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ABSTRACT

Transfer RNAs (tRNAs) perform essential tasks for
all living cells. They are major components of the ri-
bosomal machinery for protein synthesis and they
also serve in non-ribosomal pathways for regulation
and signaling metabolism. We describe the develop-
ment of a genetically encoded fluorescent tRNA fu-
sion with the potential for imaging in live Escherichia
coli cells. This tRNA fusion carries a Spinach ap-
tamer that becomes fluorescent upon binding of a
cell-permeable and non-toxic fluorophore. We show
that, despite having a structural framework signifi-
cantly larger than any natural tRNA species, this fu-
sion is a viable probe for monitoring tRNA stability in
a cellular quality control mechanism that degrades
structurally damaged tRNA. Importantly, this fusion
is active in E. coli live-cell protein synthesis allowing
peptidyl transfer at a rate sufficient to support cell
growth, indicating that it is accommodated by trans-
lating ribosomes. Imaging analysis shows that this
fusion and ribosomes are both excluded from the nu-
cleoid, indicating that the fusion and ribosomes are
in the cytosol together possibly engaged in protein
synthesis. This fusion methodology has the potential
for developing new tools for live-cell imaging of tRNA
with the unique advantage of both stoichiometric la-

beling and broader application to all cells amenable
to genetic engineering.

INTRODUCTION

tRNA biology is complex and has unexpected layers (1).
While the primary function of a tRNA is protein synthe-
sis on the ribosome, non-ribosomal activities involving roles
in phage and viral DNA replication (2,3), nuclear import
of proteins (4), pre-mRNA splicing (5) and apoptosis (6–8)
are now known. To explore the potential of the diversity and
complexity of tRNA biology, it is necessary to have the tools
to monitor tRNA location and activity inside living cells,
both spatially and temporally. However, current method-
ologies of live-cell imaging tRNA have limitations. Typi-
cally, a specific tRNA is isolated from the yeast bulk, labeled
with a fluorophore ex vivo, and introduced by transfection
into mammalian cells for analysis (9,10). First, yeast tRNA
species, while readily available in relatively large quanti-
ties, often differ from their mammalian counterparts at key
residues that are critical for activities unique to mammalian
cells (11). Second, ex vivo labeling usually exploits specific
post-transcriptional modifications (e.g. dihydrouridine and
wybutosine) (12–14), which are not present in every tRNA
sequence. Third, the transfection efficiency of tRNA varies
substantially, depending on cell types, and it is not appli-
cable to many types such as bacterial or yeast cells. Thus,
a genetically encoded fluorescent tRNA should hold great
promise for imaging its action in live cells, eliminating the
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need for ex vivo technologies. We show here that the fusion
of a large RNA aptamer with one of the largest tRNAs,
despite each having a well-defined tertiary structure, en-
ables the tRNA to perform live-cell protein synthesis in Es-
cherichia coli. This tRNA–aptamer fusion can be switched
on with quantitative GFP (green fluorescence protein)-like
fluorescence, while acting like a canonical tRNA. Most im-
portantly, this tRNA fusion is accepted by the ribosome and
supports protein synthesis at a rate sufficient for cell viabil-
ity. These results suggest the potential for real-time imaging
of tRNA in both ribosomal and non-ribosomal activities in
live cells. The principles of developing this tRNA fusion are
accessible to all cells amendable to genetic engineering.

In this work, we made tRNA fusion with a Spinach ap-
tamer. Recent in vitro selections have isolated RNA ap-
tamers that bind to a range of synthetic GFP-like flu-
orophores, generating conjugates that light up with di-
verse colors (15,16). One of these aptamers is known as
Spinach, because its conjugate with DFHBI (3,5-difluoro-
4-hydroxybenzylidene imidazolinone) emits fluorescence of
a spinach color, mimicking the intrinsic chromophore of
GFP (15). DFHBI is a cell-permeable and nontoxic lig-
and and it is selectively activated for fluorescence upon
binding to Spinach. Several smaller or brighter deriva-
tives of the original Spinach are now available (17–19), as
well as other fluorescent aptamer–ligand complexes (20,21).
Such aptamer-mediated fluorescence has been used as a
genetically encoded sensor for real-time imaging of small
molecules and metabolites in live cells (15,22–26). Further
development has enabled imaging of cellular dynamics of
endogenous mRNAs (27,28). In each of these examples, the
Spinach–DFHBI conjugate was exploited as a sensor. None
of these sensors, however, are integrated into tRNA or have
the ability to image tRNA. To utilize Spinach for imag-
ing tRNA, however, a major consideration is the large size
of the aptamer (∼100 nucleotides) relative to tRNA (70–
90 nucleotides) and the self-contained tertiary structure of
each. The original Spinach aptamer exhibits an elongated
shape of two coaxially stacked helical stems joined by a G-
quadruplex (17,29), while the tRNA structure is made up
of two helical arms joined by a tertiary core to form the
L-shape. It is unknown if the fusion of two unrelated and
distinct RNA structures can be accommodated within the
complex framework of the ribosome.

Here, we show that the fusion of the original Spinach ap-
tamer (15) with one of the largest tRNA molecules creates
a hybrid that is fully active for live-cell protein synthesis.
This tRNA fusion (referred hereafter as Spinach tRNA)
is specifically charged with the cognate amino acid, stably
brought to the ribosome by elongation factor Tu (EF-Tu),
and adeptly acting in peptidyl transfer. In live-cell imaging,
the fusion is found in the same sub-cellular region as the ri-
bosome, suggesting the role as a component of the protein
synthesis machinery. Given the structural complexity and
intricacy of the ribosome, and the extensive and dynamic
motions of the ribosome–tRNA–mRNA complex (30–33),
the ability of the fusion to act as an active component of
protein synthesis is unexpected. This finding provides new
insight into the previously unrecognized flexibility of both
the ribosome and tRNA to accommodate new motifs. Fur-
thermore, we show that the fusion can be made with several

E. coli tRNA species, each in a distinct sequence, and that
the fusion can act as a probe to monitor the cellular qual-
ity control applicable to canonical tRNA. Collectively, our
data suggest that fluorescent aptamers in general can be in-
serted into functional tRNAs for live-cell imaging of both
ribosome and non-ribosome activities.

MATERIALS AND METHODS

Design of Spinach tRNA

We used E. coli tRNATyr2 (Ec tRNATyr) as the frame-
work to introduce the Spinach aptamer (Supplementary
Tables S1 and S2, Supplementary Figure S1 available on-
line). Ec tRNATyr2 differs from Ec tRNATyr1 by only two
nucleotides in the V-loop (C47:2 and A47:3 versus U47:2 and
C47:3), which in crystal structure do not interfere with recog-
nition by tyrosyl–tRNA synthetase (TyrRS) (34,35). We re-
fer to tRNATyr2 simply as tRNATyr in this work. While Ec
tRNATyr has a standard T-loop, it has a large D- and V-
loop, indicating the possibility to accommodate additional
motifs in these two regions. Three chimeras of Ec tRNATyr

were made, in which the Spinach aptamer was inserted to
the D-loop between C16 and G18 (D-Spinach), to the V-
loop between C47:2 and A47:3 (V-Spinach), and to the T loop
between G57 and A58 (T-Spinach). Of these, only the V-
Spinach fusion was stably expressed, indicating acceptance
of the new motif by enzymes such as TyrRS (34,35). In-
deed, a co-crystal structure of TyrRS–tRNATyr reveals that
the large V loop is well accommodated by TyrRS using a
C-terminal domain that stabilizes the unique shape of the
loop (35). In bacteria, tRNASer and tRNALeu also have a
large V-loop, whereas in mammalian cells only tRNASer and
tRNALeu have a large V-loop.

