pigeon <i>Isospora</i> sp. is A. columbae.

205	In conclusion, we detected an isosporoid oocyst from the domestic pigeon C .
206	livia. It had distinct morphology compared with other species isolated from the same
207	host order. This is the first case in which an $Isospora$ sp. has been reported from C .
208	livia worldwide, and that a coccidium has been reported from Columbiformes in
209	Japan.
210	
211	Acknowledgments
212	The authors thank Dr. Soichi Imai (deceased; Nippon Veterinary and Life
213	Science University, Japan) and Dr. Satoshi Shimano (Hosei University, Japan) for
214	their invaluable suggestions. This study was supported financially by a grant from
215	the Kuribayashi Science Foundation.
216	
217	Ethical standards
218	All experiments herein comply with the current laws of Japan.
219	
220	Conflict of interest

221	The authors declare that they have no conflicts of interest.
222	
223	References
224	
225	[1] P.L. Long, The Biology of the Coccidia, University Park Press, Baltimore, 1982.
226	
227	[2] M.E. Krautwald-Junghanns, R. Zebisch, V. Schmidt, Relevance and treatment of
228	coccidiosis in domestic pigeons (Columba livia forma domestica) with particular
229	emphasis on toltrazuril, J. Avian. Med. Surg. 23 (2009) 1–5.
230	
231	[3] D. Duszynski, L. Couch, S. Upton, The Coccidia of the World,
232	http://www.k-state.edu/parasitology/worldcoccidia/index.html, 1999 (last accessed;
233	October 21, 2015)

235	[4] M. S. Long, R. G. Strout, Sporulation of <i>Eimeria tenella</i> (Coccidia) Oocysts
236	Revealed by Scanning Electron Microscopy, Proc. Helminthol. Soc. Wash. 51 (1984)
237	320–325.

239 [5] Y. Nakai, K. Edamura, K. Kanazawa, S. Shimizu, Y. Hirota, K. Ogimoto,

240 Susceptibility to *Eimeria tenella* of chickens and chicken embryos of partly inbred

241 lines possessing homozygous major histocompatibility complex haplotypes, Avian.

242 Dis. 37 (1993) 1113–1116.

243

A 1 1		T 11/	D 1 1	1 .	. 1 .	. 1 * 1	•	1 • 1•
<u>)</u> / /	61/	\ Lahha	Racharchac	200100101100	outologiguas	of hinlo	MANDA CUP	
244		1 . Laute.	RUCHUIUNS	ZUDIOBIUUUS.	CVIDIOZIUUCS		210005501	its cocciuits.
		,					J i i i i i i i i i i	

Archives de Zoologica Expérimentale et Générale, Series 3, 4 (1896) 517–654.

246

247 [7] O. Nieschulz, Uber Coccidien der Schleiereule. Zbl. Bakt. II. Abt. Orig. 92

248 (1935) 279–280.

250 [8] I. Varg	ghese, Isospora	gallicolumbae sp.n	ov. from Beccari's	ground dove
-----------------	-----------------	--------------------	--------------------	-------------

- 251 (Gallicolumba beccarii Salvadori) in Papua New Guinea, J. Protozool. 25 (1978)
- 252 425-426.
- 253

254	[9] H. Honma, Y. Suyama, Y. Watanabe, F. Matsumoto, Y. Nakai, Accurate analysis
255	of prevalence of coccidiosis in individually identified wild cranes in inhabiting and
256	migrating populations in Japan Environ. Microbiol. 13 (2011) 2876–2887.
257	
258	[10] H. Honma, T. Yokoyama, M. Inoue, A. Uebayashi, F. Matsumoto, Y. Watanabe,
259	Y. Nakai, Genetical identification of coccidia in red-crowned crane, Grus japonensis,
260	Parasitol. Res. 100 (2007) 637-640.
261	
262	[11] A.P. Rooney, Mechanisms underlying the evolution and maintenance of
263	functionally heterogeneous 18S rRNA genes in Apicomplexans, Mol. Biol. Evol. 21

