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Research Article
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Background. Dysregulations of AQP7 and AQP9 were found to be related to lipid metabolism abnormality, which had been proven
to be one of the mechanisms of stroke. However, limited epidemiological studies explore the associations between AQP7 and AQP9
and the risk of stroke among patients with hypertension in China. Aims. We aimed to investigate the associations between genetic
variants in AQP7 and AQP9 and the risk of stroke among patients with hypertension, as well as to explore gene-gene and
gene-environment interactions. Methods. Baseline blood samples were drawn from 211 cases with stroke and 633 matched
controls. Genomic DNA was extracted by a commercially available kit. Genotyping of 5 single nucleotide polymorphisms
(SNPs) in AQP7 (rs2989924, rs3758269, and rs2542743) and AQP9 (rs57139208, rs16939881) was performed by the
polymerase chain reaction assay with TaqMan probes. Results. Participants with the rs2989924 GG genotype were found to be
with a 1.74-fold increased risk of stroke compared to those with the AA+AG genotype, and this association remained
significant after adjustment for potential confounders (odds ratio (OR): 1.74, 95% confidence interval (CI): 1.23-2.46). The
SNP rs3758269 CC+TT genotype was found to be with a 33% decreased risk of stroke after multivariate adjustment (OR: 0.67,
95% CI: 0.45-0.99) compared to the rs3758269 CC genotype. The significantly increased risk of stroke was prominent among
males, patients aged 60 or above, and participants who were overweight and with a harbored genetic variant in SNP rs2989924.
After adjusting potential confounders, the SNP rs3758269 CT+TT genotype was found to be significantly associated with a
decreased risk of stroke compared to the CC genotype among participants younger than 60 years old or overweight. No
statistically significant associations were observed between genotypes of rs2542743, rs57139208, or rs16939881 with the risk of
stroke. Neither interactions nor linkage disequilibrium had been observed in this study. Conclusions. This study suggests that
SNPs rs2989924 and rs3758269 are associated with the risk of stroke among patients with hypertension, while there were no
statistically significant associations between rs2542743, rs57139208, and rs16939881 and the risk of stroke being observed.

1. Introduction

Stroke is the second most common cause of death worldwide
and is the leading cause of long-term disability in developing
and developed countries [1]. In China, there are more than
one million people who die from stroke-related diseases per
year. Evidence suggests that the pathogenesis of stroke is
the result of interactions between genetic predispositions

and environmental factors [2]. A large body of scientific
research has indicated that gene polymorphisms modulate
the pathophysiological processes of stroke and confer a small
to moderate risk [3–5]. Studies in twins, families, and animal
models provide substantial evidence for a genetic contribu-
tion to stroke [6, 7]. Recently, polymorphisms of genes
involved in lipid metabolism have been found to be associ-
ated with stroke occurrence [8].
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Aquaporins (AQPs) represent a family of transmem-
brane proteins permeable to water and, in some cases, also
to other solutes [9]. Generally, the AQP family can be divided
into three major subgroups based on their permeability char-
acteristics and amino acid sequence homology [10]: AQP0,
AQP1, AQP2, AQP4, and AQP5 belong to the group of classi-
cal aquaporins; AQP6, AQP8, AQP11, and AQP12 belong to
the second subgroup called unorthodox aquaporins [11]; and
AQP3, AQP7, AQP9, and AQP10 belong to the third group,
called aquaglyceroproteins, which are permeable to small
uncharged molecules, such as urea, glycerol, or water [12–16].

