6-1-2019

Which Osteotomy for Osteonecrosis of the Femoral Head and Which Patient for the Osteotomy?

Young-Kyun Lee
Keoul National University Bundang Hospital

Beomseok Lee
Keoul National University Bundang Hospital

Javad Parvizi
Rothman Institute; Thomas Jefferson University, Javad.Parvizi@jefferson.edu

Yong-Chan Ha
Chung-Ang University College of Medicine

Kyung-Hoi Koo
Keoul National University Bundang Hospital

Let us know how access to this document benefits you

Follow this and additional works at: https://jdc.jefferson.edu/rothman_institute

Part of the [Orthopedics Commons](https://jdc.jefferson.edu/rothman_institute)

Recommended Citation

Lee, Young-Kyun; Lee, Beomseok; Parvizi, Javad; Ha, Yong-Chan; and Koo, Kyung-Hoi, "Which Osteotomy for Osteonecrosis of the Femoral Head and Which Patient for the Osteotomy?" (2019). _Rothman Institute_. Paper 113.

https://jdc.jefferson.edu/rothman_institute/113

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University’s Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Rothman Institute by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Femoral head osteonecrosis usually affects adults younger than 50 years and frequently leads to collapse and subsequent osteoarthritis of the hip.\(^1,2\) It is becoming more prevalent because of increasing use of steroids in the management of organ transplantation and adjuvant therapy for leukemia and other myelogenous diseases.\(^3-5\) This disease frequently necessitates total hip arthroplasty (THA).\(^6-8\)

As alternatives to THA, several osteotomies of the proximal femur have been introduced to preserve the hip joint.\(^9-11\) These techniques move the necrotic portion from the weight-bearing region to a non–weight-bearing region. Among them, transtrochanteric curved varus osteotomy (TCVO)\(^11\) and transtrochanteric rotational osteotomy (TRO)\(^9\) are well-known and popular in use.

In 1971, Nishio and Sugioka\(^11\) introduced TCVO (Fig. 1). In this procedure, a curved osteotomy is made between the greater and lesser trochanters. Then, the femoral head is rotated into a varus position. To obtain successful results of the osteotomy, the patient should be younger than 40 years and should have a body mass index of less than 24 kg/m\(^2\). The osteotomy should be performed in early stages of femoral head osteonecrosis before marked collapse of the femoral head. The patient should have a medium-size lesion and an enough viable bone to restore the intact articular surface and subchondral bone in the weight-bearing area.

Keywords: Osteotomy, Femur head necrosis

Received February 19, 2019; Accepted March 20, 2019
Young-Kyun Lee and Beomseok Lee contributed equally to this work as first authors.
Correspondence to: Kyung-Hoi Koo, MD
Department of Orthopedic Surgery, Seoul National University Bundang Hospital, 82 Gumi-ro 173-beon-gil, Bundang-gu, Seongnam 13620, Korea
Tel: +82-31-787-7194, Fax: +82-31-787-4056
E-mail: khkoo@snu.ac.kr

COMPARISON BETWEEN TCVO AND TRO

There is no randomized clinical trial comparing TCVO and TRO. Thus far, only one study retrospectively com-
pared these two osteotomies. Lee et al.15 compared 85 patients (91 hips) who were treated with TRO and 58 patients (65 hips) who were treated with TCVO. The TCVO patients had shorter operation time and less blood loss. Postoperative collapse developed in 26 TRO hips (28.6\%) and seven TCVO hips (10.8\%). Osteophyte developed in 34 TRO hips (37.4\%) and 13 TCVO hips (20\%). Fifteen TRO hips (16.5\%) and seven TCVO hips (10.8\%) underwent conversion THA. The survival rate at 9 years with an endpoint of radiographic collapse was 68.7\% in the TRO group and 84.7\% in the TCVO group. With conversion to THA as the endpoint, the survival rate was 82.2\% in the TRO group and 89.2\% in the TCVO group. Their comparison showed that TCVO was better than TRO in terms of operation time, the amount of blood loss, postoperative collapse, osteoarthritic change and postoperative survival.

