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EDITORIALS

Reactive Oxygen Species Behaving Badly: Oxidized
Phosphatidylcholines Corrupt Ca21 Signaling in Airway
Smooth Muscle

Increasing evidence points to oxidative stress affecting multiple cell
types as an important driver of obstructive lung diseases. Reactive
oxygen species and reactive nitrogen species damage lipid and protein
components of extracellular fluids, cell membranes, organelles, and
the cell cytosol. Oxidized phosphatidylcholines (OxPCs) are among
the bioactive agents generated by oxidation of the unsaturated fatty
acyl chain, leading to hundreds of potential fragmented and cyclized
variants and breakdown products such as malondialdehyde (1).
Pascoe and colleagues previously reported that OxPCs disrupt
mitochondrial metabolic activity in human airway epithelial cells to
promote reactive oxygen species generation, reduce cell viability, and
impair epithelial barrier function and barrier recovery after a wound
(2). More recently, the same group identified specific OxPCs that
associate with airway hyperresponsiveness in BAL samples from
asthmatic cohorts, thus establishing OxPCs to be effectors of
oxidative stress in asthma (3). Moreover, treatment of human airway
smooth muscle (ASM) cells with a subset of OxPCs (oxidized 1-
palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholines
[OxPAPCs]) induced the expression of multiple inflammatory
cytokines and oxylipins, suggesting a proinflammatory role of OxPCs
in asthma. In addition, OxPAPCs caused airway narrowing in murine
precision-cut lung slices, consistent with the correlation of OxPAPC
expression and airway hyperresponsiveness in human subjects.

In this issue of the Journal, Vaghasiya and colleagues (pp. 649–665)
provide mechanistic insight into the procontractile effect of OxPCs on
ASM (4). Employing human ASM cultures, murine lung slices, and
human lung tissue sections, they dissect the sources of intracellular
calciummobilization by OxPCs in ASM and causally link them to
ASM contraction (Figure 1). Specifically, they demonstrate that, in
ASM cells, OxPAPCs induce an immediate and sustained Ca2þ flux.
The former is independent of extracellular Ca2þ and does not involve
inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), but does involve
ryanodine receptors (RyRs) and cyclic ADP ribose. The latter requires
extracellular Ca2þ as well as TRPA1 (transient receptor potential
ankyrin 1), whose expression was verified in human ASM.

From a functional perspective, this study describes the interesting
(and somewhat surprising) discovery that inhibition of peak or
sustained Ca2þ by RyR or TRPA1 inhibition, respectively, was
sufficient to inhibit OxPC-induced ASM 20-kD regulatory myosin
light chain phosphorylation andmurine precision-cut lung slice
contraction. Further experiments revealed that peak and sustained
Ca2þ induction were not interdependent, as approaches that inhibit
each fail to significantly affect the other. The unique observation that

inhibition of peak or sustained Ca2þ alone is sufficient to inhibit
OxPC-stimulated contraction demonstrates that these phases of
mobilized Ca2þ are cooperative and are both required to induce ASM
contraction. Interestingly, features of Ca2þ induction stimulated by
OxPCs are qualitatively distinct from those promoted by the
Gq-coupledM3muscarinic acetylcholine receptor. For example, IP3R
inhibition prevents Ca2þ flux stimulated by acetylcholine but not by
OxPCs, whereas RyR inhibition affects peak Ca2þ by OxPCs but not
by acetylcholine. TRPA1 activity induced by OxPAPCs is not a result
of the release of RyR-regulated intracellular Ca2þ pools.

A wide variety of molecules that are spatially and temporally
distinct elicit Ca2þ signals in airway cells (5). For example, localized
Ca2þ increases remain confined whereas other Ca2þ signals gradually
diffuse to form Ca2þ waves or oscillations. Each of these patterns
involves distinct cellular Ca2þ sources and downstream effectors to
effect specific cellular functions. Previous studies in ASM cells have
demonstrated distinct patterns of Ca2þ increases (oscillations,
transient, biphasic, sparks), subcellular localizations (mitochondria,
cytosolic), and sources of Ca2þ (IP3R, RyR, VDCC, and SOCE), albeit
using ionotropic andmetabotropic ligands (6–9). Vaghasiya and
colleagues demonstrate that oxidized lipids, OxPCs, induce Ca2þ

signals via distinct sources of Ca2þ in ASM cells. These findings further
underscore the complex nature by which the spatial and temporal
features of intracellular Ca2þ affect the ASM contractile state.

