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Abstract

Purpose—To apply statistical metrics to identify outliers and to investigate the impact of outliers 

on knowledge-based planning in radiation therapy of pelvic cases. To develop a systematic 

workflow for identifying and analyzing geometric and dosimetric outliers.

Methods—Four groups (G1–G4) of pelvic plans were sampled in this study. These include the 

following three groups of clinical IMRT cases: G1 (37 prostate cases), G2 (37 prostate plus lymph 

node cases) and G3 (37 prostate bed cases). Cases in G4 were planned in accordance with 

dynamic-arc radiation therapy procedure and include 10 prostate cases in addition to those from 

G1.

The workflow was separated into two parts: 1. identifying geometric outliers, assessing outlier 

impact, and outlier cleaning; 2. identifying dosimetric outliers, assessing outlier impact, and 

outlier cleaning. G2 and G3 were used to analyze the effects of geometric outliers (first experiment 

outlined below) while G1 and G4 were used to analyze the effects of dosimetric outliers (second 

experiment outlined below).

1. A baseline model was trained by regarding all G2 cases as inliers. G3 cases were then 

individually added to the baseline model as geometric outliers. The impact on the 

model was assessed by comparing leverages of inliers (G2) and outliers (G3). A 

receiver-operating-characteristic (ROC) analysis was performed to determine the 

optimal threshold. The experiment was repeated by training the baseline model with all 

G3 cases as inliers and perturbing the model with G2 cases as outliers.

2. A separate baseline model was trained with 32 G1 cases. Each G4 case (dosimetric 

outlier) was subsequently added to perturb the model. Predictions of dose-volume 

histograms (DVHs) were made using these perturbed models for the remaining 5 G1 
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cases. A Weighted Sum of Absolute Residuals (WSAR) was used to evaluate the 

impact of the dosimetric outliers.

Results—The leverage of inliers and outliers was significantly different. The Area-Under-Curve 

(AUC) for differentiating G2 (outliers) from G3 (inliers) was 0.98 (threshold: 0.27) for the bladder 

and 0.81 (threshold: 0.11) for the rectum. For differentiating G3 (outlier) from G2 (inlier), the 

AUC (threshold) was 0.86 (0.11) for the bladder and 0.71 (0.11) for the rectum. Significant 

increase in WSAR was observed in the model with 3 dosimetric outliers for the bladder (p<0.005 

with Bonferroni correction), and in the model with only 1 dosimetric outlier for the rectum 

(p<0.005).

Conclusions—We established a systematic workflow for identifying and analyzing geometric 

and dosimetric outliers, and investigated statistical metrics for outlier detection. Results validated 

the necessity for outlier detection and clean-up to enhance model quality in clinical practice.

Keywords

Outlier; knowledge-based planning; radiation therapy; leverage; dose-volume histogram

I. Introduction

Knowledge-based planning (KBP) in radiation therapy has been widely investigated.1–8 

KBP aims to provide treatment-planning guidance, such as dose-volume objectives and 

objective function weights. A recent commercial KBP software, RapidPlan (Varian Medical 

Systems, Palo Alto, USA), has been developed and introduced to the Eclipse treatment 

planning system. Several pre-clinical studies have been performed to evaluate its ability in 

guiding treatment planning.9, 10 A study by Tol et al. found that plans generated with 

RapidPlan were comparable to clinical plans when the anatomy geometry was within range 

of the training cases.9 Additionally, Fogliata et al. found that plans generated with the 

assistance of RapidPlan exhibited improved dosimetric performance compared to the 

benchmark clinically-accepted plans.10 These studies confirm the feasibility of 

implementing KBP into the clinical environment.