In recent years, researchers pay more attention to the
associations between AQPs’ genetic polymorphisms and
disease susceptibility. AQPs have been implicated in the
regulation of both physiological and pathological water
homeostasis and thus represent a promising target for alle-
viating stroke-induced cerebral edema [17]. Specifically,
AQP7—the adipose-specific glycerol channel—represents
a gateway for the delivery of adipose-derived glycerol into
plasma [15, 18, 19] and it was identified as one of the dysreg-
ulated adipose tissue genes in obese humans [20]. AQP7 is
also known to play a pivotal role in glycerol metabolism in
a wide range of tissues with implications for whole-body
energy balance as well as the pathophysiology of obesity
and development of insulin resistance [10]. Studies suggest
that AQP7 dysregulation may lead to an increased supply of
glycerol for hepatic gluconeogenesis and to increased glucose
levels in type 2 diabetes [11]. Moreover, AQP9 is considered
the main facilitator of glycerol uptake in hepatocytes
[11, 21, 22]. Ribeiro et al. found that after focal transient
ischemia in mice, a profound increase in AQP9 immunola-
beling was detected in astrocytes in peri-infarcted areas after
24 h of postocclusion, with a maximum at 7 days postocclu-
sion [23]. Dysregulation of AQP7 and AQP9 may result in
lipid metabolism abnormality, which is one of the important
mechanisms of stroke.

However, epidemiological studies on the associations
between AQP7 and AQP9 and the risk of stroke among
patients with hypertension are still largely lacking. Therefore,
this study is aimed at investigating the associations between
AQP7 and AQP9 genetic variants and the risk of stroke
among patients with hypertension.

2. Materials and Methods

2.1. Ethical Approval. This study was approved by the Institu-
tional Review Board of Jiangsu Provincial Center for Disease
Control and Prevention, and each participant signed a
written informed consent for their participation.

2.2. Study Population. Participants in this study were
recruited from the Follow-up Cohort Study of Hypertension
(FCSH), which was established in 2010 in Jiangsu Province of
China. In FCSH, over 12,000 patients with hypertension
from 5 different counties (Jianye district in Nanjng, Peixian
county in Xizhou, Haian county in Nantong, Lianshui county
in Huaian, and Sihong county in Suqian) of Jiangsu Province
were involved. Eligible criteria for inclusion were as follows:
adults (18-70 years), the essential hypertension (with the

systolic blood pressure ðSBPÞ ≥ 140mmHg and/or diastolic
blood pressure ðDBPÞ ≥ 90mmHg), and blood pressure
does not reach the control target (i.e., SBP ≥ 140 or DBP
≥ 90mmHg). Patients were excluded if they met one of
the following conditions: with secondary hypertension, hav-
ing comorbidities (peripheral vascular diseases, coronary
artery diseases, autoimmune diseases, systemic inflammatory
diseases, blood diseases, malignant tumors, acute myocardial
infarction, and stroke) in the previous 3 months of the study,
or with life expectancy of less than one year. All participants
were followed up once a year. At each follow-up visit, blood
pressure and body weight were measured and information
about lifestyle (e.g., smoking, drinking, and physical activity)
and diseases (e.g., cardiocerebrovascular disease, cancers, and
diabetes) was updated.

By the end of 2014, there were 301 person-times cases
with stroke with confirmed diagnosis. The cumulative inci-
dence of stroke was 2.51%, and the average follow-up time
was 43.4 (±10.2) months. All patients with stroke were
identified by at least two neurology specialists according to
clinical signs and symptoms and/or imaging data. Among
the 301 cases with stroke, 90 were excluded because of recur-
rent stroke (N = 38), no gene polymorphism test (N = 19), no
qualified blood sample (N = 9), and having other severe dis-
eases (such as cancer, severe emphysema, and severe liver
and kidney function) (N = 24). We finally included 211 cases
with stroke in this study.

The control group was composed of followed-up hyper-
tensive patients who did not have stroke, deep vein throm-
bosis, or myocardial infarction. Cases and controls were
matched on age (±3 years old), gender, baseline blood
pressure (±5mmHg), and residential area according to
the ratio of 1 : 3. At last, 633 controls were included in this
study.

2.3. Data Collection. All participants underwent a face-to-
face interview by trained interviewers to complete a struc-
tured questionnaire, including demographic information,
lifestyle information, medical history, and family history.
After the interview, anthropometric indices (height, body
weight, and waist circumference (WC)) and blood pressure
were measured. Body weight and height were measured
according to a standard protocol [24]. Body mass index
(BMI) was calculated as weight in kilograms divided by height
in meters squared (kg/m2). Blood pressure was measured
using an automated device (OMRON Model HEM-7071,
Omron Co.) at the nondominant arm 3 times consecutively
with a 1~2minute interval between two measurements while
participants were in a seated position.