Classical pharmacomechanical coupling by which procontractile
G protein–coupled receptors (GPCRs) cause ASM contraction
involves increases of Ca2þ and phosphorylation of myosin light chain.
Most importantly, Gq-coupled GPCR-mediated Ca2þ increase is
initiated with the production of IP3 and the release of Ca

2þ via IP3R on
sarcoplasmic reticulum, with a subsequent activation of RyR channels
mediated via Ca2þ or cyclic ADP ribose (6, 10). Uniquely, OxPC-
induced Ca2þ increases do not involve IP3Rs. Moreover, studies during
the past decade note diverse patterns of Ca2þ increases that can be
coupled or decoupled fromASM contraction and, in some instances
(e.g., activation of bitter tastant–stimulated receptors), cause ASM
relaxation (11, 12). Although the details of which spatiotemporal
features of intracellular Ca2þ regulate effectors of ASM contraction
remain poorly understood, advances in microscopic/analytical tools
and the development of genetically engineered calcium indicators (13)
will likely enable mechanistic insight in the near future. Genetic
approaches involving deletion of Ca2þ sensing proteins and channels
(TRP/STIM1) andmolecular description of posttranslational
modifications of Ca2þ channels and transporters by OxPCs are critical.
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Given the dependence on reductionist cell-based models to
explore the mechanisms mediating ASM contraction by OxPCs,
insight into the effect of OxPCs under integrative (and chronic)
conditions will require future studies. OxPCs in vivowill undoubtedly
affect multiple resident airway cells, as well as the interactions among
resident and infiltrating cells, in the context of allergic inflammation.
Moreover, it is likely that OxPCs will influence airway remodeling
effected by allergic inflammation. Finally, whether OxPCs affect
receptor-mediated ASM contraction (e.g., M3 muscarinic
acetylcholine receptor) or relaxation (e.g., b-2 adrenoceptor) is
another important question; it is likely that various GPCRs, and
possibly their downstream signaling partners, are directly modified by
OxPCs, similar to modifications such as protonation and
nitrosylation that occur during inflammation and are believed to
influence airway function and disease (14–16).

In summary, Vaghasiya and colleagues contribute to a growing
body of evidence indicating that molecules generated as the result of
oxidative stress in the lung play a role in asthma. Thus, OxPCs could
represent a component of persistent inflammation that prevents
optimized control in many patients. In this light, a focus on fully
extrapolating the pathobiological effects of OxPCs and other
oxidative stress mediators in the lung may yield some unexpected
new avenues for future therapeutic approaches. Oral antioxidants
such as N-acetylcysteine have not proven to be effective in clinical

trials, but the data generated here indicate that a more targeted
delivery of specific inhibitors of the receptors and pathways activated
by mediators such as OxPCs may hold future promise. One of the
most telling observations of the study by Vaghasiya and colleagues is
the finding that TRPA1 is activated by OxPCs. Notably, prior
preclinical studies have identified TRPA1 as a target to suppress
allergic inflammation and bronchospasm, and this has led to the
development of a TRPA1 inhibitor that is already being tested in
phase I human trials (17). Thus, the work by Vaghasiya and
colleagues has identified a mechanism that is consistent with the
therapeutic potential of TRPA1 inhibition for asthma.�
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Figure 1. Intracellular signaling mechanisms for oxidized phosphatidylcholine–induced airway smooth muscle (ASM) contraction. Inhaled
biological and chemical environmental factors can overwhelm intrinsic antioxidant pathways, resulting in accumulation of ROS, which oxidize
biomolecules. This includes phosphatidylcholine (e.g., 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [PAPC]), which is abundant in
cell membranes and extracellular fluid such as lung surfactant. Oxidation generates myriad oxidized PAPC (OxPAPC) variants, which induce
bronchial narrowing. In human ASM cells, OxPAPC triggers concomitant, but mutually exclusive, activation of the ryanodine receptor (RyR) and
transient receptor potential ankyrin 1 (TRPA1) that mediates flux of Ca21 from sarcoplasmic reticulum and extracellular stores, respectively,
resulting in an acute and sustained increase in intracellular Ca21. OxPAPC may activate TRPA1directly or indirectly, e.g., by altering cell
membrane properties. RyR activation is dependent on cADPR, a product derived from NAD by cyclase activity of the ectoenzyme CD38, which
can be induced by OxPAPC. These phases of mobilized Ca21 work cooperatively, as both are required to induce ASM contraction. Inhibition of
either pool is sufficient to prevent pMLC20, which is essential for activation of actomyosin cross-bridge cycling, after OxPAPC exposure, as well
as for airway contraction in murine thin-cut lung slices. cADPR=cyclic ADP ribose; NAD=nicotinamide adenine dinucleotide;
pMLC20=phosphorylation of 20 kDa myosin light chain; ROS= reactive oxygen species.
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