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Abstract: Ultrasound (US) technology, with major advances and new developments, has become an essential and first-line 
imaging modality for clinical diagnosis and interventional treatment. US imaging has evolved from one-dimensional, two-
dimensional to three-dimensional display, and from static to real-time imaging, as well as from structural to functional imaging. 
Based on its portability and advanced digital imaging technique, US was first adopted by emergency medicine in the 1980s and 
gradually gained popularity among other specialists for clinical diagnosis and interventional treatment. Point-of-Care Ultrasound 
(POCUS) was then proposed as a new concept and developed for new uses, which greatly extended clinical US applications. 
Nowadays, artificial intelligence (AI), cloud computing, 5G network, robotics, and remote technologies are starting to be 
integrated into US equipment. US systems have gradually evolved to an intelligent terminal platform with powerful imaging and 
communication tools. In addition, specialized US machines tend to be more suitable and important to meet increasing demands 
and requirements by various clinical specialties and departments. In this article, we review current US technology and POCUS 
as new concepts and its future trends, as well as related technological developments and clinical applications.
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Modern medical ultrasound (US) technology 
has made tremendous advancements over 
the years with many breakthroughs. These 

revolutionary milestones include developing digital 
high resolution grayscale US for anatomic structure 
imaging display, establishing color and power Doppler 
flow imaging for cardiovascular functional evaluation, 
creating quantitative elastographic imaging for tissue 
stiffness measurement, and inventing contrast-enhanced 
US technology for the integration of structural and 
functional imaging [1]. With technological advancements 
and miniaturization of US systems, portable US emerged 

and has developed since the 1980s, first used by 
emergency medicine physicians [2] and then extended to 
other clinical specialists. Clinicians in various disciplines 
have gradually applied US technology to the diagnosis 
and treatment of their respective specialties, using the 
imaging advantages of US technology to implement 
focused, purposeful, and rapid US examinations to 
provide clinical information for making diagnoses and 
treatment decisions, namely Point-of-Care Ultrasound 
(POCUS) [2]. With the evolvement of artificial 
intelligence (AI), cloud computing, 5G network, 
robototics, and remote technology, as well as increasing 
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demands by clinical specialties requiring more refined 
clinical diagnosis and treatment brought by precision 
medicine, the miniaturized, intelligent, and specialized 
US has become a trend for future development [3].

This article will review traditional US and POCUS 
as new concepts with a focus on related current US 
technology and its future trends for clinical application. 
The value of modern technology in promoting technology 
improvement and expanding clinical application will be 
discussed.

Traditional Medical Ultrasound
Medical US is a safe, simple, real-time, easily 

operated, low cost, and widely used imaging modality 
in medicine besides CT and MRI [4]. Since the 1940s, 
medical US technology has evolved from A-mode, 
M-mode, B-mode (2D gray scale) to Doppler-mode 
imaging. B-mode US developed in the 1950s could 
display the soft tissue structures, which laid the 
foundation of modern US diagnosis [5]. Subsequently, 
M-mode US imaging was formed with integration of 
tissue movement information (such as cardiac motion) 
[6]. In the mid to late 1980s, color Doppler US was 
developed based on the principle of Doppler frequency 
shift and auto correlation is used to obtain blood flow 
information, which is coded in different colors. Doppler 
spectrum analysis can measure the velocity of blood 
flow and obtain the hemodynamic information over time, 
which is a spectral Doppler technique. The establishment 
of Doppler US technology has created a new field for 
non-invasive testing of cardiovascular and organ blood 