In order to build a model that is generalizable to new cases, multiple factors need to be 

considered in the modeling and application process. These factors include the range of the 

features versus the range of the features’ potential clinical coverage, the model training data 

size, the existence of outliers in the training data, etc. The range of the features is the 

distribution of the features of all cases. This is necessary for geometric outlier detection 

because the model may not be applicable to a new case if its feature is out of the range. The 

potential clinical coverage refers to the applicable treatment site of the model. For example, 

“prostate model” describes models applicable to prostate cases. Boutilier et al. analyzed the 

minimal required training sample size for predicting dose-volume histogram (DVH) points, 

DVH curves and the objective function weight.11 Outlier detection has been heavily studied 

to identify anomalies among data.12–21 Outliers deviate from other observations and may be 

generated by a different mechanism.22, 23 Due to the negative effect on the statistical 

analysis, such as increased error variance and reduced power of statistical tests, it is 

recommended to check for the existence of the outliers.24
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Outliers have been shown to have an effect on radiation therapy KBP. For example, Delaney 

et al. analyzed the effect of dosimetric outliers and demonstrated moderate degradation of 

model quality coinciding with the occurrence of dosimetric outliers. However, questions still 

remain for outlier identification in radiation therapy KBP. First, no study has been conducted 

so far to assess the effectiveness of outlier identification. Second, the impact of geometric 

outliers has not been analyzed. In order to answer these questions, we adopted leverage and 

studentized residual to aid in identifying geometric and dosimetric outliers, and analyzed 

how to use the metric for outlier identification. In addition, our study aimed to evaluate the 

impact of geometric and dosimetric outliers, respectively, and to answer the question of 

whether cleaning geometric or dosimetric outliers is necessary. The results of this study 

allow us to develop a systematic workflow for identifying and analyzing geometric and 

dosimetric outliers.

II. Materials and Methods

II.A. Materials

Four groups of radiation therapy treatment plans in prostate regions were included in this 

study: group 1 (G1), with 37 low-to-intermediate risk prostate cases; group 2 (G2), with 37 

high risk prostate cases treated with lymph node (LN) irradiation; group 3 (G3), with 37 

prostate bed irradiation cases; and group 4 (G4), with 10 extra low-to-intermediate risk 

prostate cases in addition to those in G1. For G1–G3 cases, we used the intensity modulated 

radiation therapy (IMRT) plans designed for clinical treatment. The G4 cases were re-

planned using the dynamic conformal arc technique (DARC). G2 and G3 represented the 

geometric variations relative to each other, i.e. the geometric/anatomic outliers. G2 and G3 

were used to analyze geometric outliers, i.e. one group served as the inlier cases while the 

other group served as the outlier cases. The DARC plans in G4, which did not represent any 

current clinical treatment techniques, were used to simulate dosimetric outliers to G1. G1 

and G4 were used to analyze dosimetric outliers, i.e. G1 served as the inlier cases while G4 

served as the outlier cases. Figure 1 shows an example of the anatomy and dose distribution 

of four groups.

II.B. Model algorithm and study design

In this study, we used the KBP algorithm previously implemented by Yuan et al.4 This 

algorithm correlates the DVH (output) with geometry features (input). The algorithm uses 

22 geometry features including distance-to-target histograms (DTH) of the first three 

principal components (PCs), the overlap portion of organs-at-risk (OARs), and organ 

volume. A detailed list of the features is shown in Table I. A stepwise multiple-regression is 

performed to build the model.

The first part of this study focused on geometric/anatomic outliers. In particular, the 

statistical metric of leverage was studied for identifying the geometric outliers, and the mean 

Weighted Sum of Absolute Residuals (WSAR) was studied for assessing the impact of the 

existence of geometric outliers.
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The leverage metric is used to identify geometric outliers within a training dataset during 

modeling. It can also be used to determine whether a new case is a geometric outlier of an 

existing model. The WSAR evaluates the effect of geometric outliers in a model and 

provides guidance whether cleaning up/excluding the outliers would be necessary to 

improve the modeling accuracy.

