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Abstract: Allergic sensitization to cannabis is an emerging public health concern and is difficult
to clinically establish owing to lack of standardized diagnostic approaches. Attempts to develop
diagnostic tools were largely hampered by the Schedule I restrictions on cannabis, which limited
accessibility for research. Recently, however, hemp was removed from the classified list, and increased
accessibility to hemp allows for the evaluation of its practical clinical value for allergy diagnosis.
We hypothesized that the proteomic profile is preserved across different cannabis chemotypes and
that hemp would be an ideal source of plant material for clinical testing. Using a proteomics-based
approach, we examined whether distinct varieties of cannabis plant contain relevant allergens of
cannabis. Cannabis extracts were generated from high tetrahydrocannabinol variety (Mx), high
cannabidiol variety (V1-19) and mixed profile variety (B5) using a Plant Total Protein Extraction Kit.
Hemp extracts were generated using other standardized methods. Protein samples were subjected
to nanoscale tandem mass spectrometry. Acquired peptides sequences were examined against the
Cannabis sativa database to establish protein identity. Non-specific lipid transfer protein (Can s 3)
level was measured using a recently developed ELISA 2.0 assay. Proteomic analysis identified
49 distinct potential allergens in protein extracts from all chemotypes. Most importantly, clinically
relevant and validated allergens, such as profilin (Can s 2), Can s 3 and Bet v 1-domain-containing pro-
tein 10 (Can s 5), were identified in all chemotypes at label-free quantification (LFP) intensities > 106.
However, the oxygen evolving enhancer protein 2 (Can s 4) was not detected in any of the protein
samples. Similarly, Can s 2, Can s 3 and Can s 5 peptides were also detected in hemp protein extracts.
The validation of these findings using the ELISA 2.0 assay indicated that hemp extract contains
30–37 ng of Can s 3 allergen per µg of total protein. Our proteomic studies indicate that relevant
cannabis allergens are consistently expressed across distinct cannabis chemotypes. Further, hemp
may serve as an ideal practical substitute for clinical testing, since it expresses most allergens relevant
to cannabis sensitization, including the validated major allergen Can s 3.

Keywords: cannabis; allergens; proteomics; diagnostics

1. Introduction

In recent years, cannabis has become increasingly accessible for medicinal and recre-
ational use owing to the evolving social perception and the legalization efforts in many
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states across US. Concomitantly, there has also been an increase in reports of allergic sensi-
tization to cannabis [1]. Further, a large workforce participates in various operations within
the cannabis industry, leading to concerns of allergic sensitization in occupational envi-
ronments [2–5]. More recently, one case of mortality was reported in a licensed cannabis
growing facility with occupational asthma identified as the probable cause (ref: Occupa-
tional Safety and Health Administration, Inspection #1572011). Although cannabis allergy
has emerged as a public health issue, its prevalence is unclear due to broad symptomology
and a lack of diagnostic approaches to clinically establish a link between sensitization and
disease [1,6]. Nevertheless, studies in our laboratory and elsewhere have identified and
subsequently validated multiple allergens, including profilin (Can s 2), non-specific lipid
transfer protein (nsLTP; Can s 3), oxygen evolving enhancer protein 2 (OEEP2; Can s 4) and
Bet v 1-domain-containing protein (Can s 5) [3,7–11]. Initially, Can s 3 was reported as a
major allergen of Cannabis in Europe but not in North America [3]; however, more recently,
our laboratory established Can s 3 as a relevant allergen in North America [12]. Taken
together, IgE immunoreactivity to specific allergens partly explains allergic sensitization to
cannabis, indicating a possible role for other allergens.

However, investigations into additional allergens and the development of diagnostic
tests is somewhat hindered by practical considerations. Firstly, although broadly divided
into indica and sativa cultivars, over 11,000 distinct strains of Cannabis exist, mostly aris-
ing from the crossing of different cannabis varieties, resulting in hybrid strains selected
for unique biochemical profiles. Thus, accounting for the distinct allergenic profile of
each variety is not feasible. Consequently, it becomes essential to develop a practical
approach to separate varieties on the basis of other features, such as a biochemical profile.
Classifying cannabis plants by chemotypes aligns with real-world use scenarios where
cannabis use is generally dependent on the primary purpose of use (i.e., mood-altering
effects, anti-inflammatory effects, anti-emetic effects). More specifically, cannabis vari-
eties are defined by cannabinoid quality, which is the ratio of THC and CBD, and by
genetic characteristics [13], thus providing a practicable system for comparing allergenic
profiles between different cannabis varieties. While cannabis continues to be classified as
a Schedule I substance, protein extracts generated from any variety of cannabis (includ-
ing strains > 0.3% THC) are exempt from restrictions. Further, the impact of Schedule I
limitations has been further mitigated through the 2018 Farm Bill, which legalized hemp
production for various purposes. Therefore, we questioned (1) whether the distinct chemo-
types of cannabis express recently validated allergens and (2) whether hemp is a suitable
alternative for testing allergic sensitization to hemp.