flow and hemodynamic research [7,8]. Up to now, the 
above several imaging methods are still the mainstream 
technologies in medical US. With improvement of 
computer processing power, Baum and Greenwood 
proposed the original concept of three-dimensional 
US in 1961[9]. Subsequently, the development of 3D 
US underwent three stages, which are early static 3D 
imaging (static 2D image reconstruction), dynamic 3D 
imaging (adding time parameters) and real-time 3D 
imaging (with no time delay) [10]. 3D US has been 
widely used in cardiology, obstetrics, gynecology, 
oncology, interventional radiology, peripheral vascular, 
and other fields because of its intuitive, accurate and 
real-time features [11]. Since the 1990s, new US 
technologies, including contrast-enhanced US (CEUS) 
[12], tissue Doppler [13], and elastography [14], have 
further improved US capabilities and diagnostic accuracy 
(Fig. 1). In particular, development of microbubble 
contrast agents for contrast US imaging is a revolutionary 
breakthrough technique, which played a substantial role 
in the field of medical imaging. Quantitative analysis 
of CEUS can be carried out to evaluate the micro-
circulation perfusion of organs or tissues, which transits 
the ultrasonic imaging from structure to function [15]. 
In addition, enhanced US imaging through non-vascular 
approaches (bile duct, urinary tract, oral administration, 
etc.) has gradually been applied in clinical practice as 
well [16-18]. Through the fusion of US technology 
with other imaging technologies (such as CT and MRI), 
the ability of lesion detection has also been improved 
significantly, which improves the lesion localization and 
interventional operation [19,20].

Figure 1  Schematic diagram of US technology developments
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After decades of development, medical US has 
achieved rapid development in terms of imaging 
technology, imaging modes, software, and hardware. 
However, traditional US has great challenges in meeting 
the clinical demand for diagnosis and treatment because 
of the large size of the equipment, the configuration of 

the probe, and the imaging features. Although continuous 
upgrades have been made in probe materials, imaging 
analysis software, and overall machine design, traditional 
US technique is relatively mature and has become an 
established modality. At the same time, due to the lack 
of equipment/personnel and heavy workload in US 
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departments as well as increasing use US by clinical 
physicians, continuous advancement of US applications 
has led to the rapid development of POCUS with 
clinicians/specialties as the main body of users.

Point-of-Care Ultrasound 
Portable B-mode US devices provide the possibility for 

clinicians to perform bedside real-time US diagnoses. In 
the 1970s, diagnostic US was first used in the evaluation 
of trauma patients in Europe. Since 1988, Germany has 
required surgeons to master US skills. The United States 
began to promote US assessment of trauma in the mid-
1980s, replacing diagnostic abdominal lavage in most 
trauma centers. Since the 1990s, US has been widely used 
in acute and critical patients worldwide. Because bedside 
US emphasizes timeliness and accuracy, the concept of 
POCUS is proposed in clinical practice [2,21,22].

In 2011, the New England Journal of Medicine 
described POCUS as "US performed by a clinician at 
the bedside,” emphasizing the "instant" operation by 
clinicians rather than by professional US physicians 
[23]. The specific meaning of POCUS is that the 
clinician is the one who makes the decision to perform 
bedside US, adjusts the diagnosis, and monitors the 
treatment accordingly. Based on the advantages of US 
technology, as well as increasing miniaturization of 
US instruments and continuous improvement of their 
functions, POCUS can better meet the clinical needs for 
different applications. At the same time, with continuous 
improvement of clinicians' ability to use US, the scope of 
POCUS application has been greatly expanded, including 
in the areas of acute and critical care, anesthesia, 
rehabilitation, rheumatology, obstetrics and gynecology, 
pain management, sports medicine, and orthopedics, etc. 
[24,25]. In addition, POCUS has played an important role 
in the fight against the COVID-19 during the pandemic. 
It can not only make the diagnosis, assess severity, and 
provide dynamic monitoring of lung lesions, but also 
provide important information of multi-organ injury (such 
as heart, kidney, blood vessel, gastrointestinal, etc.). 
POCUS has helped in classifying cases based on severity 
and directing patients to appropriate treatment, which 
greatly improved the therapeutic efficiency [26,27].