An outline of the outlier analysis is shown in Figure 2. In the first experiment (top), each 

plan from the prostate plus LN group (G2) was individually added to the prostate bed model 

(G3) to serve as a geometric outlier. This process was repeated by individually adding each 

plan from the prostate bed model (G3) to the prostate plus LN group (G2). The anatomies of 

the G2 and G3 cases were different, mimicking the process of introducing large geometric 

variation in the model. The leverage was calculated for the inliers and outliers, and a 

receiver-operating-characteristic (ROC) analysis was performed to determine the optimal 

threshold. In the second experiment, geometric outliers were gradually added to the model to 

assess the impact, i.e. the prostate plus LN (G2) cases were gradually added to the prostate 

bed (G3) model and the prostate bed (G3) cases were gradually added to the prostate plus 

LN (G2) model. These models with geometric outliers were then evaluated to assess the 

impact on prediction accuracy from the inclusion of geometric outliers. In the third 

experiment, each dosimetric outlier from the DARC prostate group (G4) was added to the 

prostate (G1) model individually, and the model was trained with the corresponding outlier. 

The mean studentized residual of the dosimetric outlier from each experiment was recorded. 

In the fourth experiment, the DARC prostate (G4) cases were gradually added to the prostate 

(G1) model to assess the model quality change.

II.C. Geometric outlier identification

In this part of study, the existence of geometric outlier was simulated by adding cases from 

one treatment group to the model from another group. First, a base model was trained with 

all G3 cases. Second, a geometric outlier, i.e. the prostate plus LN (G2) case, was 

individually added to the base model. The leverage is used to identify geometric outliers by 

identifying features that are far from the population mean. The leverage score of each 

training case is defined as

(Eq.1)

where hi is the ith diagonal element of the hat matrix H = X(XTX)−1XT, and X is the feature 

matrix. A feature matrix is an m-by-n matrix where m is the number of training cases and n 
is the number of features. Stepwise regression was performed as part of the model training to 

select predictive features. The number of the selected features, n, varied between 1 and 5, 

and the selected feature subset was chosen as the feature matrix. Each element in the feature 

matrix is a scaler that quantifies a particular feature for a particular training case.

The leverage statistics of inlier cases (G3) and outlier cases (G2) were recorded and the 

likelihood that the leverage of a randomly selected outlier is greater than that of a randomly 

selected inlier was assessed via Wilcoxon Rank-Sum test. A ROC analysis evaluated the 

performance of the leverage as a classifier to identify the geometric outlier. The inlier G3 
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cases were considered as condition negative and the outlier G2 cases were considered as 

condition positive. A leverage value larger than the threshold was considered as predicted 

condition positive while a leverage smaller than the threshold was considered as predicted 

condition negative. The sensitivity and specificity were calculated by varying the leverage 
threshold. The leverage of all inliers and outliers were pooled together and sorted 

ascendingly. The leverage threshold varied among the mean of two adjacent leverage values. 

The Youden’s J index25 was calculated to find the optimal threshold for differentiating the 

geometric inliers and outliers. The optimal threshold has the largest difference between the 

true positive rate and the false negative rate. This workflow was repeated by adding the 

prostate bed (G3) cases to the base model trained with the prostate plus LN (G2) cases. The 

flowchart is shown on the top row in Figure 2.

To validate the effectiveness of using the leverage as a geometric outlier identification tool, a 

leave-one-out cross validation was performed. For each of the 37 geometric outlier cases, the 

optimal threshold was calculated using the other 36 cases. This threshold was then applied 

on this left-out case. If the leverage of this case is larger than the calculated threshold, it is 

marked as “detected”. The detection rate of all 37 geometric outlier cases was reported for 

both the bladder and the rectum using the G2 and G3 cases as geometric outliers.

II.D. Impact on model accuracy and necessity of cleaning geometric outliers

In this part of the study, 32 cases were randomly selected from G3 to train a base model and 

then 1, 2, 3, 4, 8, 12, 16, 20 and 32 G2 cases were added to the base model to mimic 

different percentage of geometric outliers (3, 6, 9, 13, 25, 38, 50, 63 and 100%) in the 

modeling process and assess the impact of modeling accuracy. This resulted in 9 knowledge 

models, in addition to the base model. Finally, five G3 cases other than the 32 cases used for 

training formed the validation cohort. This workflow was repeated by adding G3 cases to the 

base model trained with the G2 cases.

