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Mechanisms of immunological tolerance in central nervous 
system inflammatory demyelination

Elisabeth R. Mari, Jason N. Moore, Guang-Xian Zhang, and Abdolmohamad Rostami
Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Abstract

Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a 

disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune 

system. Given that central nervous system inflammation can be suppressed by various 

immunological tolerance mechanisms, immune tolerance has become a focus of research in the 

attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying 

this tolerance induction include induction of regulatory T cell populations, anergy and the 

induction of tolerogenic antigen-presenting cells. The intravenous administration of 

encephalitogenic peptides has been shown to suppress experimental autoimmune 

encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and 

inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting 

immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic 

mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell 

populations thereby weakening the pathogenic, pro-inflammatory cell populations.
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Introduction

Multiple sclerosis (MS) is a chronic, autoimmune disease of the central nervous system 

(CNS). It is primarily characterized by inflammatory damage to the myelin sheath and 

axonal degeneration, leading to neurological disability.1 Normal immune function in the 

CNS is characterized by a combination of pro- and anti-inflammatory signals. These signals 

become dysregulated by increased pro-inflammatory stimulus in MS, leading to local tissue 

damage and the formation of lesions. The underlying immune process is also thought to be 

heavily reliant on CD4+ T cells.2 MS pathology has been extensively studied using the 

animal model of experimental autoimmune encephalomyelitis (EAE). In this model, EAE 

can be actively induced with an injection of a myelin protein and complete Freund’s 

adjuvant, resulting in the production of pathogenic, myelin-specific T cells. These cells, 
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which have developed in the peripheral lymphoid organs, infiltrate the CNS. In the CNS, 

infiltrating autoreactive T helper (Th CD4+) cells encounter their cognate antigens presented 

by antigen-presenting cells (APC).3–11 The result is reactivation of CD4+ T cells, which, in 

turn, activate APC by cell–cell contact and pro-inflammatory cytokines. These pro-

inflammatory signals recruit immune cells, such as CD8+ T cells, macrophages/dendritic 

cells (DC), mast cells and activated microglia, which cause local tissue damage.7–10

It has been known for decades that inflammation in the CNS can be suppressed by various 

immunological tolerance mechanisms. Our laboratory, along with others, has established 

methods to elucidate these mechanisms, which include induction of regulatory T 

populations, immune deviation and induction of APC. These APC produce 

immunoregulatory cytokines, such as interleukin (IL)-10, transforming growth factor-β 

(TGF-β) and IL-27.9, 10 Immune tolerance can be induced in EAE by the administration of 

encephalotogenic antigens in a variety of tolerogenic forms and by various routes.12–14 In 

the present article, we review the key mechanisms underlying immune tolerance in MS and 

EAE, and their impact on future therapeutic intervention in these diseases.

Pathogenic Th1 and Th17 cells

A significant amount of MS research has been focused on CD4+ (Th) cells based on the 

hypothesis that they play a central role in CNS autoimmunity. In EAE animals, the immune 

responses that develop after immunization are largely governed by interferon-γ (IFN-γ)+ 

Th1 cells, which are the most abundant CD4+ T cells observed in the CNS of animals after 

immunization with myelin peptides.3, 15 Additionally, Th1, but not Th2 myelin-specific 

cells, were able to induce EAE when adoptively transferred into recipient mice.16, 17 

Furthermore, in MS relapse, elevated levels of Th1 cytokines have been observed in MS 

patients when compared with healthy controls, whereas Th2 cytokines are present during 

remission in MS patients.