Blood samples were collected from participants after
overnight fasting for at least 10 h. Serum total cholesterol
(TC), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), triglycerides (TG),
and fasting blood glucose (FBG) were measured using an
autoanalyzer (Abbott Laboratories).

An individual was categorized as “overweight” if their
BMI ≥ 25 kg/m2, and central obesity was defined according
to the waist circumference (WC) of the participant as
men > 90 cm or women > 80 cm [25]. A stringent quality
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assurance and quality control procedure was implemented
to ensure the validity and reliability of study data.

2.4. SNP Selection and Genotyping Assay. We followed the
methods of Wang et al. to select five single nucleotide poly-
morphisms (SNPs) (rs2989924, rs3758269, and rs62542743
in AQP7 and rs57139208 and rs16939881 in AQP9) and
assay genotyping [26]. Allelic discrimination was automati-
cally completed using the Sequence Detection Systems Soft-
ware version 2.3. The genotyping call rates for 5 SNPs were
all >97% in this study. For quality control, the DNA samples
from cases and controls and two blank controls were run in
the same batch, and the operators performing detection and
genotyping did not know the case or control status of the
samples. Moreover, 10% of genotyping samples were ran-
domly chosen to redo the assay blindly for consistency check.

2.5. Statistical Analysis. All the data in this study were double
entered by a trained personnel using EpiData 3.5 and
analyzed by SPSS 21.0. The differences in demographic
characteristics and selected variables between cases and con-
trols were compared using a Student t-test for continuous
variables and a χ2 test for categorical variables. The Hardy-
Weinberg equilibrium was tested by the goodness-of-fit χ2

test to compare the observed genotype frequencies to the
expected ones among controls. The associations between
genotypes and risk of stroke were evaluated using univariate
and multivariate logistic regression analyses to determine the
crude and adjusted odds ratios (OR) and their 95%
confidence intervals (CI). All statistical tests were two sided.
P < 0:05 was considered statistically significant. The genetic
linkage balance test of 5 SNPs was performed using SNPstats
software. The generalized multifactorial dimensionality
reduction method (GMDR) was used to analyze the gene-
gene interaction. Using the incidence of stroke at follow-up
as the outcome variable, the five loci of genes rs16939881,
rs57139208, rs62542743, rs3758269, and rs2989924 were
named as SNP1, SNP2, SNP3, SNP4, and SNP5, respectively,
in turn and were included in the GMDR model as the
analysis factors. Meanwhile, the age, gender, duration of
hypertension, family history of hypertension, family history
of stroke, SBP, TC, TG, and FBG were included in the model
as potential confounders. The haplotypes of SNPs on the
same chromosome were analyzed by SNPstats software.

3. Results

3.1. Demographic Characteristics of Participants. No devia-
tion from the Hardy-Weinberg equilibrium for the polymor-
phisms examined was observed in the genotype distributions
between cases and controls. The demographic characteristics
of participants are presented in Table 1. A total number of
211 patients with stroke and 633 controls were included in
the study. Significant differences were observed between
cases and controls in the duration of hypertension, family
history of hypertension, or stroke. SBP, TC, TG, and FBG
were higher among patients with stroke than those in their
matched control group.

3.2. Associations between SNPs and the Risk of Stroke. The
frequencies of genotype and allele of the SNP polymorphisms
are shown in Table 2. The genotype distributions of AA, GG,
and AG in rs2989924 of AQP7 were significantly different
between cases and controls (χ2 = 8:260, P = 0:016). Partici-
pants with rs2989924 GG genotypes had a 1.55-fold
increased risk of stroke (OR 1.55, 95% CI 1.12-2.15) com-
pared to those with the AA+AG genotype, and this relation-
ship remained significant after adjustment for covariates
(age, gender, SBP, FBG, TC, TG, and LDL-C) (OR 1.74,
95% CI 1.23-2.46). When compared with the rs3758269 CC
genotype, participants with CT+TT genotypes had a 33%
decreased risk of stroke after adjustment for potential con-
founders (OR 0.67, 95% CI 0.45-0.99). No association was
observed between the genotypes of rs62542743, rs57139208,
and rs16939881 and the risk of stroke.