The mean WSAR of the validation cases was calculated for the base model and the 9 models 

trained with different numbers of geometric outliers. The WSAR is given as

(Eq.2)

where Vc,D is the dose volume point for the clinical DVH at bin D; Vp,D is the dose volume 

point for the predicted DVH at bin D. The factor wD is the normalized weight for each bin. 

Each weight varies from 50 for the 1st bin to 90 for the 100th bin, and is divided by the sum 

of weights of all bins. The bin width is ΔD. This set of weighting penalizes more towards 

high dose regions, which is in correspondence with the clinical focus placed on the OAR 

dose.

The experiment was repeated 20 times with randomly selected training and validation cases. 

Statistical significance of the difference between the model with and without geometric 

outliers was calculated using Wilcoxon Rank-Sum test. A Bonferroni correction was applied 

for multiple comparisons. The significance level was adjusted as α = 0.5/m, where m is the 
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number of hypothesis. Since there were 9 hypotheses, the significance level was set at 

0.0056. The flowchart is shown in the second row in Figure 2.

II.E. Dosimetric outlier identification

The presence of the dosimetric outliers alters the correlation between the geometry and dose 

distribution. The studentized residual can be used to aid the identification of dosimetric 

outliers. The studentized residual ri is defined as:

(Eq.3)

where ei = yi − ỹi, yi is the response variable for i and ỹi is the regression prediction for i. 
The denominator, s(ei), is the standard deviation of the prediction error. A studentized 

residual of 3 was chosen as the outlier threshold. For the scenario when the model is trained 

but no cleaning has been performed, a studentized residual larger than 326 can signal the 

existence of dosimetric outliers. A new case can be added to the training cohort to train a 

new model and the studentized residual will be calculated to identify outliers.

The current algorithm decomposed the DVH curve into PCs and the first four PCs were used 

to build the model. Since the first PC of the DVH accounts for most of the variation in the 

DVH curve, we focus on the regression of the first PC of the DVH for the outlier analysis.

In this study, we used the prostate cases planned with DARC (G4) that did not aim to spare 

the OAR to simulate dosimetric outliers. The DARC plans can simulate dosimetric outliers 

because they do not strive to spare the dose to the OARs and often result in higher doses. 

The DVH of the DARC plan is higher than that of the IMRT plan for all dose regions, and 

therefore results in higher score in the DVH first PC.4 For this reason, the G4 cases simulate 

negative outliers (positive studentized residual) once they are added to the model. Each 

outlier case was individually added to the prostate case (G1) dataset to train the model and 

obtain the studentized residual. The mean studentized residual of the outlier cases under this 

simulation scenario was reported for both the bladder and rectum. The flowchart is shown in 

the third row in Figure 2.

II.F. Impact of dosimetric outliers on model accuracy

The impact of dosimetric outliers was determined by gradually adding multiple DARC 

prostate (G4) cases into the clinical prostate IMRT cohort (G1).4

The base model for the dosimetric outlier analysis was trained with 32 cases from G1 with 

the remaining 5 cases from G1 reserved as the validation cases. Each of the 10 dosimetric 

outlier cases in G4 was then progressively added to the new base model. Since the outliers 

introduced were all negative, a monotonic degradation of the model quality was anticipated 

as the number of outlier increased. The performance of the model was evaluated by the 

WSAR.
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The experiment was repeated 20 times via bootstrapping. The WSAR of the models with 

dosimetric outliers was compared to that of the base model (i.e. without outlier) via 

Wilcoxon Rank-Sum test. A Bonferroni correction was applied for multiple comparisons. 

Since there were 10 hypotheses, the significance level was set at 0.005. The flowchart is 

shown in the bottom row in Figure 2.