Construction of Spinach–tRNA fusions

Spinach fusions were constructed from DNA oligonu-
cleotides (IDT, IA) and amplified in pairs (Supplementary
Tables S1 and S2, Supplementary Figure S1). An example
is shown for expressing V-Spinach tRNATyr from the E. coli
plasmid pKK223-3 (Supplementary Figure S1). Briefly, the
complementary 3′ ends of oligo #3 and oligo #4 (each 4
�M) were hybridized in an annealing buffer (40 mM Tris–
HCl, pH 7.5, 50 mM NaCl, 5 mM dithiothreitol (DTT)
and 20 mM MgCl2) and extended by Sequenase (0.125 mM
each dNTP) overnight at 37◦C to generate double-stranded
DNA segment-1, while the 3′-ends of oligo #5 and oligo #6
(each 4 �M) were hybridized and extended by Sequenase to
generate double-stranded DNA segment-2. The overnight
extension time was to ensure that the reaction was com-
plete, although shorter time was sufficient in most cases. The
synthesized two segments, with mutually complementary
ends, were mixed and heat-denatured to provide primers for
PCR amplification of the joined segment, using the High-
Fidelity DNA polymerase Phusion (NEB, MA) (15 cycles
of 98◦C for 30 sec, 72◦C for 1 min, then 30 cycles of 98◦C
for 30 s, 60◦C for 1 min, 72◦C for 20 s). The extended joint
segment was PCR amplified again with oligo #7 (contain-
ing the EcoRI restriction site) and oligo #8 (containing the
PstI restriction site) and the product was cloned into the
EcoRI and PstI sites of pKK223-3 for expression under
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the control of the pTac promoter. The gene for V-Spinach
tRNALeu/CAG (CAG: the anticodon) was made similarly
(Supplementary Figure S3A and B).

The gene for V-Baby-Spinach tRNAAla/UGC, V-Baby-
Spinach tRNAPhe/GAA, and V-Baby-Spinach tRNAPro/UGG

was each synthesized by GenScript, where the sequence of
the Baby Spinach aptamer (17) was inserted into the V-loop
of the respective tRNA (Supplementary Figure S3C and D).
Each fusion gene was sub-cloned into the plasmid pKK223-
3 at EcoRI and PstI sites and expressed in JM109 cells upon
induction with 1 mM IPTG.

Northern blot analysis

E. coli CA244 cells expressing a tRNA from the pKK223-3
plasmid were grown to OD600 of 0.5–1.0 in LB with ampi-
cillin. Cells (1.5 ml) were pelleted, resuspended in 0.3 M
sodium acetate (pH 5) and extracted with 100 �l of acid-
phenol (pH 5.2). The aqueous phase was precipitated with
ethanol, washed with 70% (v/v) ethanol, dried, and resus-
pended in 15 �l TE. A sample of 2 �l was mixed with 1 �l of
formamide, heated at 65◦C for 5 min and electrophoresed
on a denaturing 10% PAGE/7 M urea minigel. The sam-
ples were electroblotted onto Hybond N+ Nylon membrane
(GE Healthcare Biosciences: Pittsburgh, PA, USA) (36).
The membrane was hybridized overnight at 37◦C with 75
pmol of a 32P-labeled probe (see below) in a mixture of 0.9
M NaCl, 90 mM Tris–HCl (pH 7.5), 6 mM EDTA, 0.3%
SDS, 1% dry milk, and washed in 6× SSC (0.9 M NaCl,
90 mM Na-citrate) at room temperature, then in 3× SSC
(0.45 M NaCl, 45 mM Na-citrate) with 0.1% SDS at 40◦C.
Hybridization signals were visualized by phosphorimaging
and quantified using ImageQuant 5.2 software.

Probe to 5S rRNA: 5′-TTCTGAGTTCGGCATGGGG
T-3′

Probe to the Spinach motif: 5′-CCCGTCCTTCACCATTT
CATTC-3′

Probe to Ec tRNATyr: 5′-TGGTGGTGGGGGAAGGA
TTCGAACCTTC-3′

Suppression of lacZam

E. coli CA244 harbors an internal amber mutation in
lacZ (lacZ125am) (37), which enables analysis of the sup-
pressor activity of tRNA to synthesize the full-length �-
galactosidase (�-gal). Cells expressing tRNA from the
pKK223-3 plasmid were streaked on M9 agar supple-
mented with glucose (0.4%), CaCl2 (0.1 mM), tryptophan
(40 �g/ml), thiamine (100 �g/ml), 1 mM IPTG, and 40
�g/ml X-gal and incubated at 37◦C for over 24 h. Suppres-
sion was detected by the blue color on the indicator plate
(34,38).

�-gal assay

The amber suppressor gene of Ec tRNATyr or V-Spinach–
tRNATyr was constructed in pGFIB at EcoRI and PstI
restriction sites. A control plasmid pGFIB-00 harbored
no tRNA gene. Each plasmid was introduced to E. coli
strain XAC-1, which has the lacZU118Am gene harboring

an amber mutation at the 17th codon position for anal-
ysis of tRNA amber suppression (39,40). E. coli strain
XAC-1 i−p+ containing the natural sequence of lacZ (with-
out an amber mutation) was used as a reference. Each
strain was grown at 37◦C until OD550 reached 0.4–0.6,
and harvested cells were resuspended in Z buffer (60
mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM
MgSO4, 50 mM �-mercaptoethanol, pH 7.0) and per-
meabilized by 0.005% SDS and 10% chloroform. Cell
lysates were mixed with the substrate o-nitrophenyl-�-D-
galactopyranoside (ONPG, 0.6 mg/ml final, in 60 mM
Na2HPO4 and 40 mM NaH2PO4, pH 7.0) and incubated
for up to 50 min at 30◦C to develop the yellow color of the
product (38). The �-gal activity was calculated from OD420
normalized by OD550 and the reaction time.

Suppression of trmDAm (Y19) to restore cell viability

The trmD gene is one of the growth-essential genes in E. coli
(41,42), which encodes a tRNA methyl transferase respon-
sible for maintaining the translational reading frame. An
E. coli trmD-knockout (trmD-KO) strain was constructed
by using an antibiotic marker to disrupt trmD while main-
taining cell viability by expression of a plasmid-borne and
arabinose (Ara)-controlled human counterpart trm5 in the
presence of Ara (42,43). The trmD-KO strain was intro-
duced with a test plasmid, derived from pET-22b, harbor-
ing the IPTG-inducible trmDWT or the variant trmDAm (Y19)
gene and the lpp-controlled amber suppressor gene of Ec
tRNATyr or V-Spinach tRNATyr. Each tRNA gene was iso-
lated from pGFIB (34,39) as a PvuII fragment and was in-
serted into the EcoRV restriction site of pET-22b under the
control of the constitutive lpp promoter. To test cell viabil-
ity, individual colonies were isolated from an LB plate con-
taining Ara at 37◦C, then inoculated into fresh LB media
(20–50-fold dilution) without Ara and grown overnight (at
least 6 h) to deplete pre-existing human Trm5 protein. Cells
were then spotted by serial dilution (from 10−1 to 10−4 fold)
on LB plates with or without Ara (1% w/v) but containing
IPTG (0.4 mM) to induce expression of the reporter trmD
gene. Cell viability was evaluated after incubation at 37◦C
overnight.