The expansion in applications of POCUS are the 
result of a convergence of advancement of US technology 
and clinical needs. Because of its advantages in imaging 
visualization, it is also called the "visual stethoscope" 
[28,29]. The scope of POCUS has increasingly expanded 
and includes the following applications and scenarios. 

Acute and critical care applications
POCUS can be used in special medical scenarios 

such as battlefields, first aid, traffic accidents, and 

disaster scenes. Through rapid assessment of organ 
damage, it can guide the risk of classification, triage, 
and treatment measures [30]. Focused assessment with 
sonography for trauma (FAST) protocol is a bedside 
examination method for rapid assessment of internal 
bleeding in trauma patients, with specificity of 94-98%, 
sensitivity of 73-99%, and accuracy of 90-98%. Also, 
POCUS is superior to traditional chest radiographs in the 
diagnosis of pneumothorax [23,31]. The application of 
POCUS in acute and critical cases pays more attention 
to volume management and hemodynamics monitoring 
through streamlined US workflows, such as focused 
echocardiographic evaluation in life support (FEEL) 
protocol, bedside lung US in emergency (BLUE) 
protocol, and rapid US in shock (RUSH) protocol, etc., 
which can quickly and effectively integrate and interpret 
critical pathophysiology with US findings, and then 
guide clinical diagnosis and treatment [32-34]. 

US-guided visual procedure applications
When US-guided nerve block (such as subarachnoid 

space, axillary brachial plexus, sciatic nerve, etc.), the 
nerve structure and peripheral blood vessels, muscles, 
bones, and internal organs can be clearly displayed, and 
the puncture process and drug diffusion can be monitored 
in real time. Under US-guidance, the blindness of 
the interventional procedures can be avoided, the 
success rate of anesthesia can be improved, and the 
complications and the amount of local anesthesia can be 
reduced. The integration of systemic US imaging into 
the clinical practice of anesthesia is a new concept and 
research direction in the field of POCUS. In addition, 
US is very useful to guide the establishment of vascular 
access during a variety of procedures. In the case of 
patients with poor vascular conditions (such as drug 
abuse, burns, vascular congenital variability, children, 
and severe obesity), the advantages of US visualization 
can improve the precision of venous catheterization and 
reduce the failure of procedures [35-37].

Musculoskeletal and others applications
POCUS can be used in rheumatology, rehabilitation, 

physiotherapy, sports medicine, and orthopedics for 
dynamic assessment of joint and tendon abnormalities, 
monitoring of inflammatory lesions, and diagnosis and 
localization of the cause of pain [38,39]. In terms of basic 
obstetric POCUS examination, through standardized 
training, POCUS can be used by relevant medical staff in 
underdeveloped countries or remote areas of the world to 
perform basic examinations of fetal anatomy, umbilical 
blood flow status, and fetal position, gestational age, and 
fetus growth and maternal labor process which could 
effectively reduce maternal and fetal mortality [38,40]. 
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In order to meet the above-mentioned clinical 
applications, equipment manufacturers are also 
constantly modifying the US instruments to provide 
better systems for POCUS needs, such as: (1) Removing 
non-essential function and parameter control buttons, 
or customizing function keys, simplify operating steps 
and making the operation faster and more user-friendly; 
(2) Shortening the switching speed of the ultrasonic 
instrument, improving the operation response, increasing 
probe switching and storage speed to meet the needs 
of emergency scanning; (3) Making more compact 
equipment with portable designs accustomed to the 
limited work space in the emergency room, anesthesia 
suite and intensive care unit as well as other small space 
environments [41,42]. 

POCUS is a one-step forward examination method 
compared to routine clinical US. In the POCUS 
inspection process, important information such as organ 
anatomy, functional status, and systemic hemodynamics 
can be obtained in-situ and in a timely fashion, helping 
clinicians to make more accurate assessments for 
immediate and subsequent treatment. POCUS can 
provide reliable essential information, and participate 
in the entire clinical diagnosis and treatment process 
(i.e., preliminary diagnosis, initial treatment, efficacy 
evaluation, and adjustment of therapy plan). Thus, the 
application of POCUS for multi-disciplinary, multi-
system, and multi-organ assessment is a future direction 
and a key link in various clinical disciplines with broad 
clinical application prospects [43,44]. 

