Genetic Susceptibility to Alopecia.

Jouni Uitto
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/dcbfp

Recommended Citation
Uitto, Jouni, "Genetic Susceptibility to Alopecia." (2019). Department of Dermatology and Cutaneous Biology Faculty Papers. Paper 111.
https://jdc.jefferson.edu/dcbfp/111

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Dermatology and Cutaneous Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Genetic Susceptibility to Alopecia

Jouni Uitto, M.D., Ph.D.

The hair unit is composed of specialized compartments that are coordinately responsible for the synthesis of the hair fiber. The principal signaling center of the hair follicle resides in the dermal papilla, which consists of a specialized fibroblast population that is responsible for regeneration and cycling of the follicle. The dermal papilla interacts with the overlying epithelial cells, known as the hair matrix, to generate the hair shaft.\(^1\) The size of the dermal papilla niche is dynamic and actively regulated, and a reduction in the number of cells that make up the dermal papilla is believed to contribute to the loss or thinning of hair. The hair shaft itself contains a complex configuration of structural proteins, including many different hair keratins with associated proteins, which are responsible for the proper formation and growth of the hair shaft.

Distinct differences have been documented in the hair morphology in human populations of different ancestries, which are believed to be genetically determined.\(^2\) The hair of persons of African ancestry has a flattened cross-sectional appearance, and the hair is usually coiled. The hair of persons of European ancestry has an oval cross section, and the hair of persons of Asian ancestry has a rounder, more circular perimeter, resulting in straighter hair.

Considering the complexity of hair biology, it is perhaps not unexpected that hair growth is affected in several disorders, ranging from extremely rare (usually single-gene disorders) to very common (mainly polygenic). The more common, polygenic conditions have been attributed to a number of distinct pathomechanisms. Age-associated thinning and loss of hair can be explained in part by hormonally influenced miniaturization of the follicle, which is often associated with androgenetic alopecia or pattern hair loss. Immune factors, such as lymphocyte-mediated destruction of the lower part of the follicle, are a hallmark feature of autoimmune forms of hair loss, such as alopecia areata (patchy hair loss). Genetic factors also play a role, as is the case in rare, mendelian forms of hair loss and hair fragility syndromes. For example, hair-shaft abnormalities, known as trichorrhexis invaginata (also called bamboo hair), are associated with a keratinization phenotype of dry and scaly skin in the Netherton syndrome, caused by mutations in the gene \(SPINK5\), which encodes a serine protease inhibitor.

Finally, there are other forms of alopecia for which the cause has not yet been described. These include the group of primary cicatricial alopecias, including lichen planopilaris, frontal fibrosing alopecia, and until now, central centrifugal cicatricial alopecia (CCCA). In these disorders, hair loss is associated with rapid, progressive, and permanent destruction of follicles, followed by replacement with fibrotic connective tissue, which leads to irreversible hair loss.\(^3\)

CCCA is a common and progressive form of scarring alopecia, in which histopathological
examination of the skin reveals the presence of lymphocytes early on in the proximity of hair follicles, eventually resulting in the destruction of the follicle and deposition of extracellular matrix.\(^4\) CCCA is seen predominantly in women of African ancestry, with a reported prevalence of 2.7% among women in South Africa and 5.6% among women of African descent in North America.\(^5\) This condition, which is also sometimes described as hot comb alopecia because it is often associated with traction-inducing hairstyling practices and use of hair chemicals, has a late onset, usually in the fourth decade of life.\(^6\) The disorder sometimes runs in families in a perceived autosomal dominant pattern, although styling preferences within households may also contribute to the clustering of cases within families. The majority of cases of CCCA appear to be sporadic.

Malki et al., an international group of investigators, now report in the *Journal\(^7\)* the results of a study of the genetics of CCCA, including molecular analyses of a series of 58 patients with CCCA. First, the exomes of a discovery set comprising 16 women with CCCA who were of African ancestry and living in the United States and South Africa, were sequenced; analyses of the sequence data yielded four mutations in *PADI3* in 5 women (each woman was heterozygous for the mutation). Characterization of mutant proteins led the authors to conclude that some of these mutations cause the encoded protein, peptidyl arginine deiminase 3 (*PADI3*), to misfold and form intracellular aggregates. PADI3 catalyzes the post-translational modification of proteins by converting arginine into citrulline — a modification that changes the charge of PADI3 and therefore results in physicochemical differences in the substrate proteins, such as trichohyalin, that can be modified by PADI3 (Fig. 1). Trichohyalin is critical to the formation and shaping of the hair shaft.

Further analyses showed that genes that are critical to hair formation (and that have been previously shown, when variant, to be associated with hair loss) are expressed at different levels in the scalp skin of women with CCCA than in unaffected women. This pattern of dysregulation may also mark a point in the progression of the disease — a point emphasized by recent findings that fibroproliferative genes, such as those for collagen types I and III, and various matrix metalloproteinases, are overexpressed in the fibrotic stage of the disease.\(^8\)

In the second phase of their work, the authors provided replication of the findings in a cohort of 42 patients with CCCA and identified mutations (including two novel mutations) in *PADI3* in 9 of them. In total, six distinct mutations were found in 14 of 58 patients (24%) with CCCA. It is unclear whether the remaining three quarters of the patients have a type of CCCA that is phenotypically indistinguishable from those with *PADI3*.

The results of this study should be interpreted with caution, as the authors identified additional mutations in families with uncombable hair syndrome, which is a distinct disorder. The authors suggest that *PADI3* mutations may contribute to pathogenesis.

What are the implications of these findings for clinical management? The observations by Malki et al. suggest that *PADI3* mutations predispose persons to CCCA, which is then clinically manifested when hairstyling practices damage the hair. Thus, in the familial setting, such practices should be discouraged in both symptomatic and asymptomatic family members. Although
PADI3 mutations would appear to predispose women to CCCA, the screening of asymptomatic women for pathogenic mutations in PADI3 would be premature. Perhaps, once the association is tested in larger groups of women and the effect on risk is better understood and there is a comprehensive genomic landscape of CCCA (i.e., other risk variants and genes are identified and their effect on risk delineated), genotyping of asymptomatic women would be warranted. The presence of variants in PADI3 in both CCCA and uncombable hair syndrome suggests that this
gene has a pleiotropic effect on the determination of hair texture, and the finding holds implications for future development of therapy, such as the restoration of PADI3 activity.

Disclosure forms provided by the author are available with the full text of this editorial at NEJM.org.

From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia.

This editorial was published on February 13, 2019, at NEJM.org.

DOI: 10.1056/NEJMe1900042

Copyright © 2019 Massachusetts Medical Society.