Live imaging of E. coli cells expressing V-Spinach tRNA

V-Spinach tRNA was expressed from pKK223-3 in one of
three E. coli strains: CA244 (Hfr (PO1) lacZ56 trpA49 relA1
spoT1) (37), Top10 (F– mcrA Δ (mrr-hsdRMS-mcrBC)
�80lacZ�M15 �lacX74 recA1 araD139 Δ (ara leu) 7697
galU galK rpsL (StrR) endA1 nupG) (Invitrogen) and JM109
(F´ traD36 proA+B+ lacIq Δ (lacZ)M15/ Δ (lac-proAB)
glnV44 e14− gyrA96 recA1 relA1 endA1 thi hsdR17)
(NEB). Expression in CA244 and in Top10 was constitu-
tive, due to the lack the lacIq repressor in these cells, whereas
expression in JM109 was IPTG-inducible to switch off the
lacIq repressor. Expression in all three showed no visible
toxicity.

Prior to imaging analysis, optical glass slides were freshly
coated with poly-D-lysine (PDL) for 1 h at room tem-
perature and washed twice with M9 minimal media. An
overnight culture of E. coli cells expressing a Spinach tRNA
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was grown in LB medium at 37◦C supplemented with ampi-
cillin. The overnight culture was inoculated into 3 ml fresh
media (by a 100-fold dilution) and grown for 3–4 h at 37◦C
to OD600 of 0.3-0.4. The CA244 cells were harvested, while
the JM109 cells were split into two tubes and 1 mM IPTG
was added to one. At each point after induction, the cul-
ture of each tube (1.5 ml) was harvested. Cells were resus-
pended in 150 �l of M9 media, washed twice in M9, and
plated on the PDL-treated glass slides for 20 min at 37◦C.
After removal of free cells by washes with M9, the plates
were incubated with 200 �M DFHBI in M9 for 5 min at
37◦C. This was followed by additional washes of cells in M9
to remove excess DFHBI. Live fluorescence images were
obtained with a PTM camera through a 63× oil objective
lens mounted on a Carl Zeiss LSM (Laser Scanning Mi-
croscopy) 510 META confocal microscope and analyzed
with Metamorph software. An argon ion 488 nm laser was
used for excitation and a 505–550 nm band pass filter (Carl
Zeiss) was used to select the fluorescent signal. For time
course analysis of fluorescence intensity, images were ac-
quired every 30 min with 1024 × 1024 pixel resolution. The
intensity of individual E. coli cells at each time point was
calculated by Metamorph software and was shown as the
average (n = 100 each). Images of an experiment versus its
control were taken at the same excitation power, camera ac-
quisition time and LUTs set to the same value for all pic-
tures taken on the same channel and presented on the same
figure.

To examine the physical distribution of V-Spinach
tRNATyr with ribosomes, a P1 lysate was prepared from
QC101 carrying the L9-mCherry fusion (44) and this lysate
was used to transduce JM109 cells by selection of the
kanamycin marker. The transduced cells were transformed
with pKK223-3 expressing V-Spinach tRNATyr/GUA or
Spinach aptamer. Overnight cultures were diluted 100-fold
in LB medium supplemented with 100 �g/ml ampicillin and
50 �g/ml kanamycin and cultured at 37◦C with shaking.
After 1 h, 1 mM IPTG was added and growth was contin-
ued for another 2 h. Then, the cells were harvested and re-
suspended in M9 medium supplemented with 100 �g/ml
DFHBI reagent. After incubation in this medium for 10–20
min, cells were washed with PBS and transferred onto a 1%
agarose pad (prepared in M9 media supplemented with ap-
propriate antibiotics and IPTG) placed on glass slides. The
cells were observed under a Carl Zeiss Axioplan 2 Imag-
ing microscope equipped with a Carl Zeiss Axio-Cam CCD
camera. Filters used for DFHBI and mCherry fluorescence
were HQ480/40 (ex. 480/40 nm and em. 535/50) and ET-
Texas Red (ex. 550 and em. 630 nm), respectively. Images
were analyzed using the program Axiovision 4.7.

Total tRNA extraction

E. coli Top10 cells expressing V-Spinach tRNATyr (with
the natural 5′-GUA-3′ anticodon) from pKK223-3 were
grown overnight at 37◦C in 2 l of 2 × YT, while JM109
cells expressing the wild-type tRNATyr from pKK223-3
were grown overnight in 1 × LB. During this incubation,
V-Spinach tRNATyr was constitutively expressed whereas
tRNATyr was expressed upon addition of 1 mM IPTG. Sta-
tionary cultures were harvested and 20 g of cell pellet were

phenol extracted by vortexing at room temperature for ∼30
min with 40 ml of 50 mM sodium acetate (NaOAc, pH 5.3),
10 mM Mg (OAc)2, and 34.4 ml of liquified phenol (88%).
After centrifugation the aqueous phase was collected and
the phenol layer was extracted with an equal volume of 50
mM NaOAc, 10 mM Mg (OAc)2 for an additional 30 min.
Total nucleic acid was pelleted from the combined aqueous
phases by ethanol precipitation (addition of 1/10 volume
of 20% KOAc and an equal volume of ethanol, 30 min at
25 ◦C) and centrifugation. DNA and low molecular weight
RNAs were solubilized by vortexing the pellet with two por-
tions of ice cold 1 M NaCl. After centrifugation the clarified
supernatants were combined and two volumes of ethanol
were added to precipitate the remaining nucleic acid. The re-
sulting pellet was dissolved in 0.3 M NaOAc and DNA was
selectively precipitated with 0.54 volumes of isopropanol
and incubation for 10 min at room temperature, followed by
centrifugation. The supernatant was reserved and the pellet
was treated the same way as before. After combining the
two supernatants, 0.24 volumes of isopropanol were added
to precipitate total tRNA.

Total tRNA was deacylated in alkaline (0.1 M Tris–HCl,
pH 9.0) for 3 h at 37◦C. Each plasmid-borne tRNA was pu-
rified using a biotinylated oligo as described (11,45). The
oligo for V-Spinach tRNATyr (5′ TGG ACC CGT CCT
TCA CCA TTT CAT TCA GTC GCG TC–Biotin TEG
3′) was complementary to a major loop in the Spinach do-
main while the oligo for the native tRNATyr (5′ TTT ACA
GTC TGC TCC CTT TGG CCG CTC–Biotin TEG 3′)
was complementary to the sequence between the anticodon
and D loops. Hybridization was in 20 mM Tris–HCl (pH
7.5), 1.8 M NaCl, 0.2 mM EDTA. The quality of purified
tRNAs was checked by 12% PAGE/7M urea gel. Alterna-
tively, V-Spinach tRNATyr was directly purified to homo-
geneity using a preparative 12% PAGE/7M urea gel, due
to its larger size relative to tRNAs. Ec tRNATyr as puri-
fied contained a mixture of tRNATyr1 and tRNATyr2, be-
cause the oligonucleotide for affinity pull-down did not dis-
tinguish between the two. However, we estimated that the
amount of Ec tRNATyr2 was >80% in the mixture (11), due
to its over-expression from the pKK223-3 plasmid.

Aminoacylation of tRNA

Aminoacylation of tRNATyr and V-Spinach tRNATyr puri-
fied from cells was performed in a 30 �l reaction contain-
ing 20 mM KCl, 10 mM MgCl2, 10 mM DTT, 2 mM ATP,
50 mM HEPES, pH 7.5, and 20 �M 3H-Tyr. The tRNA
concentration was corrected based on the plateau level of
aminoacylation, while the enzyme concentration was cor-
rected based on active fraction obtained from burst kinet-
ics (46). Steady-state kinetics of aminoacylation was per-
formed with 2 nM purified E. coli TyrRS for the wild-type
tRNATyr and 5 nM enzyme for V-Spinach tRNATyr. Reac-
tions were sampled over time and quenched on filter pads in
5% ice-cold trichloroacetic acid (TCA) (47). After extensive
washes, radioactivity on air-dried filter pads was measured
in a Beckman 6000S scintillation counter. Data of aminoa-
cylation as a function of tRNA concentration were fit to the
Michaelis-Menten equation. Values of Km (tRNA), kcat and
kcat/Km were determined from the average of three indepen-
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dent experiments and were consistent with those of other Ec
tRNAs (11,34,48). Errors are SDs.

