Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19.

Paolo Antonio Ascierto
Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy

Bernard Fox
Providence Cancer Center, Portland, OR, United States

Walter Urba
Providence Cancer Center, Portland, OR, United States

Ana Carrizosa Anderson
Department of Neurology, Harvard Medical School, Boston, MA, United States

Michael B Atkins
Oncology Georgetown University, Washington, DC, United States

See next page for additional authors

Recommended Citation
Ascierto, Paolo Antonio; Fox, Bernard; Urba, Walter; Anderson, Ana Carrizosa; Atkins, Michael B; Borden, Ernest C; Brahmer, Julie; Butterfield, Lisa H; Cesano, Alessandra; Chen, Daniel; de Grujil, Tanja; Dillman, Robert O; Drake, Charles G; Emens, Leisha A; Gajewski, Thomas F; Gulley, James L; Hodi, Stephen; Hwu, Patrick; Kaufman, David; Kaufman, Howard; Lotze, Michael; McNeel, Douglas G; Margolin, Kim; Mastrangelo, Francesco; Mastrangelo, Michael J; Maus, Marcela V; Parkinson, David R; Romero, Pedro J; Sondel, Paul M; Spranger, Stefani; Sznol, Mario; Weiner, George J; Wiggington, Jon M; and Weber, Jeffrey S, "Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19." (2020). Department of Microbiology and Immunology Faculty Papers. Paper 117.
https://jdc.jefferson.edu/mifp/117

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Microbiology and Immunology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19


The hypoxia and profound inflammatory response associated with the pneumonitis observed with the SARS-CoV-2 virus responsible for the recent COVID-19 pandemic has overwhelmed intensive care facilities in the epicenters of infection including Wuhan, China, Northern Italy and in the USA, the Seattle and New York City areas. The Society for Immunotherapy of Cancer (SITC) stands along with and supports our colleagues in emergency departments, intensive care units (ICUs) and inpatient wards in the global effort to overcome this unprecedented pandemic. It is becoming apparent that the ‘ground glass’ infiltrative appearance seen on CT scans from patients with COVID-19 with pneumonitis is reminiscent of imaging from patients with immune checkpoint inhibitor (ICI)-induced pneumonitis.1 2 Additionally, elevated interleukin-6 (IL-6) is a hallmark inflammatory signature seen in serum of patients with severe COVID-19 acute respiratory distress.3 Many of us have experience with the administration of immune-modulatory agents, which is why the cancer immunotherapy community is poised to contribute to the current fight against COVID-19.

One possibility is to encourage the use of IL-6 or IL-6 receptor (IL-6R) blocking antibodies like tocilizumab (ActemraTM, Roche-Genentech), sarilumab (KezaraTM, Regeneron) and siltuximab (SylvantTM, EUSA Pharma) that are Food and Drug Administration (FDA) approved for various conditions, including rheumatological disease and the lymphoproliferative disorder Castleman’s syndrome. These agents could be used on easily and immediately available compassionate use protocols that could be approved on an emergency basis by all institutional review boards (IRBs) around the world for critically ill patients with COVID-19-induced hypoxia. Tocilizumab also is already FDA approved to manage cytokine release syndrome (CRS) in patients receiving chimeric antigen receptor T cell therapy.4 5 In addition, tocilizumab has been shown to reduce toxicity in patients treated with ICIs who were steroid refractory,6 and has been added to the ICI agents ipilimumab and nivolumab in an ongoing US phase II study (NCT03999749) to ameliorate immune-related toxicity. In Castleman’s disease, a lymphoproliferative disorder caused by Kaposi’s Sarcoma Herpesvirus, a pathogen that produces viral IL-6, tocilizumab has been shown to reduce viral loads.7 Tocilizumab is also being explored as a potential supportive care measure for the management of CRS in patients with cancer treated with a number of CD3-based bispecific molecules. Now, data from the frontlines of the pandemic indicates that the agent may offer lifesaving benefit for COVID-19 patients with respiratory distress.
Emerging evidence suggests that high levels of C reactive protein (CRP) and IL-6 are observed in patients infected with COVID-19. Anecdotal experience on the use of tocilizumab at doses comparable to those used for the management of CRS from investigators in Italy and from China has reported rapid improvement in both intubated and non-intubated patients. In these reports, expedient administration of anti-IL-6R therapy for patients in acute respiratory distress has been critical. A recent study protocol to evaluate the efficacy of tocilizumab in COVID-19-induced pneumonitis accrued over 300 patients worldwide in less than 24 hours. Additionally, Genentech will also provide 10,000 vials of tocilizumab to the US Strategic National Stockpile. Tocilizumab was also approved in China in March 2020, for the treatment of patients with COVID-19 with serious lung damage and elevated IL-6. Sponsors, investigators and regulators have moved with unprecedented speed and collaboration to initiate protocols to formally study the safety and efficacy of antiviral agents and vaccines, as well as various anti-IL-6 antibodies in patients with COVID-19. In the USA, a trial of sarilumab in the COVID-19 setting is ongoing.