There are several differences between the two osteotomies. In TRO, the greater trochanter should be osteotomized and the joint capsule should be circumferentially incised. Accordingly, TRO necessitates longer operation time and more bleeding. In TCVO, the head segment is simply rotated into varus by about 30\° in the coronal plane. However, in TRO, the femoral head is rotated anteriorly by 60\° to 90\° and varization is required.

The femoral head is not perfectly spherical but elliptical. The greater axis lies horizontally; that is, the radius of curvature along the meridian is greater than the radius of curvature along the equator. In the study of Hammond and Charnley,21 the mean difference of the two radiiuses was 1.7 mm. Therefore, the femoral head might become less congruous to the acetabulum after TRO than after TCVO. The mechanical simplicity and avoidance of cap-

INDICATION OF THE OSTEOTOMY

The reported results after the osteotomies were inconsistent.12-14,16-18,20 Inappropriate patient selection is a reason for poor outcomes after the osteotomy;16,20 to improve the success rate, more efficient selection of patients is mandatory. Patient’s age, body mass index, the preoperative stage of the disease, the size of the necrotic portion, and remaining viable portion of the femoral head are known factors affecting the result after the osteotomy.

Patient’s Age and Body Mass Index

Patient’s age and body mass index are factors that affect results after the osteotomy. In a previous study,22 secondary collapse was more frequent in patients who were aged > 40 years and whose body mass index was > 24 kg/m\(^2\). After the osteotomy, an intact bone is established in the weight-bearing region of the femoral head. Secondary collapse is a stress fracture of this newly-established intact portion, which is usually thin and beak-shaped. Age-related osteopenia develops by the age of 40 years and progresses afterwards.23 In patients with high body mass index, an excessive load is applied on the femoral head, which leads to a stress fracture and secondary collapse of the newly formed weight-bearing portion.

Stage of the Disease

Osteotomies should be performed in the early stages of the disease before marked collapse of the femoral head: Ficat stage IIB (a crescentic subchondral fracture or slight flattening of the femoral head) or stage III (a definite head collapse without joint space narrowing).24,25
Size of Necrotic Portion
Small lesions do not progress even without any medical or surgical intervention, whereas hips with a large lesion preoperatively have subsequent collapse of the femoral head after the osteotomy. Thus, the osteotomies should be performed in medium-size lesions with a combined necrotic angle between 190° and 240° (Fig. 3), or type B lesions involving the medial two-thirds or less of the weight-bearing portion according to Japanese Investigation Committee (JIC) classification (Fig. 4). The extent of necrotic portion should be measured on magnetic resonance imaging (MRI) for the accurate measurement of the necrotic portion.

Fig. 3. The osteotomies should be performed in medium-size lesions with a combined necrotic angle between 190° and 240°.

Fig. 4. The osteotomies should be performed in type B lesions involving the medial two-thirds or less of the weight-bearing portion according to Japanese Investigation Committee classification.

Fig. 5. Adequate area of viable bone for transtrochanteric rotational osteotomy is an arc (B) of > 120° between the central vertical line of the femoral head and the posterior margin of the necrotic portion on a midsagittal magnetic resonance imaging scan.

Fig. 6. Adequate area of viable bone for transtrochanteric curved varus osteotomy is an arc (A) of > 150° between the central vertical line of the femoral head and the lateral margin of the necrotic portion on the midcoronal magnetic resonance imaging scan.
Viable Portion of the Femoral Head

The femoral head should have a viable portion of such a size that restoration of an adequate weight-bearing articular surface is possible after the osteotomy. The adequate area of viable bone for TRO is an arc of > 120° between the central vertical line of the femoral head and the posterior margin of the necrotic portion on a midsagittal MRI scan (Fig. 5), and that for TCVO is an arc of > 150° between the central vertical line of the femoral head and the lateral margin of the necrotic portion on a midcoronal MRI scan (Fig. 6).

CONCLUSIONS

We recommend the use of TCVO for the treatment of femoral head osteonecrosis in patients who have (1) hip pain, (2) age less than 40 years, (3) a body mass index less than 24 kg/m², (4) the Ficat stage IIA or III disease, (5) a medium-size lesion (combined necrotic angle between 190° and 240° or JIC type B lesion), and (6) enough viable bone (> 150° between the central vertical line and the lateral margin of the necrotic portion on the midcoronal MRI).

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