III. Results

III.A. Leverage of geometric outliers

The mean and standard deviation of the leverage of the inlier and outlier cases are shown in 

Table II. The mean of the leverage of the inlier cases was smaller than the corresponding 

mean of the outlier cases. The difference between the leverage of the inlier and outlier cases 

was significant (p<0.0001). Boxplots of the leverage are shown in Figure 3. The largest 

separation of the leverage distributions occurred in the bladder when the prostate plus LN 

cases were added to the prostate bed model. This is in good agreement with the anatomical 

difference of the two plans. When adding the prostate bed cases to the prostate plus LN 

cases, the leverage distribution was less separated than adding the prostate plus LN cases to 

the prostate bed cases. The AUC, used to differentiate the prostate plus LN case (G2) from 

the prostate bed cases (G3), was 0.98 (threshold: 0.27) for the bladder, and 0.81 (threshold: 

0.11) for the rectum. For differentiating the prostate bed case (G3) from the prostate plus LN 

cases (G2), the AUC was 0.86 (threshold: 0.11) for the bladder and 0.71 for the rectum 

(threshold: 0.11). The leverage could be used as a metric for identifying the geometric 

outlier as reflected by the AUC value.

The usage of the leverage as a geometric outlier identification tool was validated using 

leave-one-out cross validation. For the bladder, the sensitivity (predicted outlier cases 

divided by total outlier cases) of the prostate plus LN (G2) cases from the prostate bed (G3) 

cases was 92% (34/37), and the sensitivity of the prostate bed (G3) cases from the prostate 

plus LN (G2) cases was 76% (28/37). For the rectum, the sensitivity was 76% (28/37) and 

73% (27/37), respectively.

III.B. Impact of geometric outliers on model accuracy

The mean WSAR for the base model and the 9 models trained with 1/2/3/4/8/12/16/20/32 

geometric outlier cases is plotted in Figure 4. For the bladder, significant degradation in 

model accuracy was observed upon adding 16 G2 cases into the G3 model (p=0.0080, 

0.0010 for adding 12 and 16 G2 cases into the G3 model at 0.0056 significance level). 

Adding the G3 cases into the G2 model did not degrade the model quality at significance 

level (p>0.0056 for all models). For the rectum, adding 32 G2 cases into the G3 model 

degraded the model quality (p<0.0001 for adding 32 G2 cases into the G3 model). Adding 

the G3 cases into the G2 model did not degrade model quality. These results show a negative 

impact of the geometric outliers on the bladder and suggest a need to identify them to 

improve the model quality.
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III.C. Studentized residual of dosimetric outliers

Each of the ten dosimetric outliers was added to the prostate model. The mean studentized 

residual of the dosimetric outlier cases was 10.06 for the bladder model and 9.87 for the 

rectum model. The corresponding mean studentized residual of the inlier cases was −0.12 

for the bladder model and −0.12 for the rectum model. The positive studentized residual 

signals negative dosimetric outliers such that the original response variable (DVH PC1) in 

the model is higher than the model prediction. The negative outliers are associated with 

suboptimal OAR sparing while positive outliers are related to better OAR sparing than the 

model prediction. The positive outliers have a less detrimental clinical impact than the 

negative outliers, and were kept in the model.27

III.D. Impact of dosimetric outliers on model accuracy

The WSAR of the validation cases is plotted in Figure 5 with versus the number of 

dosimetric outlier cases introduced into the model. Increasing the number of dosimetric 

outlier cases increases the mean WSAR for both the bladder and rectum. For the bladder, a 

significant difference in the WSAR was observed for the model trained with 3 outliers 

(p=0.0038 for 3 outliers; significance level of 0.005). For the rectum, a single outlier was 

enough to create significant difference (p=0.0003 for 1 outlier) in the model.