Equilibrium binding of tRNA to EF-Tu-GTP

The 3′-terminal A76 in tRNATyr (2 �M) was labeled with
�-32P-ATP (0.4 �M, 6000 Ci/mmol) by Bacillus stearother-
mophilus CCA-adding enzyme (10 �M) (49,50) in 20 �l of
10 mM MgCl2, 1 mM DTT, and 50 mM glycine pH 9.0
(51,52). After dilution to 50 �l with TE, the reaction was
extracted with phenol–chloroform–isoamyl alcohol, cen-
trifuged through a cartridge, and then ethanol precipitated
in the presence of 2 �g glycogen. Prior to charging, the la-
beled tRNATyr was heated at 80–85◦C for 3 min in 20 �l
of water, rapidly mixed with 4 �l of a 10 × AA buffer (100
mM MgCl2, 200 mM KCl, 100 mM DTT, 200 mM Tris pH
7.5), and kept at 37◦C for 10–15 min. Aminoacylation (10
min at 37◦C in 40 �l) was carried out in the presence of
200 �M tyrosine, 6.2 mM ATP, 0.2 mg/ml BSA and 10 �M
TyrRS. After quenching with 5 �l 2.5 M NaOAc pH 5.0,
the reaction was extracted with pH 5.2 phenol–chloroform–
isoamyl alcohol, ethanol precipitated, dissolved in 50 �l 25
mM NaOAc pH 5.0 and stored at –20◦C. The efficiency of
aminoacylation was determined to be ∼44% and it was not
affected by the V-Spinach fusion.

Dissociation rate constants of the ternary complex be-
tween Ec EF-Tu, Tyr-tRNATyr/GUA, and GTP were deter-
mined using a ribonuclease protection assay (53,54). EF-
Tu (75 pmol) was first activated with 1.5 nmol of GTP by
incubation 3 h at 37◦C in 75 �l of 20 mM MgCl2, 5 mM
DTT, 0.5 M NH4Cl, 1.2 mM phosphoenol pyruvate, 0.02
units/�l pyruvate kinase and 50 mM HEPES pH 7.0. The
activated EF-Tu was mixed with 3 pmol of radiolabeled
Tyr-tRNATyr/UGA and incubated on ice for at least 20 min
to form the ternary complex. Time courses of dissociation
were carried out in the presence of 0.1 mg/ml RNase A
also on ice. Reaction aliquots (5 �l) were quenched in 50
�l of cold 10% TCA that contained 0.1 mg/ml bulk tRNA.
Aliquots of 40 �l each were spotted on separate Whatman
filter paper pads for bulk washing in cold 10% TCA three
times, ethanol twice, ether once, and dried. Cerenkov counts
attributable to intact 32P-labeled Tyr-tRNATyr were mea-
sured in a scintillation counter. The rate constant (koff) for
dissociation of Tyr-tRNATyr from EF-Tu was determined
by exponential fitting of the data. Kd values can be calcu-
lated by using a value of 1.1 × 10−4 nM−1 s−1 for the on-rate
kon binding (55,56).

Programmed ribosome protein synthesis

The mRNA for translation was prepared by in vitro tran-
scription from a synthetic double-stranded DNA template
using T7 RNA polymerase (57), followed by gel purifica-
tion. The sequence of the template mRNA, encoding the
peptide fMYPRSKH6, is shown below, where the Shine-
Dalgarno sequence is underlined and the initiation codon
is in bold face.

5′-GGGAAGGAGGUAAAAAUGUAUCCCCGUU
CUAAGCACCACCACCACCACCAC-3′

Native Ec tRNAfMet/CAU and tRNATyr/GUA were
over-expressed in E. coli and purified using biotinylated

oligoncleotides (11,42,45). Over-expressed V-Spinach
tRNATyr/GUA was directly purified by denaturing 12%
PAGE. Each tRNA was enzymatically charged with its
cognate amino acid and then stored in 25 mM acetate
buffer (pH 5.0) at −20◦C until use. Formylation of Met-
tRNAfMet/CAU was carried out during the charging reaction
by including methionyl–tRNA formyltransferase with the
methyl donor 10-formyltetrahydrofolate (derived from
folinic acid at neutral pH) (11). The efficiency of charging
was determined by doping each reaction with radiolabeled
amino acid and determining both A260 and radioactive
counts of product tRNA after removal of free amino acid,
GTP, and protein. Tight-coupled 70S ribosomes were
isolated from E. coli MRE600 cells and over-expressed
His-tagged initiation and elongation factors were purified
from affinity resin (11,42,58–60). These reagents were
aliquoted prior to storage at −70◦C.

EF-Tu-dependent hydrolysis of GTP

Reactions were carried out in 70 mM NH4Cl, 30 mM KCl,
3.5 mM MgCl2, 1 mM DTT, 0.5 mM spermidine and 50
mM Tris–HCl pH 7.5 (Buffer A) (11,61,62). A ternary com-
plex was formed in two steps, in which EF-Tu was first incu-
bated with limiting � -32P-GTP (6000 Ci/mmol) for 15 min
at 37◦C and then with excess Tyr-tRNATyr/GUA for 15 min
on ice. Free GTP was removed from the ternary complex
by centrifugation through a spin cartridge (Centrispin-20;
Princeton Separations). The flow-through was diluted with
Buffer A to give a 2× stock of ternary complex that con-
tained approximately 1.5 �M EF-Tu, 1.0 �M Tyr-tRNATyr

and 16 nM � -32P-GTP. In parallel, a 2× stock of 70S ini-
tiation complex was formed by incubating 0.75 �M 70S ri-
bosome with 1.0 �M each IF1, IF2, IF3, fMet-tRNAfMet

and mRNA in Buffer A supplemented with 1 mM cold
GTP for 25 min at 37 ◦C. The 2× solutions were stored on
ice until same-day use. Rapid mixing of the ternary com-
plex and the ribosome solution was performed on a Kintek
quench flow apparatus at 20◦C. Aliquots of GTP hydrolysis
were quenched with 40% formic acid and GTP was sepa-
rated from Pi by thin layer chromatography (TLC) on PEI-
cellulose in 0.5 M NaH2PO4 pH 3.5. Spots were visualized
by phosphorimaging and quantified using ImageQuant 5.2.

First peptide bond formation

The first peptide bond formation was monitored for syn-
thesis of the dipeptide fMY, catalyzed by 0.25 �M of the
ribosome 70S initiation complex, which contained fMet-
tRNAfMet at the P-site and Tyr-tRNATyr (or V-Spinach
tRNATyr) at the A-site (62,63). A 70S initiation complex
was formed by incubating 0.75 �M 70S ribosome with 0.5
�M 35S-fMet-tRNAfMet and 1.0 �M each IF1, IF2, IF3 and
mRNA in Buffer A with 1 mM GTP for 25 min at 37◦C.
A ternary complex was formed by incubating 1.5 �M EF-
Tu with 1 mM GTP in Buffer A for 15 min at 37 ◦C after
which Tyr-tRNATyr/GUA was added to 1.0 �M and incuba-
tion continued for 15 min on ice. The 2× stocks were rapidly
mixed in a Kintek quench flow apparatus at 20◦C. Reaction
aliquots were quenched in 0.8 M KOH. After 1–2 h at 37
◦C to separate the peptide from the peptidyl-tRNA linkage,
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Figure 1. Expression of a V-Spinach tRNA in E. coli. (A) The Spinach
aptamer (in green) is fused to the V-loop of E. coli (Ec) tRNATyr/CUA (in
orange), harboring the amber-reading anticodon 5′-CUA-3′. The drawing
of the Spinach aptamer is based on the crystal structure of the Fab BL3-6-
bound aptamer (29). The sequence of the Spinach aptamer is as described
(15) and it is covalently joined to the V-loop between C47:2 and A47:3 as
shown by two black up arrow icons. The U71 and U72 substitutions in Ec
tRNATyr are shown by downward arrows, which replace G1-C72 and G2-
C71 base pairs with G1-U72 and G2-U71, respectively. (B) Fluorescence
microscope images of E. coli cells expressing the amber suppressor form of
V-Spinach tRNATyr versus cells expressing the Spinach stand-alone. DIC
images and scale bars (each representing 2 �m) are shown. On average,
when examined in liquid cultured media, 96.4 ± 0.1% of cells expressing
the V-Spinach tRNA showed the GFP-like fluorescence (n = 100).