EAE has been considered a typical Th1-mediated disease, but recent data show that Th17 

cells play an important role in the pathogenesis of EAE.18, 19 Studies by Harrington et al. 

and Wang et al. first described this lineage of Th cells that express the cytokine IL-17A and 

whose development is driven by IL-23.7,20 In CNS autoimmunity, immunization with 

myelin antigens induces the development of Th17 cells, and these myelin-specific cells 

traffic to the CNS, where they secrete IL-17A. IL-17A attracts various immune cells and, in 

particular, myeloid cells into the CNS, thus starting and propagating the inflammatory 

cascade.10, 21–25

There is evidence from MS patients supporting the pathogenic role of Th17 cells in disease 

development. These findings come from Tzartos et al., who found a relative increase in 

Th17 cells in the lesions of active MS patients when compared with healthy controls.26 In 

addition, Durelli et al. found a sevenfold increase in the fraction of Th17 cells in untreated 

patients with active MS compared with those with inactive MS and healthy controls.27 In 

contrast, the Th1 cell population was not always found to increase. They also found that 

treatment with interferon-β led to apoptosis in the Th17, but not the Th1 cell population, a 

finding that has been confirmed by other research groups.28 Suppression of these highly 
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pathogenic T cell subsets is crucial for long-lasting immune tolerance and attenuation of 

disease. Recent studies have shown that the newer MS agents, dimethyl fumarate and 

fingolimod, also decrease the population of Th17 cells.29, 30 However, the immune 

mechanisms used by these drugs to maintain suppression of pathogenic Th cell subsets have 

not yet been elucidated.

Regulatory T cells

Immune tolerance has increasingly become a focus in MS research. In EAE, the immune 

system can become tolerized to myelin-specific antigens and anti-inflammatory mediators 

that inhibit pro-inflammatory signals, reducing inflammatory stress. A key component in 

this system is regulatory T cells.

Regulatory CD4+CD25+ T cells (Tregs) are part of the CD4+CD25+ effector T cell 

population. They are distinguished from these cells by the expression of the forkhead/

winged helix family transcription factor forkhead box P3 (FoxP3), FR4 and constitutive 

expression of CTLA-4 (CD152).31–37 In mice, the lymphocyte activation gene-3 (LAG-3) is 

also constitutively expressed on the surface of Treg cells.38 In addition to the thymic-derived 

or “natural” (nTregs), Tregs can also be induced (iTregs) in the periphery. iTregs can be 

FoxP3+, but, under a variety of conditions, they develop in the periphery from conventional 

CD4+ T cells after antigen stimulation.39 T helper 3 (Th3) cells are a population of iTreg 

cells that produce larger amounts of TGF-β and occur primarily after exposure to antigen 

through the oral route.40 T regulatory 1 (Tr1) cells are a subset of iTregs, and are similar to 

nTregs in that they are both anergic in vitro and express CTLA-4. Induction of these cells 

can occur through stimulation by immature DC, in the presence of IL-10.41

Tregs are able to exert their suppressive effects on immune responses by limiting activation, 

proliferation and survival of various immune cells. These functions are exerted through 

direct cell–cell contact and cytokine production, and the depletion of Tregs in mice leads to 

autoimmunity.42, 43 This autoimmunity can be prevented by the administration of 

CD4+CD25+ T cells to newborn mice.43 In humans, a mutation in the FoxP3 gene causes 

immune dysregulation, polyendocrinopathy and enteropathy, and X-linked syndrome, which 

results in the early onset of one or more autoimmune diseases.44, 45

FoxP3+ Tregs in MS/EAE

A role for Tregs in the modulation of neuroinflammatory responses and maintenance of self-

tolerance is supported by both animal and human studies. In EAE, enhanced disease severity 

and mortality were observed when Tregs were depleted after treatment with anti-CD25 

antibodies.46 Adoptive transfer of Tregs into mice immunized with myelin oligodendrocyte 

glycoprotein (MOG) 35–55 conferred significant protection from EAE induction.47 In 

addition, the authors observed increased frequencies of MOG35–55-specific Th2 cells and 

decreased CNS infiltration.48 In a recent report, Joller et al. identified a subpopulation of 

Tregs that express a co-inhibitory molecule, TIGIT, which on ligation induced expression of 

the effector molecule fibrinogen-like protein 2, and induced Treg-cell mediated suppression 

of Th1 and Th17 cells.49 The aforementioned studies show that Tregs inhibit priming and 
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expansion of pathogenic Th1 and Th17 cells in the peripheral lymphoid organs, thus directly 

contributing to the maintenance of self-tolerance.