IV. Discussion

Careful analysis of both geometric and dosimetric outliers is an important step for 

maintaining and improving model quality in knowledge model development. In this study, 

we established a systematic workflow for identifying and analyzing geometric and 

dosimetric outliers. We found that the leverage can be an effective metric for identifying 

geometric outliers in radiation therapy knowledge-based planning. The simulation showed 

negative impact of geometric outliers on the bladder model, and the dosimetric outliers on 

both the bladder and rectum model. The impact of dosimetric outliers is more prominent 

than that of geometric outliers. The regression model uses ordinary least squares (OLS) fit 

which fits a regression line by minimizing the sum of the squares of residuals (true 

observation minus regression prediction). The geometric inliers and outliers vary in the 

geometric feature distribution. The introduction of geometric outliers causes the regression 

line to pivot against the feature mean (within inlier range) to better capture the geometric 

outliers. However, the perturbation of the regression line within range of inliers caused by 

the geometric outliers is relatively small. In contrast, the dosimetric outliers introduce large 

prediction variation within the feature range of inliers. OLS fit tends to shift the regression 

line towards the dosimetric outliers to capture this variation, introducing more prominent 

degradation.

The results showed that the geometric outliers affected the model quality of the bladder 

significantly, but not that of the rectum. This is partly due to the relatively small geometrical 

variation between the PTV and rectum across three subsets, as well as similar plan quality of 

the geometric inlier and outlier cases. The existence of geometric outliers deserves attention 

since even small variations among the three sub-types of pelvic cancer cases showed 

significant degradation in one of the OARs. The trend of the worsening model quality 
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degradation as the number of outlier increases further indicates the need to handle geometric 

outliers. We identified geometric and dosimetric outliers separately in this study. Metrics 

that indicate both geometric and dosimetric outliers could potentially be valuable to clinical 

practice beyond knowledge modeling. Further research in this direction is warranted.

The KBP algorithm4 in this study employs a stepwise multiple-regression to learn the 

relation between the anatomic and dosimetric features. A limitation of stepwise regression is 

the tendency of selecting inconsistent feature subset when the training sample is small.28 

Other regression models such as LASSO, ridge regression, and elastic nets may improve 

feature selection and overall prediction accuracy, and are worth investigating.

Previous studies investigated various methods for training good models.11, 27, 29 Wang et al. 
employed Pareto-optimal prostate plans to build and validate the OVH-based model.29 This 

method makes it possible to develop models without the concerns of plan quality variations 

or dosimetric outliers. Unfortunately, routine clinical plans are known to include some that 

are not Pareto-optimal. We propose a workflow to inspect the training cases made up of 

routine clinical plans, which could potentially include both geometric and dosimetric 

outliers. The result of our study agreed with Delaney et al.’s study on the deterioration effect 

of dosimetric outliers. Our study investigated both geometric outlier and dosimetric outliers 

using a statistical method. The results suggest the need to identify and clean the geometric 

outliers prior to treating the dosimetric outliers.

Extreme caution is recommended when predicting dose-volume endpoints for a geometric 

outlier case, since the dosimetry-anatomy relation for such geometric outlier cases may not 

be fully captured and represented by the model. Therefore, when implementing the model to 

make predictions, it is important to compare the feature of the query case with that of the 

training cases. If the case is indeed a geometric outlier, a different model needs to be 

applied. It is possible that the case shows novel geometric patterns that have never been seen 

by any available model. In this situation, the human planner will be required to iteratively 

generate a clinically acceptable plan without the model and feed this case together with the 

plan into the model as new knowledge. Removing geometric outliers will reduce the 

variation of the anatomy within a model and thus result in more models necessary to cover 

all cases. Building a model that can predict equally well for all cases is one possible solution 

and requires further study.

The clinical impact of the model degradation due to dosimetric outliers was demonstrated 

with one example case illustrated below. A prostate model without a dosimetric outlier and a 

prostate model with 10 dosimetric outliers were tested on a fresh prostate case that was not 

used to train the models. The predicted DVH curves from both models were used to extract 

the dose-volume objectives for both the bladder and rectum to guide treatment planning.30 