35S-fMet was resolved from 35S-fMet-Tyr by electrophore-
sis on a cellulose TLC plastic sheet in PYRAC (3.48 M
HOAc/62 mM pyridine; pH 2.7). Bands were visualized by
phosphorimaging and quantified using ImageQuant 5.2.

RESULTS

Live-cell stability and fluorescence of Spinach–tRNA fusions

To explore the capacity of making fusions that are stable in
a live cell, we began with the original Spinach, which was
directly isolated from in vitro selections and was one of the
largest aptamers for GFP-like fluorescence (15). We chose
E. coli tRNATyr as the engineering framework, which has a
naturally large D- and V-loop relative to the average tRNA,
indicating the potential of these regions to accommodate
a new structural motif. The total length of the fusion com-
bining the Spinach and E. coli tRNATyr was 183 nucleotides
(Supplementary Tables S1 and S2), exceeding the length of
naturally existing tRNA. We expressed the fusion from a
multi-copy plasmid and used Northern analysis to deter-
mine its stability in E. coli cells. While the Spinach fusion
with the D- or T-loop of the tRNA was not detectable, the
fusion with the V-loop was readily detected in total RNA
isolated from cells (Supplementary Figures S2 and S4). The
stable expression of the V-Spinach tRNA in E. coli indicates
that the V-loop is a suitable site for accepting Spinach with-
out compromising tRNA structural stability (Figure 1A).
The stability of the V-Spinach tRNA was similar in two con-
structs: the one with the natural anticodon 5′-GUA and the

other with the amber-reading anticodon 5′-CUA (Supple-
mentary Figure S4).

The structural stability of the V-Spinach tRNA corre-
lated with its stable emission of GFP-like fluorescence inside
E. coli CA244 cells. Upon a brief incubation with DFHBI,
96.4 (±0.1)% of single cells that expressed the fusion showed
fluorescence whereas those that expressed the stand-alone
aptamer had little fluorescence (Figure 1B). The lack of flu-
orescence of the stand-alone Spinach was consistent with its
intracellular instability in Northern analysis (Supplemen-
tary Figure S4). In cells where expression of the V-Spinach
tRNA was regulated by a transcriptional repressor, fluores-
cence of individual cells was dependent on the inducer (Sup-
plementary Figure S5), reaching a stable 60-fold increase
over the baseline within 60 min, but a slow and small in-
crease in fluorescence in the absence of IPTG. We attributed
the latter to the IPTG-independent basal expression from
the Tac promoter that drives tRNA expression from the
plasmid. These results validate that the fluorescence ob-
served in E. coli cells expressing V-Spinach tRNATyr was
associated with the tRNA, rather than nonspecific effects
on Spinach fluorescence.

We showed that live-cell fluorescence imaging was also
applicable to the Spinach fusion with the V-loop of
tRNALeu, another E. coli species with a large V-loop rel-
ative to the average (Supplementary Figure S3A and B).
Furthermore, imaging was successful even with E. coli
tRNAAla/UGC, tRNAPhe/GAA, and tRNAPro/UGG, each of
which has the standard size of five nucleotides in the V-loop
(Supplementary Figure S3C and D). In each of the latter
cases, a smaller version of the original Spinach, known as
the ‘Baby Spinach’, was used. The Baby Spinach retains the
primary structure and fluorescence intensity of the original
Spinach (17). These results support the notion that the V-
loop of tRNA can accommodate aptamers of varying size.

Spinach tRNA as a probe for live-cell tRNA quality control

We determined if V-Spinach tRNATyr served as a probe to
monitor the cellular quality control that degrades damaged
tRNA. One of these mechanisms targets tRNA with an un-
stable acceptor end and attaches CCA-CCA sequence to
the 3′ end as the degradation tag (64). Structural instabil-
ity in tRNA can arise from errors during transcription or
post-transcriptional processing or from mutations associ-
ated with cancer development (65–67). To determine if the
large size of the Spinach fusion can be recognized by this
quality control, we generated a variant carrying the desta-
bilizing U71 and U72 substitutions that created two con-
secutive G-U base pairs at the acceptor end (G1-U72 and
G2-U71, Figure 1A and Supplementary Figure S2D). This
U71-U72 variant was barely detectable in Northern analysis
(Supplementary Figure S4), suggesting that it was subject
to rapid degradation. The mechanism of the rapid degrada-
tion of the U71-U72 variant is likely due to the dual CCA-
CCA addition at the 3′-end (64). We also generated another
variant lacking the single CCA sequence at the 3′-end and
showed that this variant was detectable, albeit with a re-
duced stability relative to the full-length V-Spinach tRNA
(Supplementary Figure S4), indicating that the single CCA
sequence can protect the tRNA from degradation.
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To determine the timescale of degradation, we placed an
aliquot of exponentially growing cells on glass slides, in-
cubated them with DFHBI for 5 min, washed off excess
ligand, and monitored the DFHBI-dependent fluorescence
over time at 22.5◦C. Because cells were immobilized on glass
slides, the diffusion of bound DFHBI from cells was lim-
ited. Imaging tRNA in CA244 cells represented the average
level of de novo synthesis and decay. Among the more than
1000 cells examined, we observed a significant fluorescence
signal above the background for V-Spinach tRNATyr with a
steady increase from time 0 up to 1 hr and a stable fluores-
cence up to 2 h (Figure 2A). Because no maturation time is
required to generate a fluorescent complex upon Spinach–
DFHBI interaction (15), the progressive increase in fluores-
cence in the first hour might indicate the gradual transition
of cells on the slide from the exponential phase to an early
stationary phase. Nonetheless, the robust fluorescence in-
dicates that de novo synthesis of the tRNA was dominant
over decay within this time frame. In contrast, cells express-
ing the U71-U72 variant of V-Spinach tRNATyr showed no
fluorescence, indicating that decay was dominant over de
novo synthesis (Figure 2A and B). The lack of fluorescence
from the onset was striking, indicating that degradation of
the variant was rapid even with active de novo transcription.
Quantification of fluorescence at 60 min confirmed high in-
tensity from cells expressing the wild-type fusion, but vir-
tually no intensity from cells expressing the variant, similar
to cells expressing the stand-alone Spinach or cells without
DFHBI (Figure 2C). Thus, the V-Spinach tRNATyr, upon
the acceptor stem damage, is recognized by the appropri-
ate cellular quality control and is degraded, indicating that
it is a valid biological probe for live-cell imaging of tRNA
stability.