3.3. Stratified Analyses of the Associations between Genotypes
of rs2989924 and rs3758269 and Risk of Stroke. Table 3 shows
the results of stratified analyses. A significantly increased risk
of stroke in the rs2989924 GG vs. AA+AG (recessive model)
genotype was observed among men (OR 1.80, 95% CI
1.10-2.93) and the elderly (OR 1.81, 95% CI 1.20-2.75),
and this association remained significant after adjustment
for potential confounders (OR 2.23, 95% CI 1.32-3.77
and OR 2.20, 95% CI 1.41-3.44, respectively). Among the
hypertensive population, the rs2989924 GG vs. AA+AG
(recessive model) genotype was found to be associated
with an increased risk of stroke among participants who
were overweight or central obese, with an unadjusted OR
of 2.35 (95% CI 1.45-3.81) and 1.81 (95% CI 1.22-2.70),
respectively. However, among patients with ≥25 kg/m2

BMI, the rs3758269 CT genotype was associated with a
reduced risk of stroke compared to those harboring the CC
genotype (adjusted OR 0.40, 95% CI 0.21-0.75), and a similar
result was observed in theCT+TT vs. CC genotype (dominant
mode) (adjusted OR 0.43, 95% CI 0.24-0.77). The rs3758269
CT+TT genotype was associated with a reduced risk of stroke
compared with the CC genotype among participants younger
than 60 years old (adjusted OR 0.48, 95% CI 0.25-0.94).

3.4. Analysis of Interaction. Table 4 shows the gene-gene
interactions, and the results suggested that there was no
interaction.

3.5. Haplotype Analysis. The linkage disequilibrium (LD)
test was conducted on rs62542743, rs3758269, rs2989924,
rs57139208, and rs16939881. Results showed that there
was a significant linkage imbalance between rs3758269 and
rs2989924, and the D′ value is 0.9992. D′ < 0:75 between
the other two SNPs indicated that there was no significant
linkage imbalance. If only the SNPs with a frequency of
more than 5% were included, three SNPs of AQP7 can build
8 kinds of haplotype and two SNPs of AQP9 can build 4
kinds of haplotype. Table 5 shows the results after adjust-
ment for age, gender, duration of hypertension, family
history of hypertension, family history of stroke, SBP, TC,
TG, and FBG. Individuals with the CTA haplotype in
AQP7 have a higher risk of stroke compared to those with
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the highest frequency of single-body CCG (P < 0:05). As
shown in Table 6, the analysis of AQP9 by SNPstats found
that there was no statistically significant difference in the risk
of stroke between individuals with the highest frequency of
haplotype CC and those with the remaining haplotypes
(P > 0:05).

3.6. The Logistic Analysis of 5 SNPs and Risk of Stroke. The
five loci of genes rs2989924, rs3758269, rs62542743,
rs57139208, and rs16939881; duration of hypertension; fam-
ily history of hypertension; family history of stroke; SBP; TC;
TG; FBG; and daily intake of fruits were used as independent
variables, and stroke was used as a dependent variable for
logistic regression analysis. The results of multivariate analy-
sis are shown in Table 7, which indicated that high TC was a
risk factor for stroke (OR 1.31, 95% CI 1.05-1.63) and the
rs2889924 AG genotype may be a protective factor for stroke.

4. Discussion

In this population-based case-control study, we investigated
5 SNPs in the AQP7 and AQP9 genes and found that the
SNPs of rs2989924 and rs3758269 in AQP7 were associated
with the risk of stroke, while no association was observed
between AQP9 SNPs and the risk of stroke.