As shown in Figure 6, the prediction from the outliers-added-model was less favorable than 

that of the outlier-free-model which agreed better with the clinical plan DVH. The prediction 

guided plan DVH agreed well with the prediction for both models. The two prediction 

guided plan DVHs differed in the medium-to-high dose region. This example demonstrates 

that the model quality degradation could result in degradation of the final plan quality.
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There are several limitations in this study. First, the baseline KBP model was currently 

trained with cases from the same treatment site. To analyze the impact of geometric outliers, 

plans from abdominal sites other than the site(s) used to build the model were considered as 

geometric outliers. For example, a prostate-bed case was a geometric outlier for a prostate-

plus-LN model, but due to the variability of the cancer target shape and the availability of 

training cases, it is unclear whether it is more advantageous to build model on individual 

sites or on a combination of cases from some or all sites. This will affect the cases that are 

likely outliers or inliers. These questions are beyond the scope of this study and will require 

further investigation. Secondly, radiation therapy plans generated using DARC were treated 

as dosimetric outliers when added to the single-site (prostate) model. Dosimetric outliers 

resulted in degraded model quality so the cleaning process is recommended. The detected 

dosimetric outlier case is excluded from the training cohort or a re-plan can be ordered to 

improve the plan quality so that this case can be included again for model training. An 

outlier often arises from abnormal mechanism, e.g. treatment modality in this study, or may 

accumulate due to a treatment protocol change at an institution. Further investigation about 

updating models is warranted. Thirdly, the dosimetric outliers introduced were all negative 
outliers with positive studentized residual in regression. Negative outliers often exist in the 

plans where the dose to the OAR is not fully minimized, such as in the DARC technology. 

We designed this experiment setup to answer the question whether and how insufficiently 

spared dosimetric outliers affect the model quality. We note that positive outliers where the 

OAR dose was overly minimized could also exist in the clinical cases. The positive outliers 

are the cases where the OAR is better spared than the model prediction. OAR over-sparing is 

often related to tradeoff between multiple OARs. Although over-sparing for such organ does 

not degrade the quality for this organ, the tradeoff choice may make other OAR’s sparing 

objectives unachievable. Thus, the analysis of positive outliers requires modeling multiple 

OARs. Further investigation is warranted to deal with this scenario. Lastly, the leverage was 

used as the metric to identify the geometric outliers. The leverage statistic is able to reflect 

the distance of each datum point to the mean of the population so that the cases can be 

inspected according to the sequence of the leverage statistics. The leverage is able to identify 

geometric outlier cases one by one. Instead of leverage, a cluster-based method could also be 

employed in KBP outlier detection. One cluster can be generated around the bulk of data 

while the observations outside the cluster frontier will be identified as the outliers. This 

method is capable of identifying multiple outliers at the same time.

V. Conclusions

We established a systematic workflow for identifying and analyzing geometric and 

dosimetric outliers. The leverage and studentized residual have demonstrated effectiveness 

in identifying geometric and dosimetric outliers respectively in the training datasets. Results 

in this study clearly illustrated that the existence of both geometric and dosimetric outliers 

degraded the model prediction accuracy and the process of identifying and cleaning them is 

necessary. The recommended workflow provides a solution to generate high quality 

knowledge models to improve patient care in radiation therapy.
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FIG. 1. 
An example of the anatomy and dose distribution of G1–G4 cases: (a) a prostate case (G1) 

shown with the clinical IMRT dose distribution; (b) the same prostate case from (a) shown 

with the DARC dose distribution (G4); (c) a prostate plus LN case with the clinical IMRT 

dose distribution (G2); (d) a prostate bed case (G3) with the clinical IMRT dose distribution.
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FIG. 2. 
Flowchart of the experiment on the geometric outlier identification (top), geometric outlier 

impact analysis (second row), dosimetric outlier identification (third row) and dosimetric 
outlier impact analysis (bottom).
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FIG. 3. 
Boxplots of the leverage distribution of the outliers and inliers in the first experiment. The 

leverage distribution of the bladder model is shown on the left two subplots and the rectum 

model is shown on the right two subplots. Each geometric outlier case was added to the 

model and the leverage of the one geometric outlier LN/prostate bed case and the other 37 

inlier prostate bed/LN cases was recorded. After adding all geometric outlier cases, the 

leverage statistics of the inliers and outliers were pooled to compose the boxplot. The 

leverage characterizes the distance of the data from the population mean and ranges from 0 

to 1. The box edges bound the interquartile range. The red bar denotes the median. The 

mean is represented as the black circle. The whiskers extend to the extreme data point within 