POCUS with New Concept and Techniques
In recent years, POCUS has been applied in many 

clinical departments and achieved encouraging results. 
However, in most hospitals at present, portal US is still 
performed by US doctors/radiologists with bedside 
consultations. In addition to being somehow unfamiliar 
with the purpose of clinical specialist’s requests, it is also 
impossible to achieve continuous follow-up observation 
for special patients, such as FAST examination for 
trauma patients [45] and cardiopulmonary US for 
patients with ECMO treatment [46,47]. Some clinical 
departments in large-scale hospitals have been equipped 
with portable US and carry out POCUS examinations. 
However, the lack of effective operating standardization, 
high scanning skill, and interpretation experience leads 
to ambiguous diagnosis results, which diminishes the 
clinical application value of POCUS [48]. 

Although portable US equipment has achieved 
technical integration (i.e., multiple imaging functions 
in a single unit) and miniaturization (such as handheld 
US device), there are still challenges for development 

of US devices and applications to move forward into 
a subspecialty of clinical disciplines. For example, in 
anesthesiologic uses, clearly showing the boundary 
of normal tissue structure is more important than the 
diagnosis of pathological structures. A touch screen 
that is easier to sterilize is better than the traditional 
operating keyboard [49]. Therefore, a specially-designed 
US machine with new concepts is needed in developing 
specialty-oriented instruments.

With the rapid integration of modern technologies 
such as artificial intelligence (AI), cloud computing, 
5G networks, robots, and tele-remote technology with 
US modality, the development of a specialized POCUS 
system will be further facilitated as an intelligence 
terminal platform, improving the application of 
POCUS and leading to a new pathway for medical US 
advancement (Fig. 2). New generations of POCUS 
systems will represent a development trend of medical 
US. In addition to using a variety of new technologies 
to improve the accuracy of US diagnosis, specially-
designed POCUS will be combined with advanced 
technology to better meet the needs of various specialists 
which may differ from the traditional US systems.

5G-based tele-remote POCUS
Tele-remote US refers to using modern computer, 

network communication, and multimedia technology 
to digitally reconstruct US images to remotely achieve 
image acquisition, storage, transmission, analysis, and 
processing. This allows for remote real-time diagnosis 
and interventional procedures through high-precision 
synchronization via video, audio, text and other multi-
channel communications. Expert doctors can use remote 
technology to guide patient-side doctors to perform US 
examinations to improve their diagnostic experience, 
and reduce diagnostic errors by overcoming operator-
dependent barrier. The remote robotic US system enables 
expert doctors to use their own skill to remotely control 
the robot to perform US scans, and perform medical 
diagnosis based on real-time US imaging generated by 
the robotic scanning [50]. In recent years, emerging 
5G technology has met the long-distance, real-time, 
high-bandwidth, high-resolution, and low-latency 
requirements for remote US consultation and US robotic 
operation, allowing for high-quality transmission of US 
imaging and sharing as a valuable medical resource, 
which provides the opportunity for broad application 
of tele-remote US technology. The 5G-based remote 
US has shown important value during the COVID-19 
pandemic for remote assessment of patients’ lung lesions 
and guidance during interventional procedures, saving 
expert resources and minimizing cross-infection [50,51]. 
However, remote US is not conducted for large-scale 
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clinical application, and it can only be used as a basic 
screening tool for special situations at present due to the 

lack of unified standards for image acquisition, quality 
control, data transmission, and security [52,53].