Studies of the peripheral blood from MS patients showed an important role for Tregs in 

disease pathogenesis. The Hafler group reported defects in the function, but not the 

frequency, of CD4+CD25high Treg populations in RR-MS patients.50 Using a coculture 

assay with circulating CD4+CD25high Tregs from relapsing–remitting MS (RR-MS) 

patients, they showed that these cells had a reduced capacity to suppress polyclonally 

activated CD4+CD25– conventional T cells.50 Hafler’s group and others have shown that 

this functional alteration in Treg suppression in MS patients is due to a reduced expression 

of FoxP3 at both the mRNA and protein level.51, 52 In addition, the Treg population in MS 

patients tends to have a lower proportion of newly generated cells from the thymus, as 

evidenced by a lower proportion of CD31+ and CD45RA+ cells, and a higher proportion of 

older, memory cells with the CD45RO+ phenotype.53, 54

Furthermore, these dysfunctional Tregs in MS patients cannot carry out the same 

suppressive functions as those in healthy individuals. Extracellular adenosine triphosphate 

(ATP) acts as a pro-inflammatory cytokine, which can induce the secretion of IL-1β and 

IL-23, and lead to increased production of pathogenic Th17 cells.55, 56 CD39 acts as an 

ectoenzyme and hydrolyzes ATP to adenosine monophosphate. Additionally, CD39+ Tregs 

have been shown to catabolize extracellular ATP, resulting in decreased secretion of these 

inflammatory cytokines and a smaller Th17 population.57 MS patients have decreased 

amounts of CD39+ Tregs when compared with healthy controls.55, 58 Recently, it has been 

shown that fingolimod is able to increase the proportion of FoxP3+ CD39+ Tregs within the 

CD4+ T cell population in patients with RR-MS.59

These alterations in Treg function might also be explained by a production of pro-

inflammatory cytokines. Studies by Dominquez-Villar et al. compared the Tregs in patients 

with untreated RR-MS with healthy controls, and found an increased proportion of IFN-γ 

producing Tregs in the patients, making these cells similar to pathogenic Th1 cells.60 These 

cells still expressed FoxP3, while also expressing the transcription factor TBET and 

CXCR3, both of which are usually expressed on Th1 cells.60 These Th1-like cells were also 

found to be less suppressive ex vivo. Many MS therapies have been shown to target the Treg 

population and to reverse the suppressive defects observed.61–63 Interferon β-1a and 

glatiramer, in particular, have been shown to expand the native Treg population in vivo and 

to partially restore their suppressive function.64, 65 The Hafler group also showed that 

treatment with IFN-β1a reduced the number of Tregs with the Th1-like phenotype.60

Despite the overwhelming evidence of the role of Tregs in the maintenance of self-tolerance 

in MS, their function in the CNS remains unclear. It has been previously shown that 

microglia can recruit Tregs into the CNS through the production of CCL22, which interacts 

with CCR4, expressed on the surface of Tregs.66, 67 In both active and passive models of 

EAE, an accumulation of Tregs in the CNS correlates with disease recovery, and Tregs from 

these animals suppressed MOG-specific T cell responses by limiting IFN-γ production.68, 69 

Studies by Korn et al. reported that Tregs accumulated in the inflamed CNS, but lacked 

suppressive capabilities because of the presence of IL-6 and TNF-α.70 Importantly, IL-6 
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signaling inhibits the conversion of conventional T cells into FoxP3+ Tregs in vivo.70, 71 

These results suggest that Tregs have a role in suppressing inflammation in the CNS, which 

is dependent on the local inflammatory setting and the effector T cell populations.