- 264 (2004) 1704–1711.
- 265

266	[12] M. Ikarashi, Y. Fukuda, H. Honma, K. Kasai, Y. Kaneta, Y. Nakai, First
267	description of heterogeneity in 18S rRNA genes in the haploid genome of
268	Cryptosporidium andersoni Kawatabi type, Vet. Parasitol. 196 (2013) 220-224.
269	
270	[13] R. Yang, B. Brice, A. Elloit, U. Ryan, Morphological and molecular
271	characterization of <i>Eimeria labbeana</i> -like (Apicomplexa:Eimeriidae) in a domestic
272	pigeon (Columba livia domestica, Gmelin, 1789) in Australia. Exp Parasitol. 166
273	(2016) 124–30.
274	

- [14] F. Sievers, A. Wilm, D.G. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H.
- 276 McWilliam, M. Remmert, J. Söding, J.D. Thompson, D.G. Higgins, Fast, scalable
- 277 generation of high-quality protein multiple sequence alignments using Clustal
- 278 Omega, Mol. Syst. Biol. 7 (2011) 539.
- 279
- 280 [15] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and
- high throughput, Nucleic Acids Res. 32 (2004) 1792–97.

283	[16] M. Gouy, S. Guindon, O. Gascuel, SeaView version 4 : a multiplatform
284	graphical user interface for sequence alignment and phylogenetic tree building, Mol.
285	Biol. Evol. 27 (2010) 221–224.
286	
287	[17] A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and
288	post-analysis of large phylogenies, Bioinformatics, 30 (2014) 1312-1313.
289	
290	[18] R. Yang, B. Brice, K.A. Habsi, A. Elliot, U. Ryan, Isospora streperae n. sp.
291	(Apicomplexa: Eimeriidae) from a grey currawong (Strepera versicolour plumbea)
292	(Passeriformes: Artamidae) in Western Australia, Exp. Parasitol., 151–152 (2015)
293	49–55.
294	
295	[19] R. Yang, B. Brice, A. Elliot, U. Ryan, Isospora serinuse n. sp. (Apicomplexa:
296	Eimeriidae) from a domestic canary (Serinus canaria forma domestica)
297	(Passeriformes: Fringillidae) in Western Australia, Exp. Parasitol., 159 (2015) 59–66.

299	[20] A. Mandour, A. Abdel-Rhamn, F. Abdel-Salam, Atoxoplasma (Lankestrella)
300	columbae sp.nov. in the domestic pigeon Clumba livia in Assiut province, Assiut Vet.
301	Med. J. 17 (1986) 95–97.
302	
303	[21] S. Upton, S. Wilson, T. Norton, E. Greiner, A new species of <i>Isospora</i>
304	Schneider, 1881 (Apicomplexa: Eimeriidae) from the Bali (Rothschild's) mynah
305	Leucopsar rothschildi (Passeriformes: Sturnidae), and comments concerning the
306	genera Atoxoplasma Garnham, 1950 and Isospora, Systematic Parasitol. 48 (2001)
307	47–53.
308	
309	[22] J. Barta, M. Schrenzel, R. Carreno, B. Rideout, The genus Atoxoplasma
310	(Garnham 1950) as a junior objective synonym of the genus Isospora (Schneider
311	1881) species infecting birds and resurrection of <i>Cystoisospora</i> (Frenkel 1977) as the
312	correct genus for Isospora species infecting mammals, J. Parasitol. 91 (2005) 726-

313 727.

315 **Figure legends**

316	Fig. 1.	Morphology	of the pigeon	Isospora sp.	isolated in this study
		1 0/	10	1 1	

- 317 (A) Differential interference contrast image of a sporulated oocyst of the pigeon
- 318 Isospora sp. (B) Line drawing of sporulated oocysts of the pigeon Isospora sp. Note
- the obvious sub-Stieda bodies. Bar: 10 μm.
- 320

321 Fig. 2. Phylogenetic tree of *Isospora* sp. and related taxa

- 322 (A) A maximum likelihood (ML) phylogenetic tree of the pigeon *Isospora* sp. and
- 323 related taxa was constructed using 1,162 bp of the 18S rRNA gene. The confidence
- in the tree topology is shown with ML nonparametric bootstrap values (values >50
- are shown). The pigeon *Isospora* sp. is underlined. (B) ML tree of *Isospora* sp. and
- related taxa is shown. A total of 598 bp of the 28S rRNA gene were analyzed. ML
- 327 nonparametric bootstrap values (>50) are shown. The pigeon *Isospora* sp. is

328 underlined.