Figure 2  Conception of ultrasound intelligent terminal platform
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US diagnoses often require years of training and 
experience accumulation. Currently, diagnostic US is 
the first choice for clinical imaging examination, and 
as a result, the demand for diagnostic US scans can be 
overwhelmed by a heavy workload with limited staffing. 
With AI technology being gradually implemented in 
the medical field, AI-assisted diagnosis systems could 
help alleviate this situation although applying AI in 
diagnostic US is a relatively new concept in the field of 
digital imaging. Advantages of AI include fast imaging 
processing, uniform standards, continuous workflow, 
and excellent repeatability, which can handle large 
amounts of data and quickly obtain diagnostic images 
and even dig out the raw data and patterns to improve 
diagnostic efficiency and accuracy. In addition, through 
the continuous optimization or iterative update of AI 
algorithms, US imaging processing and analysis can 
be simultaneously improved, and ultimately realize 
intelligent disease prediction, risk assessment, clinical 
diagnosis, and treatment [54,55]. 

Deep learning methods are commonly used in AI 
technologies, in which convolutional neural network 
(CNN) is the most popular, and has made great progress 
in various research areas such as image classification, 
lesion detection, and target segmentation [56,57]. 
Buda et al. [58] used CNN to develop an intelligent 
recommendation algorithm for whether thyroid lesions 
need biopsy, with a sensitivity of 87% and a specificity 
of 52%. CNN is composed of many convolutional layers 
which have the powerful ability to independently learn 
a large amount of imported image training data, and 
automatically parse and extract the best characteristics in 
a specific layer, and finally, realize the classification of 
the image. This process is much better with more detailed 
information than human eye observation which is the 
biggest advantage of CNN compared with traditional 
machine learning methods. Traditional machine learning 
uses artificially defined characteristics, such as whether 
the edges of the nodules are regular and the echogenicity, 
based on the doctor's subjective judgment criteria [59].

US equipment has also made great progress with AI 
technology, such as the built-in intelligent evaluation 
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features, intelligent optimization of imaging quality 
and intelligent screening, acquisition, analysis, and data 
processing, etc., helping US operators to bypass the 
complicated image optimization and measurement work, 
and instead focus on clinical diagnosis and treatment. 
At present, US with AI technology has been applied in 
clinical practice such as minimally invasive intervention, 
thyroid, breast, musculoskeletal, pediatrics, and cardiac 
examinations, improving the accuracy of clinical US 
diagnosis [60-65]. For example, the coincidence rate 
by AI-based US systems in the interpretation of benign 
and malignant thyroid nodules has increased from 64% 
to 84% [66]. However, there are still many challenges 
in AI US applications. First, the huge quantity of data 
generated in the short term puts higher requirements on 
algorithms and computing power. Second, the computing 
power limitation needs to be solved to ensure that the 
AI model can be effectively used on tablets or mobile 
phone platforms [67]. Finally, it is necessary to establish 
supervision systems and regulations and improve the 
scheme to evaluate the stability and accuracy and 
overcome the difficulty of defining medical liability for 
AI US applications. 

Cloud-based POCUS
The rapid development of the Internet brings up 

cloud computing applications. In 2006, Amazon in the 
United States launched the world's first cloud computing 
system—Amazon Web Services (AWS), and cloud 
computing began to gain rapid promotion globally. 
Cloud computing is a new type of computing platform 
that has the advantages of low cost, high reusability, high 
performance, and easy expansion. Through the internet, it 
accelerates the integration of a large number of algorithm 
formulas and storage resources, and then provides and 
distributes to specific users accordingly. Currently, the 
definition given by the National Institute of Standards 
and Technology (NIST) in the United States is more 
authoritative for implantation. The main goal of cloud 
computing is to form a pool of resources for network, 
storage, application, service, and other resources, and 
strengthen flexible allocation and integration, as well as 
optimize network resources. Through these approaches, 
cloud computing can enhance its reliability, versatility, 
and expansibility to maximize the utilization of network 
information resources [68].