In the present study, we used the tandem mass spectrometry (MS/MS) approach to
resolve the proteomic profile of four distinct chemotypes of cannabis, including a high
tetrahydrocannabinol (THC) variety (Mx), a high cannabidiol (CBD) variety (V1-19), a
mixed profile variety (B5) and hemp. Proteomics analysis indicates that relevant allergens
of cannabis are expressed in all strains of cannabis, including hemp. Further, Can s 3, a
major allergen of cannabis, is expressed at high levels in hemp, suggesting clinical utility
in diagnostics.

2. Results
2.1. Nanoscale LC-MS/MS Analysis

Approximately 2500–3000 total number of proteins were identified in protein extract
generated from the three distinct cannabis chemotypes, while hemp ~3700 proteins were
identified in the protein extract generated from hemp (Figure 1, top left panel). Further, the
total number of unique peptides identified in each sample was >13,000, being highest for
hemp (18,592), followed by the Mx (17,889), V1-19 (13,310) and B5 (13,237) chemotypes of
cannabis (Figure 1, top right panel). The total number of MS/MS spectra acquired were
comparable between all strains of cannabis, with the Mx strain yielding maximum MS/MS
spectra (Figure 1, bottom left panel). Finally, regarding the normalized LFQ intensity, while
comparable between the three distinct cannabis chemotypes (range 9.1 × 1011–1.1 × 1012),
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LFPQ intensity was highest for the hemp strain (2.2 × 1012) (Figure 1 bottom right panel).
It is essential to note here that while quantitative measures can be compared between the
Mx, V1-19 and B5 strains of cannabis, hemp extracts were generated using distinct protein
extraction method and analyzed separately, thus yielding differential LFQ intensities that
limit direct quantitative comparisons.
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Figure 1. Overview of MS/MS analysis of distinct cannabis chemotypes and hemp. Total number
of proteins identified (top left panel), total number of unique peptides recovered (top right panel),
total number of tandem mass spectra (MS/MS) (bottom left panel) and total normalized label-free
quantification (LFQ) intensity (bottom right panel).

2.2. Putative Allergens of Cannabis

Preliminary analysis revealed the presence of cannabis proteins belonging to 50 distinct
allergen families (Figure 2). Importantly, we identified peptides belonging to known and
validated allergens of cannabis, including profilin (Can s 2), nonspecific lipid transfer
protein (nsLTP, Can s 3) and Bet v 1-homologue- and pathogenesis-related protein PR-10
(Can s 5). Interestingly, we did not identify peptides for the oxygen-evolving enhancer
protein 2 (OEEP2; Can s 4)) in cannabis extract samples in all chemotypes and hemp. Since
allergic sensitization to cannabis can occur through multiple routes (inhalation, contact,
ingestion), we examined the broad distribution of putative allergens based on the route of
exposure (Figure 3 and Supplementary Table S1). The two putative contact allergens include
proteins homologous to glucose–methanol–choline (GMC) oxidoreductase N-domain-
containing protein (Mala s 12; skin yeast) and malate dehydrogenase (Mala f 4).
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2.3. Putative Airway Allergens of Cannabis

The primary route of consumption of cannabis continues to be the inhalation of
cannabis smoke. Further, in symptomatic exposure to cannabis, one major concern is the
exacerbation of underlying asthma. Consequently, allergens that are known to be sensitizers
in airways are likely to be important. We identified 18 putative cannabis allergens in our
LC-M/MS analysis that were previously reported as typical airway allergens (Figure 4 and
Supplementary Table S1). Among these are allergens that share homology with common
airway allergen sources, such as Dermatophagoides pteronyssius or D. farinae (house dust
mite) (tubulin α-chain, Der p 33; ferritin, Der p 30; SERPIN domain-containing protein, Der
f 27; Chitin-binding type-1 domain-containing protein, Der p 18). Some airway allergens
in cannabis share homology with other mites, such as ML domain-containing protein
and aldehyde dehydrogenase (Blo t 2 and Tyr p 35; storage mites), or grass allergens,
such as expansin (Cyn d 1; Bermuda grass), pectate lyase (Amb a 1; short ragweed) and
plastocyanin (Amb a 7; short ragweed). Other allergens include those with homology to
fungal allergens, such as catalase (Pen c 30; Penicillium), protein disulfide-isomerase (Alt
a 4; Alternaria), aldehyde dehydrogenase (Alt a 10; Alternaria), calreticulin (Pen ch 31;
Penicillium), transaldolase (Cla c 14; Cladosporium), peptidyl-prolyl isomerase (Asp f 11;
Aspergillus), cytochrome c-domain-containing protein (Cur l 3; Curvularia). Collectively,
our data indicate that cannabis contains allergens that share significant homology with
known allergens from other environmental sources. Further, peptides for putative cannabis
allergens relevant to airway exposure were detected in all chemotypes of cannabis and
in hemp. The two exceptions included the X8 domain-containing protein (hemp and Mx
varieties) and ML-domain-containing protein (B5 and V1-19 varieties).