This study found a significantly increased risk of stroke in
rs2989924 GG vs. AA+AG (recessive model) genotypes
among men. According to some preclinical and basic studies,
female hormones like estrogen and progesterone may have
the ability to reduce the incidence of stroke, cardiovascular
disease, and the tissue damage after an occurrence of ische-
mia [27, 28]. In this study, we found that people aged 60 or
above with the GG vs. AA+AG genotype variation in SNP
rs2989924 were with an increased risk of stroke, while the
CT+TT genotype variation in rs3758269 was found to be
related to a reduced risk of stroke among people under 60
years old. Such findings indicated that aging might cause an
adverse reverse genetic variation of the AQP7 genotype and
is likely to cause stroke and aggravate stroke symptoms
[29]. Kim and Vemuganti’s study had also reported that the
tolerance of vasculature to blood pressure and the capacity
of the brain’s self-healing notably declined with increasing
age, which contributed to increase the susceptibility of brain
stroke [30].

Prudente et al. recruited 685 cases of type 2 diabe-
tes mellitus (345 females/340 males) and 292 controls
(185 females/107 males) in Caucasus and found that the risk
of the AG+GG genotype was 1.36 times higher compared
with the AA genotype (OR 1.36, 95% CI 1.01-1.84), while
stratified analysis showed that the risk of the AG+GG

Table 1: Demographic and clinical characteristics by cases with stroke and controls.

Variables Cases with stroke N (%) Controls N (%) P

Degree of education

Primary school and below 157 (74.4%) 436 (68.9%) 0.291

Junior high school 47 (22.3%) 167 (26.4%)

High school and above 7 (3.3%) 30 (4.7%)

Duration of hypertension (years)

≤5 122 (60.7%) 416 (69.6%) 0.020

>5 79 (39.3%) 182 (30.4%)

Familial history of hypertension 48 (23.1%) 102 (16.3%) 0.029

Familial history of stroke 10 (4.8%) 11 (1.7%) 0.014

Familial history of CHD 7 (3.4%) 11 (1.8%) 0.167

Familial history of diabetes 5 (2.4%) 11 (1.7%) 0.556

Central obesity 158 (74.9%) 480 (75.8%) 0.781

BMI (kg/m2)

Normal 78 (37.0%) 243 (38.4%) 0.922

Overweight 89 (42.2%) 264 (41.7%)

Obese 44 (20.9%) 126 (19.9%)

SBP (mmHg) 153:64 ± 12:88∗ 151:16 ± 10:60∗ 0.012

DBP (mmHg) 94:87 ± 8:16∗ 93:74 ± 6:92∗ 0.071

TC (mmol/L) 4:49 ± 0:76∗ 4:31 ± 0:79∗ 0.006

TG (mmol/L) 1:90 ± 1:26∗ 1:68 ± 1:02∗ 0.019

FBG (mmol/L) 5:45 ± 2:31∗ 5:07 ± 1:38∗ 0.023

HDL-C (mmol/L) 1:63 ± 0:41∗ 1:59 ± 0:39∗ 0.130

LDL-C (mmol/L) 2:04 ± 0:77∗ 2:01 ± 0:72∗ 0.652

∗ represents mean ± SD. SD: standard deviation; CHD: coronary heart disease; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood
pressure; TC: total cholesterol; TG: triglycerides; FBG: fasting blood glucose; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein
cholesterol.

4 BioMed Research International



genotype was 1.66 times higher in females who were obese
than that of the AA genotype (OR 1.66, 95% CI 1.01-2.74)
[31]. In this study, the finding that the AQP7 rs2989924
genotype variation was a risk factor for obesity-related dis-
eases is consistent with findings of Prudente et al. However,
the rs3758269 CT genotype in patients with BMI ðkg/m2Þ

≥ 25 can reduce the risk of stroke compared with the CC
genotype and the CT+TT vs. CC genotype (dominant model)
after adjustment for potential confounders (OR 0.40, 95% CI
0.21-0.75 and OR 0.43, 95% CI 0.24-0.77, respectively).
According to the stratification analysis of WC, no association
between the rs3758269 genotype and stroke was found.

Table 2: Genotype frequency distribution in cases and controls.