Spinach tRNA active in live-cell protein synthesis

We determined whether the exceptionally large size of V-
Spinach tRNATyr is active in the protein synthesis machin-
ery. We used E. coli CA244 cells, which harbored an am-
ber mutation (5′-UAG) in the N-terminal half of �-gal en-
coded by the lacZ125am locus (68). In these cells, synthe-
sis of the full-length �-gal required suppression of the am-
ber mutation with an amino acid donated by an amber-
suppressor tRNA during live-cell protein synthesis. Impor-
tantly, despite the large and bulky structure, the fusion
with the amber-reading anticodon 5′-CUA suppressed the
lacZ125am locus (Figure 3A), indicating that it was active
in protein synthesis. Suppression was observed only when
the fusion had the amber-reading anticodon; no suppres-
sion was observed in cells expressing Spinach stand-alone
or the amber suppressor form of T- or D-Spinach tRNATyr

(Figure 3A).
Translation of a codon involves three key steps; (i)

aminoacylation of the tRNA cognate to the codon, (ii) for-
mation of the aminoacyl-tRNA ternary complex with EF-
Tu and GTP, (iii) delivery of the ternary complex to the ri-
bosome A-site and reading of the codon by the aminoacyl-
tRNA. To determine how the V-Spinach tRNATyr per-
formed these reactions relative to the wild-type tRNATyr,
we monitored the time-course of each reaction using puri-
fied enzymes and ribosomes in quantitative assays. To ob-

Figure 2. Live-cell imaging of the amber-suppressor form of V-Spinach
tRNATyr /CUA in E. coli. (A) Fluorescence microscope images of E. coli
cells expressing the amber suppressor form of V-Spinach tRNATyr, WT
(top) or U71-U72 variant (bottom). The Spinach tRNA fusion was con-
stitutively expressed in CA244 cells. Upon entering log-phase, an aliquot
of cells was harvested, washed, suspended in M9 minimal medium and
immobilized on a poly-(D)-lysine-coated glass slide. Cells were incubated
with DFHBI for 5 min, and washed off the excess ligand. The diffusion
of bound DFHBI from cells was limited in the immobilized condition and
in minimal media. Green fluorescence was excited by 488 nm Argon ion
laser and monitored under a microscope over a time course at a constant
temperature of 22.5◦C. DIC images and scale bars (each representing 2
�m) are shown. Few cell-to-cell variations are seen in the green channel.
(B) Quantification of the time courses of fluorescence intensity. Average
intensity of the pixels corresponding to the area of a single E. coli cell was
quantified by image analysis software (see methods for details). Error bars
are expressed as standard errors of mean (SEM), n = 100 for each of the
time points. (C) The average fluorescence intensity of the native and the
U71-U72 variant of V-Spinach tRNATyr at 60 min compared to negative
controls, where only the Spinach stand-alone was expressed (‘Spinach’) or
where V-Spinach tRNATyr/CUA was expressed in the absence of DFHBI
(‘No DFHBI’). Error bars are expressed as SEM, n = 100 for each of the
time points.
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Figure 3. Activity of V-Spinach tRNA in protein synthesis. (A) Suppression of the lacZ125am locus in E. coli CA244 cells (Yale CGSC stock center) by
V-Spinach tRNATyr with the 5′-CUA anticodon (CUA), but not by the Spinach stand-alone, V-Spinach tRNATyr with the 5′-GUA anticodon (GUA), or T-
or D-Spinach tRNATyr with the CUA anticodon (CUA). E. coli cells expressing each Spinach construct were streaked out on an LB plate with ampicillin.
Three to five single colonies with each construct were picked and re-streaked to 1 cm length on a minimal M9 plate with ampicillin and X-gal. This single-
colony isolation ensured the homogeneity of each clone of cells. Representative streaks on M9 plates are shown. (B) Activity of the wild-type (WT) Ec
tRNATyr and V-Spinach Ec tRNATyr in major steps of protein synthesis, including aminoacylation, stability of the ternary complex, accommodation to
the ribosome A-site, and formation of the first peptide bond on an mRNA template with the sequence starting with 5′-AUG-UAU-3′. Both V-Spinach
tRNATyr and Ec tRNATyr, each containing the natural Tyr anticodon 5′-GUA, were isolated from E. coli cells and purified to homogeneity. (C) Suppression
of the amber codon 5′-UAG at the lacZU118Am locus by the amber suppressor form of V-Spinach tRNATyr harboring the anticodon 5′-CUA, leading to
synthesis of �-gal. Measurement of �-gal activity encoded in XAC-1 cells expressing a plasmid-borne amber suppressor form of tRNATyr (Tyr), amber
suppressor form of V-Spinach tRNATyr (Spinach), or none. Each activity is reported as a fraction relative to the activity encoded by the lacZWT gene (no
amber mutation) in XAC-1 cells. Error bars denote SD (standard deviation), n = 3. (D) Suppression of trmDAm (Y19) by the amber suppressor form of
V-Spinach tRNATyr leads to synthesis of the growth-dependent TrmD enzyme, which supports E. coli cell viability. The trmDAm (Y19) locus contains an
amber codon at the Y19 position, which prevents translation of the trmD gene. This study was conducted in E. coli trmD-knockout (trmD-KO) cells where
the chromosome-encoded trmD gene was disrupted with an antibiotic marker and cells were maintained viable in the presence of arabinose by a plasmid-
borne and arabinose-controlled expression of the human counterpart trm5 gene (42). (E) Examination of viability of E. coli trmD-KO cells expressing a
plasmid-borne trmDWT (row 1), a plasmid-borne trmDAm (Y19) (row 2), a plasmid-borne trmDAm (Y19) and the amber suppressor gene of Ec tRNATyr (row
3), and a plasmid-borne trmDAm (Y19) and the amber suppressor gene of V-Spinach tRNATyr (row 4) in the presence or absence of arabinose (Ara).

tain data relevant to the biology of protein synthesis, the
Spinach fusion and the wild-type tRNATyr was each iso-
lated from cells to homogeneity, containing all natural post-
transcriptional modifications and the natural Tyr anticodon
5′-GUA. We found that the Spinach tRNA was mildly defi-
cient relative to the wild-type tRNATyr in these key steps of
protein synthesis (Figure 3B).

To assess the aminoacylation reaction, we monitored the
attachment of 3H-Tyr to tRNATyr by E. coli TyrRS. The
kinetic parameters of the wild-type tRNATyr (Km, kcat and
kcat/Km, Supplementary Figure S6A) were closely similar
to values of the transcript of E. coli tRNATyr (34), consis-
tent with the notion that post-transcriptional modifications
are not critical for TyrRS. These parameters are also simi-
lar to values of other E. coli tRNAs (11,34,48,69–71), con-
sistent with the notion that the overall kinetics of aminoa-
cylation is similar among different tRNA species, including
the Michaelis constant and the number of catalytic turnover

(72). The V-Spinach tRNATyr differed from the wild-type
tRNATyr by a small increase in Km (tRNA) (from 1.7 ± 0.4
to 2.6 ± 1.2 �M) and a small decrease in kcat (from 2.5 ±
0.2 to 1.4 ± 0.3 s−1), resulting in an overall decrease of 2.7-
fold in the catalytic efficiency kcat/Km (Figure 3A). Thus,
while the large V-loop presents interference to aminoacyla-
tion, the effect is minor relative to the 10−6 effect observed
upon the loss of a major determinant for other aminoacyl-
tRNA synthetases (39,73).