2.4. Putative Food Allergens of Cannabis

The ingestion of cannabis is common and is typically consumed in the form of tea or an
ingredient in baked goods, and allergic reactions (including anaphylaxis) on the ingestion
of cannabis has been reported in the literature [14,15]. We identified peptides for 13 putative
food allergens in cannabis (Figure 5 and Supplementary Table S1), which include Germin-
like protein (Cit s 1; sweet orange), Chlorophyll a-b-binding, chloroplast (Api g 3; celery),
L-ascorbate peroxidase (Mus a 6; banana), β-fructofuranosidase (Sol a 12; tomato), cysteine
protease inhibitor (Sola t 3; potato), β-amylase (Tri a 17; wheat), (R)-mandelonitrile lyase
(Pru du 10; almond) and agglutinin domain-containing protein Tri a 18; wheat) peptides.
Other putative food allergens shared homology with common striped catfish allergens,
such as fructose-bisphosphate aldolase (Pan h 3), pyruvate kinase (Pan h 9), glucose-6-
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phosphate isomerase (Pan h 11) and lactate dehydrogenase (Pan h 10). Peptides for all
putative food allergens in cannabis were detected in all chemotypes and hemp.
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2.5. Putative Contact Allergens of Cannabis

Contact exposure to cannabis can occur in both recreational and occupational settings.
In LC-MS/MS analysis we identified two putative allergens in cannabis with homology to
known contact allergens identified in skin yeasts (Figure 6 and Supplementary Table S1).
These include malate dehydrogenase (Mala f 4) and GMC oxidoreductase N-domain-
containing protein (Mala s 12). While malate dehydrogenase peptides were identified
in all chemotypes of cannabis and hemp, peptides for GMC oxidoreductase N-domain
containing protein were detected only in Mx and V1-19 varieties.
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2.6. Putative Allergens of Cannabis with Capability to Sensitize through Multiple Routes

Some allergens have been previously reported to cause allergic reactions through mul-
tiple routes. Most putative allergens share homology to common and potent allergens from
birch (Betula verrucosa), latex (Hevea brasiliensis) and peanut (Arachis hypogea). Four al-
lergens have been previously known to act as airway and food allergens concomitantly and
include glyceraldehyde 3-phosphate dehydrogenase (Pan h 13 and Tri a 34), glutathione
transferase (Der p 8, Asc l 13), α-amylase (Der p 4, Hor v 16) and Bet v 1-domain-containing
protein (pathogenesis-related protein, PR-10) (Bet v 1, Ara h 8) (Figure 7 and Supplementary
Table S1). Some allergens have been previously reported as sensitizers through contact and
oral route and include endo-1,3(4)-beta-glucanase (Hev b 2, Mus a 5) and patatin (Sola t 1,
Hev b 7). While peptides for α-amylase were detected only in the B5 and V1-19 varieties of
cannabis, peptides for endo-1,3(4)-beta-glucanase were detected in hemp and B5 varieties.
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Five other allergens have been reported as sensitizers through all three routes and
include cyclophilin (peptidyl-prolyl cis-trans isomerase) (Ara h 18, Bet v 17 and Mala s 6),
thioredoxin domain-containing protein (Asp f 28, Mala s 13 and Tri a 15), superoxide
dismutase (Asp f 6, Hev b 10, Pis v 4). The validated allergens of cannabis, including
nonspecific lipid transfer protein (Can s 3) (with homology to Hev b 12, Amb a 6, Pru p 3)
and profilin (Can s 2) (with homology to Bet v 2, Hev b 8 and Ara h 5) were also detected
and are known to sensitize via multiple routes (Figure 8 and Supplementary Table S1).
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2.7. Additional Validation of Cannabis Allergens