Variable Strokes, N (%) Control, N (%) χ2 P OR 95% CI OR 95% CI∗

rs2989924

AA 41 (19.5) 117 (19.0) 8.260 0.016 1.00

AG 86 (41.0) 317 (51.4) 0.774 0.505-1.188 0.645 0.409-1.018

GG 83 (39.5) 183 (29.7) 1.294 0.833-2.010 1.292 0.817-2.043

AA 41 (19.5) 117 (19.0) 0.032 0.858 1.00

AG+GG 169 (80.5) 500 (81.0) 0.965 0.649-1.433 0.885 0.585-1.340

AA+AG 127 (60.5) 434 (70.3) 6.987 0.008 1.00

GG 83 (39.5) 183 (29.7) 1.550 1.119-2.148 1.741 1.232-2.461

rs3758269

CC 164 (77.7) 456 (72.2) 2.958 0.228 1.00

CT 44 (20.9) 159 (25.2) 0.769 0.527-1.124 0.687 0.456-1.035

TT 3 (1.4) 17 (2.7) 0.491 0.142-1.696 0.500 0.143-1.754

CC 164 (77.7) 456 (72.2) 2.525 0.112 1.00

CT+TT 47 (22.3) 176 (27.8) 0.743 0.514-1.073 0.669 0.450-0.994

CC+CT 208 (98.6) 615 (97.3) 1.098 0.295 1.00

TT 3 (1.4) 17 (2.7) 0.522 0.151-1.798 0.545 0.156-1.904

rs62542743

CC 192 (91.0) 584 (92.3) 0.361 0.835 1.00

CA 18 (8.5) 46 (7.3) 1.190 0.674-2.102 1.054 0.573-1.939

AA 1 (0.5) 3 (0.5) 1.014 0.105-9.804 0.935 0.093-9.371

CC 192 (91.0) 584 (92.3) 0.341 0.559 1.00

CA+AA 19 (9.0) 49 (7.7) 1.179 0.678-2.053 1.047 0.579-1.892

CC+CA 210 (99.5) 630 (99.5) 0.000 1.000 1.00

AA 1 (0.5) 3 (0.5) 1.000 0.103-9.665 0.931 0.093-9.325

rs57139208

CC 163 (77.3) 491 (77.6) 0.980 0.613 1.00

CT 46 (21.8) 130 (20.5) 1.066 0.729-1.559 1.068 0.717-1.591

TT 2 (0.9) 12 (1.9) 0.502 0.111-2.267 0.284 0.036-2.254

CC 163 (77.3) 491 (77.6) 0.009 0.924 1.00

CT+TT 48 (22.7) 142 (22.4) 1.018 0.702-1.477 1.005 0.679-1.488

CC+CT 209 (99.1) 621 (98.1) 0.872 0.351 1.00

TT 2 (0.9) 12 (1.9) 0.495 0.110-2.231 0.280 0.035-2.218

rs16939881

CC 184 (87.2) 551 (87.0) 0.442 0.802 1.00

CG 26 (12.3) 76 (12.0) 1.024 0.637-1.648 1.038 0.632-1.704

GG 1 (0.5) 6 (0.9) 0.499 0.060-4.173 0.554 0.065-4.686

CC 184 (87.2) 551 (87.0) 0.004 0.953 1.00

CG+GG 27 (12.8) 82 (13.0) 0.986 0.619-1.571 1.002 0.617-1.628

CC+CG 210 (99.5) 627 (99.1) 0.432 0.511 1.00

GG 1 (0.5) 6 (0.9) 0.498 0.060-4.157 0.551 0.065-4.661

OR: odds ratio; CI: confidence interval. ∗Adjusted for age, gender, systolic blood pressure, fasting glucose, total cholesterol, triglycerides, and low-density
lipoprotein cholesterol.
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However, Asian women have a higher prevalence of abdom-
inal and visceral adiposity than Caucasian women with the
same BMI, indicating a significant correlation between WC
and visceral adiposity volume [32]. Oikonomou et al.
reported that the AQP7 messenger RNA (mRNA) increased
in younger obese prepubertal (YOP) children but decreased
in the obese adolescents (OA) who also had increased insulin
and homeostatic model assessment-insulin resistance
(HOMA-IR) [33]. This may be due to the expression of
AQP7 in adipose tissue where it facilitates the efflux of
glycerol, and AQP7 deficiency has been linked to increased
glycerol kinase activity and triglyceride accumulation in adi-
pose tissue, leading to obesity and secondary development of
insulin resistance [10]. No association between AQP9 and the
risk of stroke was found in this study, but AQP9 was found to
be the only aquaglyceroporin expressed in the brain and was
detected in tanycytes [34]. In addition, AQP9 and AQP4 can
act in synergy contributing to the facilitation of water move-
ments between the CSF and brain parenchyma [35].