To assess the stability of each charged Tyr-tRNA in a
ternary complex with EF-Tu-GTP, we determined its dis-
sociation kinetics from the ternary complex. In this assay,
we preformed the ternary complex harboring each tRNA,
3′-end labeled with 32P and charged with Tyr, and used
RNase A to degrade the tRNA fraction that dissociated
from the complex. The remaining labeled tRNA fraction in
the ternary complex was then determined. Measurement of
the dissociation constant in equilibrium conditions showed
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that the off rate of the fusion and of the parental tRNATyr

from the respective ternary complex was similar (koff =
0.0034 ± 0.0008 versus 0.0022 ± 0.0005 s−1, Supplemen-
tary Figure S6B), indicating comparable stability of each in
the respective ternary complex. These values are also similar
to values of others (55), supporting the notion that EF-Tu
binding focuses on the acceptor end of tRNA (74,75) and is
not interfered by the Spinach insertion to the V-loop.

To assess the accommodation of each tRNA to the ribo-
some A-site, we assembled a ribosome post-initiation com-
plex, where the initiator fMet-tRNAfMet was bound at the
P-site next to the Tyr codon 5′-UAU at the A-site. By analy-
sis of GTP hydrolysis upon accommodation of each charged
tRNA to the Tyr codon, we showed that the Spinach fu-
sion induced an 18-fold slower rate relative to the wild-
type tRNATyr (0.062 ± 0.008 versus 1.11 ± 0.06 s−1, Sup-
plementary Figure S6C). In this assay, while the ribosome
concentration was low (0.375 �M), it was still in excess of
the ternary complex to permit one turnover. Indeed, GTP
hydrolysis for Spinach tRNA and the wild-type tRNATyr

both proceeded in a single exponential course over time
(Supplementary Figure S6C), indicating that it was a single
turnover reaction for both. The rate constant of tRNATyr

was similar to values reported previously at similar ribo-
some concentrations (11,76). Fitting the rate data as a func-
tion of ribosome concentration showed a hyperbola curve
without a lag, even at the low concentration tested here (76),
indicating that substrate binding was in rapid equilibrium
with the ribosome and that the reaction was not limited by
binding, but by the chemistry of GTP hydrolysis (which is
controlled by a slow conformational accommodation step
(77)). Thus, despite the low concentration of the ribosome,
binding of each ternary complex was fast relative to the ki-
netics of GTP hydrolysis. The 18-fold reduction in the rate
of GTP hydrolysis of the V-Spinach tRNATyr relative to
tRNATyr therefore reflects an impaired accommodation to
the ribosome A-site prior to GTP hydrolysis.

We also monitored the first peptidyl transfer catalyzed by
the ribosome, by incubating a post-initiation complex with
each tRNA ternary complex and monitoring the rate of
peptidyl transfer. In this assay, the limiting reagent was the
post-initiation complex containing 35S-fMet-charged initia-
tor tRNAfMet at the P-site (0.25 �M), reacting with a mo-
lar excess of each tyrosyl ternary complex. By analysis of
dipeptide synthesis of 35S-fMet-Tyr, we found that the rate
of each tRNA was similar to the respective rate of GTP hy-
drolysis (Supplementary Figure S6C and D), indicating that
GTP hydrolysis remained limiting for the rate of peptide
bond formation at this low ribosome concentration. These
results suggest that the Spinach tRNA, despite the initial
deficiency at inducing GTP hydrolysis and accommodation
to the A-site, did not cause further impediment on the ri-
bosome to slow down peptidyl transfer. However, whether
Spinach tRNA was defective relative to wild-type tRNATyr

in peptidyl transfer cannot be resolved by this assay. No-
tably, due to the rate-limiting nature of GTP hydrolysis to
the first peptidyl transfer, the second peptidyl transfer was
not determined. Additionally, in the time course of both
GTP hydrolysis and dipeptidyl synthesis, the Spinach tRNA
consistently showed a 3-4-fold reduced plateau level relative

to the wild-type tRNATyr (Supplementary Figure S6C and
D), further supporting the notion of a reduced accommo-
dation prior to GTP hydrolysis.

Given that the Spinach tRNA was deficient relative to
the wild-type tRNATyr in the assays above, we determined
whether this deficiency reduced protein synthesis in vivo. We
used the amber suppressor form of the tRNA to determine
its suppression activity in E. coli XAC-1 cells, which dis-
played low backgrounds for reporter assays (38). XAC-1
expresses the reporter lacZU118Am, where an amber muta-
tion is localized to position 17 of lacZ (34). Measurement of
the intracellular activity of the reporter protein showed that
translation of the amber codon by the wild-type tRNATyr

relative to the control gene without the amber mutation
(lacZWT) was 61.7%, whereas translation by the Spinach fu-
sion was reduced to 9.3% (Figure 3C). Thus, consistent with
biochemical analysis, the cell-based assay showed that the
Spinach fusion performed protein synthesis with a 6-7-fold
reduced activity relative to wild-type tRNATyr.

We then asked whether the reduced protein synthesis ac-
tivity of the Spinach fusion compromised cell viability. Us-
ing the growth-essential trmD gene (41,42) as a reporter,
which codes for a tRNA methyl transferase required for
maintaining the protein synthesis reading frame (42,60,78),
we showed that E. coli cells harboring an amber mutation of
the Y19 codon of trmD were non-viable, unless the human
counterpart gene (43) was expressed from a maintenance
plasmid under the control of arabinose (Figure 3D and E,
rows 1–2). This provides a cell-based assay to determine,
in the absence of the human counterpart enzyme upon re-
moval of arabinose, whether the translation of the amber
codon at Y19 was sufficiently active to produce TrmD to
support cell viability. Indeed, the amber-suppressor form
of the wild-type tRNATyr was sufficiently active, such that
cells were viable when the human gene was turned off (Fig-
ure 3E, row 3). Importantly, the amber-suppressor form of
the Spinach fusion appeared to be even more active, sup-
porting stronger cell viability in the absence of arabinose
(Figure 3E, row 4). In this comparison, we suggest that the
amber-suppressor form of the wild-type tRNATyr, due to
its stronger suppressor activity, can interfere with the nor-
mal termination at 5′-UAG stop codons, thus conferring a
growth disadvantage to cells.

Co-exclusion of V-Spinach tRNA and ribosomes from the nu-
cleoids

We determined if the Spinach fusion provides an imaging
tool to visualize tRNA with the ribosome. In exponentially
growing E. coli cells, translating ribosomes are not uni-
formly distributed throughout the intracellular space of cy-
toplasm; instead they are organized around the nucleoid
lobes in segregated space (44,79). By labeling each trans-
lating ribosome with an mCherry tag fused to the riboso-
mal L9 protein (L9-mCherry), previous fluorescence imag-
ing analysis showed an alternating distribution pattern of
ribosomes with the DAPI-stained nucleoids (44). This spe-
cific segregation of ribosomes from the nucleoids would
change when cells entered stationary phase or encountered
drugs affecting transcription or translation (44). To deter-
mine the cellular distribution of V-Spinach tRNATyr rela-
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tive to ribosomes, we expressed it from a multi-copy plas-
mid in a strain where all ribosomes carried the L9-mCherry
tag. This strain, together with a control strain expressing the
stand-alone Spinach, was cultured, briefly incubated with
DFHBI, and imaged with appropriate filters.

In exponentially growing E. coli cells, the L9-mCherry
fluorescence was clearly visible and it exhibited the alter-
nating pattern of ribosome distribution with the nucleoids
spanning the entire length of the rod-shape (Figure 4A).
Starting from one pole to the other across the average 4 �m
length of single cells, the fluorescence of L9-mCherry ribo-
somes peaked at 1.0, 2.5 and 3.5 �m (Figure 4B), consis-
tent with previous reports (79). Interestingly, a lengthwise
intensity scan of a representative cell revealed the overlap
of the L9-mCherry peaks with the GFP-like fluorescence
of the V-Spinach tRNATyr peaks (Figure 4A and B), sug-
gesting co-exclusion from the nucleoids. This overlap was
not seen in cells expressing the stand-alone Spinach, which
instead showed diffused and uniformly distributed fluo-
rescence without nuclear exclusion (Figure 4A and C), or
in DFHBI-stained cells without any plasmid (Figure 4D).
Comparing the L9-mCherry and the GFP-like fluorescence
with DAPI staining confirmed the co-exclusion of ribo-
somes with Spinach tRNA from the nucleoids, showing the
occupancy of the nucleoids at each trough between the fluo-
rescence peaks (Figure 4D and E). This co-exclusion was re-
producibly observed in different phases of cell growth, sug-
gesting that Spinach tRNA and ribosomes are together in
the cytosol and possibly engaged in active protein synthesis.