US technology has been widely used in the diagnosis 
and treatment of diseases in almost all fields of medicine. 
Thus, a large volume of imaging data is generated 
due to the characteristics of real-time imaging. Using 
cloud computing technology to build a cloud platform 
for medical image service will make data processing 
simple and convenient. Recently, with the application of 

mobile terminal devices such as mobile phones or tablet 
computers, cloud computing technology has brought new 
changes for US diagnosis. The US system on the patient 
side is responsible for collecting image data, while the 
mobile device on the doctor side displays the image data. 
Through 5G technology and cloud platforms, the real-time 
transmission of image data between the two locations and 
the implementation of remote consultation can be realized 
[69]. The cloud service platform can also endow users 
with huge storage capacity and high reliability. After US 
equipment is integrated into a cloud computing system, it 
could effectively increase the processing speed, optimize 
the allocation of resources, realize the interconnection and 
intercommunication between various terminal devices, and 
become a veritable "cloud US", enabling instant sharing of 
medical information, resources, and services [70]. Since 
"cloud US" is a new concept, it is necessary to further 
develop industry standards and technology for its potential 
applications.

Specialty-oriented POCUS
The configuration of transducers (such as shape and 

frequency) and machines for whole-body high-end US 
systems often have a universal design and lack of specific 
consideration for clinical specialty uses. The key diagnostic 
information of the heart, hemodynamics, and lungs has to be 
obtained through complex operations or measurements by 
experienced sonologists. Specialty clinicians without an in-
depth understanding of US principles and operating training 
may not be able to operate sophisticated US devices for 
their point-of-care applications. Thus, development of the 
specially-configurated US instruments is clearly necessary 
for clinical specialties to be used [71,72]. For example, the 
anesthesiologist requires US scanner to have a more refined 
ability to recognize superficial nerve structures and to have 
the function of puncture navigation, while the emergency 
and critical care physician needs US system to be rapidly 
activated and intuitive operation; a musculoskeletal 
specialist needs US unit to have better imaging resolution 
for visualization of superficial tissues (Fig. 3). 

With POCUS development, specialized US products 
that meet various specialty needs for clinical application 
have been developed by many US companies such as 
portable US machines by GE (VenueTM), Mindray (M9TM), 
Sonoscape (S9TM), Wisonic (NaviTM), and hand-hold 
US scanners by Philips (LumifyTM), Butterfly (iQ+TM), 
Chison (SonoEye V5TM), Stork (S35TM), SonoStar 
(BprobeTM) and so on (Fig. 4). For example, GE VenueTM 
is specifically developed for use by clinicians in the 
field of emergency and critical care, and is dedicated for 
specialty needs, including intelligent functional design 
(such as the intelligent BLUE and RUSH protocols 
based on deep learning technology and VTI intelligent 
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Figure 3  Illustration of portable US systems for clinical specialty applications 

Figure 4  Examples of portable and handheld ultrasonic instruments
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measurement) with simple and efficient operation 
process [72,73]. Wisonic NaviTM is an all-in-one machine 
specifically designed for anesthesiologic applications 
and equipped with a large touch screen for far-distance 
observation and easy disinfection. Customizable functional 
buttons are built on the probe for Doppler control and 
parameter adjustment as well as mode switching and 
needle enhancement control. Thus, POCUS devices 
must fit with specific applications and requirements by 

specialty clinicians, which is expected to become a key 
development area of US systems in the future. In the 
meantime, multiple specialized US techniques can also be 
used in the same clinical scenario to carry out multi-organ 
or multi-modal US evaluation [33].

Conclusion
POCUS, endowed with new concepts and prospects, 
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will greatly extend clinical US applications. Currently, 
AI, cloud computing, 5G network, robotics, and remote 
technologies started to integrate into US equipment. US 
systems have gradually evolved to an intelligent terminal 
platform with powerful imaging functions. In addition, 
customized US machines tend to be more suitable and 
are important to meeting the increasing requirements by 
various clinical specialties and departments. POCUS not 
only represents a modern technology revolution but also 
expands scenarios of US applications.
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