Although randomized data definitively showing that IL-6R blockade benefits patients with COVID-19-induced pneumonitis are currently lacking, we propose that an effort should be made to maximize the availability of anti-IL-6 agents, including tocilizumab and sarilumab for use on a compassionate basis to critically ill hospitalized SARS-CoV-2-infected patients during this extraordinary situation. In addition, consideration should be given to focus efforts on rapidly expanding the ability of clinicians and clinical investigators to access investigational anti-IL-6 agents, in particular for those agents where phase 1 and/or phase 2 studies have been completed, and acceptable safety has been demonstrated. Even if the primary impact of a single dose of these drugs is to accelerate recovery and get patients off ventilator support and out of the ICU more rapidly, this could significantly decompress our severely overburdened healthcare systems. We suggest that straightforward parameters including complete blood counts and differentials, serum lactate dehydrogenase (LDH), ferritin, CRP and IL-6 be recorded in treated patients, that serum be retained for future analyses, and simple clinical parameters be assessed including time in ICU, days of hospitalization and pulmonary parameters, including forced expiratory volume in 1 second for non-intubated patients, fractional inspired oxygen (FIO2), arterial oxygen tension/FIO2 ratio and type of oxygen supplementation need be recorded pre-anti-IL-6R and post-anti-IL-6R therapy. A simple compassionate use protocol could be assembled from existing templates, and all efforts should be made for emergency approval of the use of IL-6R blocking antibodies by local IRBs within 24 hours of the request being made. Additionally, consideration should be given by pharma and biotech to redirect the use of facilities and increase personnel involved in drug manufacturing and those serving as liaisons to the frontlines to facilitate drug availability. Extraordinary times call for extraordinary measures, and SITC calls on all involved, including pharmaceutical sponsors, health authorities and IRBs, to continue to move swiftly and creatively to remove barriers and increase access to agents like anti-IL-6R drugs that may improve our care for COVID-19 pneumonitis.

Author affiliations
1 Instituto Nazionale Tumori IRCCS Fondazione ‘G. Pascale’, Naples, Italy
2 Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
3 Harvard Medical School, Boston, Massachusetts, USA
4 Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
5 University of Wisconsin Clinical Cancer Center, Madison, Wisconsin, USA
6 Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
7 Research, Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
8 ESSA Pharma Inc, Redwood City, California, USA
9 IGIM Biosciences Inc, Mountain View, California, USA
10 Medical Oncology - Amsterdam University Medical Centers, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
11 AVITA Biomedical, Inc, Irvine, California, USA
12 Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
13UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
14 Pathology and Medicine, Immunology and Cancer Program, University of Chicago, Chicago, Illinois, USA
15 National Cancer Institute, Bethesda, Maryland, USA
16 Dana Farber Cancer Institute, Boston, Massachusetts, USA
17 University of Texas MD Anderson Cancer Center, Houston, Texas, USA
18 Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
19 Immunoeering Corp New York, New York, New York, USA
20 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
21 Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
22 Medical Oncology, City of Hope National Medical Center, Duarte, California, USA
23 Refuge Biotechnologies, Menlo Park, California, USA
24 Thomas Jefferson Medical College, Philadelphia, Pennsylvania, USA
25 Massachusetts General Hospital Cancer Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
26 ESSA Pharma Inc, Palo Alto, California, USA
27 Oncology, University of Lausanne, Lausanne, Switzerland
28 Pediatrics, University of Wisconsin Madison, Madison, Wisconsin, USA
29 Massachusetts Institute of Technology Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
30 Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
31 Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, USA
32 MacroGenics Inc, Rockville, Maryland, USA
33 Laura and Isaac Perlmutter Comprehensive Cancer Center, NYU Langone Medical Center, New York, New York, USA

Correction notice Since the online publication of this article, the authors have noticed errors in author names, affiliations, the competing interests section and also the main text.