Our LC-MS/MS analysis revealed the consistent expression of validated allergens of
cannabis in all chemotypes of cannabis and hemp tested in this study. Interestingly, the
major cannabis allergen nonspecific lipid transfer protein or Can s 3 evidently had one of
the highest LFQ intensities among all proteins detected in hemp. To determine the exact
concentration of Can s 3 allergen in hemp extracts, we used an ELISA assay [16] and were
able to measure ~1 µg of Can s 3 allergen in hemp samples, which translated to ~35 ng of
Can s 3 normalized to 1 µg of total hemp protein extract (Figure 9).
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3. Discussion

Our unbiased quantitative proteomics approach revealed the presence of at least
50 different proteins in cannabis that share homology with known allergens. Our analysis
also revealed that most proteins are consistently expressed in the distinct chemotypes of
cannabis. Most importantly, almost all allergens are expressed in hemp and the major aller-
gen of cannabis, Can s 3 (nonspecific lipid transfer protein or nsLTP), is highly expressed in
hemp. We were able to detect ~35 ng of Can s 3 per µg of hemp protein extract. Collectively,
our studies underscore the potential for hemp as a suitable representative to in clinical
diagnostics to establish type I hypersensitivity to cannabis proteins.

Our preliminary analysis of peptide acquisition and protein sequences from LC-
MS/MS revealed higher counts for hemp. Further, the total LFQ intensity was also very
high for hemp extracts. This could be possibly explained by the method used for generating
protein extracts compared to the method used for isolating proteins from the three different
chemotypes of cannabis (Mx, B5 and V1-19 strains).

While we detected almost 50 putative allergens in cannabis, we do not suggest that
all have relevance to allergic sensitization to cannabis. Eventually, the route of exposure
to cannabis may determine the relevance of one allergen over another. Allergens with the
ability to sensitize through multiple routes are likely to be important for further studies.
Indeed, Can s 2 (profilin), Can s 3 (nsLTP) and Can s 5 (Bet v 1-homolog) are all impor-
tant allergens of cannabis, and proteins belonging to these allergen families can sensitize
through more than one route. All three validated allergens were consistently detected in all
chemotypes and hemp extracts. However, we did not detect peptides for the fourth vali-
dated allergen from cannabis, the oxygen evolving enhancer protein 2 (OEEP2 or Can s 4),
across all strains tested in this study. One possibility is that OEEP2 might degrade under
reducing conditions that were used for generating protein extracts.

Five other putative cannabis allergens have been associated with exposure through
insect bites, and these include homologues of Api m 3 (purple acid hydrolase; honeybee),
Api m 9 (carboxypeptidase; honeybee), For t 1, (nonspecific serine/threonine protein kinase;
biting midge), For t 2 (eukaryotic translation initiation factor 3; biting midge) and Ves m 1
(phospholipase A1; yellowjacket). It is highly unlikely that putative allergens in cannabis
variants that share homology with these proteins are relevant to sensitization. However,
reports have emerged that cannabis injected via an intravenous route [17] could lead to
anaphylaxis.

One limitation of our study is the direct quantitative correlation of proteins identified
in hemp with other cannabis chemotypes. While we can secure hemp for research use
within our facility, accessibility to cannabis strains, particularly those containing >0.3% THC
are subjected to Schedule I restrictions. Nevertheless, our proteomics approach reveals that
relevant cannabis allergens are consistently expressed across distinct cannabis chemotypes.
Moreover, the major allergen of cannabis, the nonspecific lipid transfer protein Can s 3,
is expressed at high levels in hemp. Owing to the practical challenges of using cannabis
strains with >0.3% THC, hemp may serve as an ideal practical substitute for clinical testing.
More specifically, skin prick testing (a routine allergen sensitization testing) and allergen
challenge (inhalational or oral) with standardized hemp protein extracts may be essential
tools for determining allergic sensitization to cannabis in clinic.

4. Materials and Methods
4.1. Cannabis Strains

Cannabis sativa strains with distinct chemical profile were cultured at the National
Center for Natural Products Research at University of Mississippi. Three strains, including
a high tetrahydrocannabinol (THC) variety (Mx), a high cannabidiol (CBD) variety (V1-19)
and a mixed profile variety (B5) were grown using standard practices [18,19]. Hemp strain
(White CBG) was obtained from Groff North America Hemplex (Red Lion, PA, USA). The
strain is rich in cannabigerolic acid (CBGa; ~10%) with 0.108% THC (<0.3% cutoff for hemp
strains) and 0% CBD.