1.5 times the interquartile range from the 25th/75th percentile. Data points beyond the 

whiskers are denoted as red “+”.
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FIG. 4. 
Distributions of the mean Weighted Sum of Absolute Residuals for the models versus the 

number of geometric outliers (LN/prostate bed) added. The WSAR distribution of the 

bladder model is shown on the left two subplots and the rectum model is shown on the right 

two subplots. The edges of the box bound the interquartile range. The red bar denotes the 

median. The mean is represented as the black circle. The whiskers extend to the extreme 

data point within 1.5 times the interquartile range from the 25th/75th percentile. Data points 

beyond the whiskers are denoted as red “+”. 1/2/3/4/8/12/16/20/32 geometric outliers (LN/

prostate bed) were progressively added to the prostate bed/LN model with 32 cases and the 

model quality change was reflected by the WSAR. The WSAR was recorded for each 

bootstrap and the experiment was repeated 20 times. After adding 16 prostate plus LN cases 

into the prostate bed cases, the bladder model observed significant model quality change. 

Adding 32 prostate bed cases into the prostate plus LN cases degraded the model quality 

(p<0.0001). Adding the prostate plus LN cases into the prostate bed model or adding the 

prostate bed cases into the prostate plus LN model did not change the rectum model quality 

at p=0.0056.
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FIG. 5. 
The Mean Weighted Sum of Absolute Residuals distribution of the prediction from the 

models trained with different numbers of outliers. The edges of the box bound the 

interquartile range. The red bar denotes the median. The mean is represented as the black 

circle. The whiskers extend to the extreme data point within 1.5 times the interquartile range 

from the 25th/75th percentile. Data points beyond the whiskers are denoted as red “+”. The 

dosimetric outlier cases were progressively added to the model until all 10 outlier cases were 

added. There were a total of 11 models with varying dosimetric outliers existing in the 

model from 0 to 10. Each model predicted the DVH curve for 5 validation prostate cases not 

used in the model training. The experiment was bootstrapped 20 times. At each bootstrap, 

the mean Weighted Sum of Absolute Residuals of the 5 validation prostate cases was 

recorded and all 20 bootstraps were plotted in the figure. Adding 3 dosimetric outlier cases 

affected the bladder model quality while adding only 1 dosimetric outlier case affected the 

rectum model quality.
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FIG. 6. 
The comparison of the clinical plan DVH, model predicted DVHs, and prediction guided 

plan DVHs in the bladder (left) and the rectum (right) one of an example prostate case. The 

black solid line is the clinical plan DVH. The red dash line is the predicted DVH from the 

prostate model without the dosimetric outlier. The red solid line is the outlier free prostate 

model prediction guided plan DVH. The blue dash line is the predicted DVH from the 

prostate model with 10 dosimetric outliers. The blue solid line is the 10 outliers added 

prostate model prediction guided plan DVH.
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Table I

The OAR anatomical features analyzed in the algorithm implemented by Yuan et al. There were 11 features 

for each OAR relative to one planning target volume (PTV). One primary PTV and one boost PTV could be 

included. In this study, only the primary PTV was included.

Anatomical features

Distance to target histogram (DTH) principal component 1 (PC1)

DTH PC2

DTH PC3

Fraction of OAR volume overlapping with the PTV

Fraction of OAR volume outside the treatment field

OAR volume

PTV volume

OAR wrap angle around the PTV

(DTH PC1)2

*PTV dose volume point 1 (PTV D2%)

*PTV dose volume point 2 (PTV D50%)

*
PTV dose volume points were included to take into consideration of the OAR sparing variation among plans, since overly spared OAR can result 

in less homogenous PTV dose. This variation was adjusted by standardizing the dose volume point of training cases and set 0 for the new cases.
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