LD is the nonrandom association of alleles at different
loci and plays an important role in diverse aspects of human

genetics. In this study, we found that there was a strong
linkage disequilibrium between rs3758269 and rs2989924 of
the AQP7 gene (D′ = 0:9992), while the LD relationships
between the other loci were weak. By analyzing the LD asso-
ciation strength, the appropriate tagSNP is selected, which
can help to reduce the number of SNPs in the study and find
the SNP associated with the disease as a marker. A set of SNP
combinations on the same chromosome that are interrelated
and tend to be passed on to offspring as a whole is called
haplotype. Haplotype association studies are more useful
than single SNP analysis. In this study, AQP7 and AQP9 loci
constitute haplotypes, and more than 5% of the haplotypes
were included in the study. This study found that individuals
carrying CTA haplotypes in AQP7 had a higher risk of stroke
than those with the highest frequency of CCG haplotypes
(OR 1.56, 95% CI 1.05-2.32).

Multivariate logistic regression analysis was conducted to
investigate the possible genetic and environmental factors
associated with stroke, and results showed that higher
TC was a risk factor of stroke (OR 1.31, 95% CI 1.05-1.63)
and rs2889924 AG vs. GG (A>G) was a protective one. How-
ever, no interaction between AQP7 and AQP9 was found in
this study.

This is the first study in China, which investigated the
association between genetic variants in AQP7 and AQP9
and the risk of stroke among hypertensive patients. Nested
with a large cohort study including more than 12,000 hyper-
tensive cases with a >5-year follow-up, this case-control study
included strictly matched cases and controls, so that results
from this study are more likely to be reliable. In the future,
further studies using large and independent samples are war-
ranted to confirm the findings of this study. Moreover, future

Table 4: Gene interaction analysis by GMDR method.

Model combination Training sample accuracy Verify sample accuracy Cross-validation consistency P

SNP3 SNP5 0.567 0.527 4/10 0.1719

SNP1 SNP4 SNP5 0.578 0.542 4/10 0.1719

SNP1 SNP2 SNP4 SNP5 0.592 0.536 6/10 0.1719

SNP1 SNP2 SNP3 SNP4 SNP5 0.608 0.542 10/10 0.1719

Table 5: Association between haplotypes of three SNPs of the AQP7 gene and the risk of stroke.

Haplotype rs62542743 rs3758269 rs2989924 Frequency OR (95% CI) P

Haplo.base C C G 0.5520 1.00 —

Haplo.2 C C A 0.2804 1.12 (0.86-1.47) 0.430

Haplo.3 C T A 0.1243 1.56 (1.05-2.32) 0.029

Table 6: Association between haplotypes of two SNPs of the AQP9 gene and the risk of stroke.

Haplotype rs62542743 rs16939881 Frequency OR (95% CI) P

Haplo.base C C 0.8308 1.00 —

Haplo.2 T C 0.1004 1.05 (0.72-1.53) 0.80

Haplo.base C C 0.8308 1.00 —

Table 7: The logistic analysis of 5 SNPs and the risk of stroke.

Variables OR 95% CI P

rs2889924AG vs. GG 0.513 0.353-0.746 <0.001
AA vs.GG 0.782 0.496-1.232 0.782

Higher TC 1.307 1.047-1.631 0.018

Fasting blood glucose 1.144 1.037-1.263 0.007

Systolic blood pressure 1.015 1.001-1.029 0.041
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functional studies on associated SNPs will help to better
understand the underlying biological mechanisms. To sum-
marize, this study suggests that the genetic variants of AQP7
SNPs are associated with the risk of stroke among patients
with hypertension in China.
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