Int. J. Mol. Sci. 2023, 24, 13964 11 of 13

4.2. Protein Extraction

Protein extraction was performed using two different methods. For the 3 strains
Mx, V1-19 and B5, proteins were extracted from buds at the National Center for Natural
Product Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy at the
University of Mississippi, using the PierceTM Plant Total Protein Extraction Kit (Thermo
Fischer Scientific, Waltham, MA, USA) as per methodologies described previously [3].
Hemp protein extract was generated from buds by finely grinding buds using a mortar
and pestle. One gram of hemp bud extract was transferred into a 15 mL conical tube and
protein extraction buffer was performed under denaturing conditions using proprietary
methods developed by InBio Inc. (Charlottesville, VA, USA).

4.3. Protein Estimation

Total protein content in cannabis plant extracts was measured using the PierceTM
bicinchoninic acid (BCA) Protein Assay kit (Thermo Fisher Scientific), as per the manufac-
turer’s instructions. The serial dilution of cannabis protein samples and protein standards
(generated with bovine serum albumin, BSA) were plated onto a 96-well plate, mixed with
BCA working reagent solution mix and incubated at 37 ◦C for 30 min. Following incubation,
plates were cooled briefly at room temperature (RT) and colorimetric absorbance signal
was measured at 560 nm using a spectrophotometer. A standard curve was generated
using absorbance measures at 560 nm for BSA protein standards. Absorbance signals
measured for cannabis protein extracts was plotted on the standard curve to estimate
protein concentrations.

4.4. Sample Preparation and Nanoscale Tandem Mass Spectrometry (MS/MS)

Cannabis protein sample preparation for LC-MS/MS analysis was performed using
methods described previously [20]. All methods related to LC-MS/MS were performed
by MS Bioworks (Ann Arbor, MI). Briefly, protein samples were first precipitated in tricar-
boxylic acid (TCA). Pellets were resolubilized in buffer containing 8 M urea, 50 mM Tris
HCl, 150 mM NaCl, pH 8.0 and 1X Roche Complete Protease Inhibitor. Protein quantitation
was performed using Qubit assay (ThermoFisher Scientific) and samples were normalized
to the protein yield. The sample was digested overnight with trypsin (enzyme–substrate
ratio of 1:20) with gentle shaking. Next, samples were reduced for 1 h at RT in 12 mM
dithiothreitol (DTT) followed by alkylation for 1 h at RT in 15 mM iodoacetamide. Each
sample was acidified in formic acid and subjected to solid-phase extraction (SPE) on a
Waters µHLB C18 plate.

A total of 2 µg aliquot of samples was analyzed using a nano LC-MS/MS with a Waters
NanoAcquity HPLC system interfaced to a ThermoFisher Fusion Lumos. Peptides were
loaded on a trapping column and eluted over a 75 µm analytical column at 350 nL/min;
both columns were packed with Luna C18 resin (Phenomenex). A 4 h gradient was
employed. The mass spectrometer was operated in data-dependent mode, with MS and
MS/MS performed (3 s cycles) in the Orbitrap at 60,000 full width at half maximum (FWHM)
resolution and 15,000 FWHM resolution, respectively, with advanced peak determination
(APD) activated.

4.5. Data Processing and Analysis

Data were processed through the MaxQuant software v1.6.2.3 (www.maxquant.org
accessed on 23 June 2021). MS acquired data were recalibrated, and the data were filtered at
1% protein and peptide false discovery rate (FDR). LFQ Intensity was calculated from the
individual peptide peak areas (extracted ion chromatograms) that were scaled to a protein
value and then normalized between samples based on the total intensity per sample [21].
Data were saved on the Andromeda platform [22] using following criteria: enzyme—
trypsin; database—UniProt (Cannabis sativa); fixed modification—carbamidomethyl (C);
variable modifications—oxidation (M) and acetyl (protein N-terminal); and fragment
mass tolerance—20 ppm. MaxQuant settings were as follows: protein and peptide FDR—

www.maxquant.org
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0.01 FDR; minimum peptide length—7; minimum razor + unique peptides—1; minimum
unique peptides—0; minimum ratio count for LFQ—1; and secondary peptide setting—
TRUE. This was to account for two peptides co-transmitted and producing a compos-
ite product ion spectrum. Data were uploaded to Perseus v1.5.5.3 for data processing
and analysis.

4.6. Identification of Putative Allergens in Cannabis

The peptide scan on the UniProt Cannabis sativa database revealed accession number
identifiers (IDs) for cannabis proteins. Cannabis sativa sequence database scans revealed
protein sequences with multiple open reading frames (ORFs), resulting in multiple unique
protein accession IDs for some proteins. The protein lists for each cannabis chemotype and
hemp were examined individually in the World Health Organization and the International
Union of Immunological Societies (WHO/IUIS) allergen database to identify cannabis
proteins belonging to existing allergen families.
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