Twitter Leisha A Emens @EmensLeisha, James L Gulley @gulleyj1, Kim A Margolin @kmargolin and Pedro J Romero @JITCancer

Acknowledgements The authors thank the clinicians working tirelessly on the frontlines of the COVID-19 pandemic. The authors also acknowledge SITC staff for their contributions including Sam Million Weaver, PhD for medical writing and editorial support and Angela Kilbert for project management and assistance. Additionally, the authors wish to thank the society for supporting the manuscript development.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests PAA: Consultant/Advisory Role: Bristol-Myers Squibb, Roche-Genentech, Merck Sharp & Dohme, Array, Novartis, Merck Serono, Pierre Fabre, Incyte, NewLink Genetics, Genmab, Medimmune, AstraZeneca, Syndax, SunPharma,
Correction: Insights from immuno-oncology: the Society for Immunotherapy of Cancer Statement on access to IL-6-targeting therapies for COVID-19


Since the online publication of this article, the authors have noticed the following errors:

1) The following authors were missing the middle initial in their name; Bernard A Fox, Walter J Urba, Julie R Brahmer, Daniel S Chen, Tanja D de Grujill, F Stephen Hodi Jr, Howard L. Kaufman, Michael T Lotze, Kim M Margolin, Francesco M Marincola. The author name Jon M Wigginton was also spelt incorrectly as Jon M Wiggington. The author list is shown below and has been updated in the article.


2) Affiliations 1, 2, 3, 4, 5, 11, 14, 15, 16, 20, 21, 22, 26, 28 were incorrect and affiliations 8, 32, 34 have been removed. The updated affiliation list is shown below and has been updated in the article.

1Istituto Nazionale Tumori IRCCS Fondazione ‘G. Pascale’, Naples, Italy
2Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
3Harvard Medical School, Boston, Massachusetts, USA
4Georgetown Lombardi Comprehensive Cancer Center, Washington DC, USA
5University of Wisconsin Clinical Cancer Center, Madison, Wisconsin, USA
6Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
7Research, Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
8ESSA Pharma Inc, Redwood City, California, USA
9IJM Biosciences Inc, Mountain View, California, USA
10Medical Oncology - Amsterdam University Medical Centers, Vrije Universiteit-Cancer Center Amsterdam, Amsterdam, The Netherlands
11AIVITA Biomedical, Inc, Irvine, California, USA
12Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
13UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
14Pathology and Medicine, Immunology and Cancer Program, University of Chicago, Chicago, Illinois, USA
15National Cancer Institute, Bethesda, Maryland, USA
16Dana Farber Cancer Institute, Boston, Massachusetts, USA
17University of Texas MD Anderson Cancer Center, Houston, Texas, USA
18Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
19Immuneering Corp New York, New York, New York, USA
20University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
21Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
22Medical Oncology, City of Hope National Medical Center, Duarte, California, USA
23Refuge Biotechnologies, Menlo Park, California, USA
24Thomas Jefferson Medical College, Philadelphia, Pennsylvania, USA
25Massachusetts General Hospital Cancer Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
3) In the main text,

- The sentence ‘The hypoxia and profound inflammatory response associated with the pneumonitis observed with the severe acute respiratory virus coronavirus-2 SARS-CoV-2 virus…’ now reads ‘The hypoxia and profound inflammatory response associated with the SARS-CoV-2 virus…’
- The sentence ‘One possibility is to encourage the use of IL-6 or IL-6-receptor (IL-6R) blocking antibodies like tocilizumab (Actemra, Roche-Genentech), sarilumab (Kevzara, Regeneron) and siltuximab (Sylvant, EUSA Pharma)…’ now reads ‘One possibility is to encourage the use of IL-6 or IL-6-receptor (IL-6R) blocking antibodies like tocilizumab (Actemra™, Roche-Genentech), sarilumab (Kevzara™, Regeneron) and siltuximab (Sylvant™, EUSA Pharma)…’
- The sentence ‘…including tocilizumab and sarilumab for use on a compassionate basis to critically ill hospitalized COVID-19-infected patients during this extraordinary situation’ now reads ‘…including tocilizumab and sarilumab for use on a compassionate basis to critically ill hospitalized SARS-CoV-2-infected patients during this extraordinary situation’

4) To acknowledge medical writing support, the acknowledgment section has been updated to read:

‘The authors thank the clinicians working tirelessly on the frontlines of the COVID-19 pandemic. The authors also acknowledge SITC staff for their contributions including Sam Million Weaver, PhD for medical writing and editorial support and Angela Kilbert for project management and assistance. Additionally, the authors wish to thank the society for supporting the manuscript development.’

5) In the competing interests section:

- Bristol-Myers Squibb was spelt incorrectly as ‘Bristol-Myer Squibb’ and ‘Bristol-Myers-Squibb’
- The initials for authors BF, JB, ACA, DC, TdG, HK, ML, FM, KM now read BAF, JRB, AC, DSC, TDG, HLK, MTL, FMM, KAM

Open access. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.