DISCUSSION

This work demonstrates that the insertion of a large Spinach
aptamer to the V-loop of tRNA creates a fusion that is ac-
tive as an integral component of live-cell protein synthesis
in E. coli. The protein synthesis activity of the fusion man-
ifests at several levels: the suppression of separate amber
mutations for synthesis of �-gal (lacZ125am, lacZu118Am),
the suppression of a single mutation for synthesis of TrmD
(Y19am), and the biochemical activity in individual reac-
tions required for peptide bond formation. This range of
activities in protein synthesis is unexpected, because the fu-
sion combines two large and unrelated RNA structures in a
molecular mass greatly exceeding any natural tRNA. Given
that E. coli ribosomes never encountered such a fusion be-
fore and yet can readily accept it within the constraints of
the protein synthesis machinery, this work reveals novel in-
sights into the structural and dynamic flexibility of both the
ribosome and the tRNA and their mutual accommodation.
For the tRNA part, the V-loop is critical for assembly of
the tertiary core that controls the dynamics of the two he-
lical arms (47,58,80–82). The capacity of creating a fusion
with the V-loop is high, not limited to species with a natu-
rally large V-loop (E. coli tRNATyr and tRNALeu), but also
applicable to those with a small V-loop (E. coli tRNAAla,
tRNAPhe and tRNAPro). In all cases, the fluorescence in-
tensity of the fusion is similar, indicating a similar stabil-
ity among these inside the cell. For the ribosome part, the
ability to use the fusion in a series of reactions leading to
protein synthesis is striking, so is the efficiency with which
the fusion accomplishes these reactions at a rate sufficient to

support cell growth. These data emphasize that the fusion is
structurally and dynamically compatible with the mechan-
ics of protein synthesis. Because these mechanics are con-
served from bacteria to humans, it is likely that the fusion,
or its derivatives, will function with eukaryotic ribosomes.

Using E. coli V-Spinach tRNATyr as an example, imag-
ing analysis reveals its versatility as a valid biological probe.
First, it is a probe for the cellular quality control that de-
grades tRNA with structural damage at the acceptor end.
By directly introducing damage to the fusion (Figure 2), we
show that the quality control is active and rapid in E. coli,
with little intracellular accumulation of damaged tRNA.
This provides new insight into the temporal control of dam-
age and expands the scope of the quality control from the
previously established yeast and mammalian cells (64) now
to bacterial cells. Second, imaging analysis identifies the fu-
sion in overlapping positions with ribosomes in exponen-
tially growing cells. While this overlap alone does not rep-
resent tRNA actually sitting with the ribosome, it is con-
sistent with biochemical and cell-based data supporting the
notion that the fusion is active in protein synthesis. Third,
the intracellular distribution of the fusion is excluded from
the nucleoids in an alternating pattern identical to that of ri-
bosomes. This observation is intriguing, because although
the fusion has a size large for a tRNA, it is small relative to
the nucleoids, which are made up of millions of DNA base
pairs in an irregular shape to which transcription factors
bind. Nonetheless, the fusion does not freely move in and
out of the space within the nucleoids but instead stays with
ribosomes during the exponential growth phase with active
protein synthesis. Although active protein synthesis in E.
coli is coupled with transcription, this coupling is initiated
inside the nucleoids to move transcription forward and to
protect the nascent mRNA chain (83,84), allowing only ma-
tured mRNA to diffuse outside to the ribosome-rich region.
The finding that the fusion and ribosomes are both segre-
gated from the nucleoids suggests that they are together in
the cytosol and possibly engaged in protein synthesis with
minimum searching time for ribosomes to find the tRNA.

While the Spinach fusion has high potential for imaging
tRNA, the current aptamer and its derivatives do not have
strong enough fluorescence intensity. As shown in the lo-
calization analysis, the Spinach aptamer emits weak fluo-
rescence relative to mCherry by more than 500-fold (Figure
4C), thus limiting single-molecular tracking of the tRNA on
the ribosome. The poor fluorescence property of Spinach is
also noted in imaging mRNA (85). Indeed, recent work has
begun to address this issue by improving DFHBI binding
and by further evolving new aptamers (18,19). For live-cell
imaging of tRNA in protein synthesis, an additional op-
tion is to engineer cells to reduce the number of endoge-
nous tRNA species competing with the Spinach fusion for
the same codon. These efforts should lead to a more pow-
erful tool for real-time imaging of tRNA in both ribosome
and non-ribosome reactions.

When a stronger fluorophore is in hand, the Spinach-
tRNA fusion will be an attractive tool with unique advan-
tages of imaging tRNA not available by any existing meth-
ods. It offers the ability to monitor the trajectory of a tRNA
from its biosynthesis to degradation in a live bacterial cell.
One application of the tool is to determine the localiza-
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Figure 4. Localization of V-Spinach tRNATyr in living E. coli cells relative to L9-mCherry ribosomes. (A) E. coli JM109 cells, expressing L9-mCherry from
the chromosome and V-Spinach tRNATyr/GUA (top) or the stand-alone Spinach (bottom) from pKK223-3 (induced with IPTG), were observed under
microscope as described in Materials and Methods. (B and C) Lengthwise intensity scans of mCherry (dotted line) and Spinach fluorescence (solid line)
of a representative cell from the two strains. (D) E. coli JM109 cells, harboring no plasmid, were imaged for L9-mCherry (left) and with DFHBI (right)
and stained with DAPI (middle). (E) Lengthwise intensity scans of mCherry (red line), Spinach fluorescence (green line), and DAPI stain (blue line) of a
representative cell.

tion and segregation of tRNA during cell division. Specifi-
cally, when cells are in dormancy under specific conditions,
while DNA replication is completely halted, low levels of
translation must continue to maintain cell viability. The ex-
pression of the Spinach–tRNA fusion would identify where
such low levels of translation takes place inside a cell. Sec-
ond, while each cell usually expresses multiple isoacceptors
for the same amino acid, one isoacceptor may dominate at
a given time. For example, among the three isoacceptors for
proline, the UGG isoacceptor (with the anticodon UGG)
reads all four Pro codons CCN, the GGG isoacceptor reads
two of the Pro codons (CC[C/U]), and the CGG isoaccep-
tor reads the single CCG codon. As an E. coli cell progresses
from the lag phase, to the exponential phase, and to the
stationary phase, it changes its genetic program and codon
usage for gene expression and protein synthesis. To deter-
mine which isoacceptor populates with the growth at a given
time, we can create the Spinach fusion for each and iden-
tify the one that correlates with the growth trajectory. Third,
the Spinach-tRNA fusion can be used to monitor the ribo-
some translation in real time between two specific positions
in a single mRNA. By using the amber-suppressor form of
the Spinach-tRNA fusion, we can monitor the translation
speed between two site-specifically placed UAG codons in
an mRNA and determine whether the translation proceeds

at a constant speed or at a variable speed depending on the
sequence context of the two UAG codons. These examples
demonstrate the potential for new information on tRNA bi-
ology and protein synthesis in the context of a cell.
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