Type 1 regulatory T cells in MS and EAE

The highly immunosuppressive subset of iTregs, Tr1 cells, is believed to play a significant 

role in the maintenance of immunological tolerance.72, 73 Tr1 cells are a subset of regulatory 

cells in which FoxP3 and CD25 are not expressed. These cells can be generated in the 

absence of nTregs, suggesting that Tr1 cells might be developmentally distinct.74, 75 These 

cells are characterized by their secretion of high amounts of IL-10 and the expression of the 

newly defined cell surface markers, CD49b and LAG-3, which can be found on both human 

and murine cells.76 Tr1 cells have a low proliferative capability, but can expand in the 

presence of IL-2 and IL-15 because of high expression of these receptors after activation.77 

The main mechanisms of Tr1-mediated suppression are secretion of a high level of IL-10 

and the killing of APC by granzyme B.78, 79

Recently, the immunomodulatory cytokine, IL-27, has been identified as a differentiation 

factor for the generation of both human and murine IL-10-producing Tr1 cells.80–82 T cell 

activation in the presence of IL-27 induces the transcription factors c-Maf and the aryl 

hydrocarbon receptor. Activation of these transcription factors is crucial for the 

differentiation and secretion of IL-10 from developing Tr1 cells.83–85 Studies by Gandhi et 

al. have shown that aryl hydrocarbon receptor plays an important role in Tr1 differentiation 

in humans, and suggests that this could be a possible mechanism to target the generation of 

iTregs in autoimmune disease.86 Tr1 cells have also been shown to play a suppressive role 

in MS and EAE. In EAE, the transfer of in vitro generated OVA-specific Tr1 cells prevented 

the development of neurological symptoms when OVA peptide was injected 

intracranially.75 In EAE, the in vivo induction of Tr1 cells was achieved using soluble 

myelin basic protein (MBP) p87–99, which reversed ongoing disease in rats immunized with 

MBP.87

In MS patients, Astier et al. showed that Tr1 cells isolated from these patients had impaired 

IL-10 production when compared with healthy controls. Although Tr1 cells were impaired, 

the levels of IFN-γ production remained consistent.88, 89 Additionally, Martinez-Forero et 

al. found that IL-10-mediated suppressive effects of Tr1 cells were reduced in ex vivo 

samples isolated from MS patients.90 Taken together, these studies suggest that Tr1 cells 

might play a protective role in MS.88

DCs and IL-27 in immune tolerance induction

DC prime T cells for inflammatory responses, but these cells can have a dual role and also 

promote the development of tolerance. Evidence supporting this dual role comes from 

studies in which DC were completely ablated, which resulted in fatal autoimmunity.91 To 

further support their tolerogenic role, Yamazaki et al. showed that DC can induce expansion 

of the CD25+ CD4+ T cell population;92 in addition, Darrassee-Jeze et al. showed that a 

decrease in DC leads to a decrease in Tregs.93 iDC, which have low expression of major 
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histocompatibility class II and costimulatory molecules, are able to induce tolerance through 

T cell anergy.93

One of the main mechanisms by which DC contribute to tolerance induction is through the 

induction of Tregs. This process is dependent on TGF-β, and absence of this cytokine has 

been shown to reduce the ability of DC to stimulate a pathogenic response from T cells.94 In 

EAE, the absence of TGF-β resulted in more severe EAE in mice. In addition, DC were able 

to stimulate the expansion of Foxp3+ Tregs in the presence of TGF-β and retinoic acid. 

When these TGF-β-induced Tregs were expanded and separated, they were able to suppress 

EAE.95

DC also exert some of their tolerogenic effect through the immunomodulatory cytokine, 

IL-27, a member of the IL-12 family of cytokines. IL-27 is composed of EBV-induced 

molecule 3 (EBI3), an IL-12p40 homolog, and p28, an IL-12p35 homolog, which non-

covalently associate with EBI3, with its main sources of IL-27 being DC and 

macrophages.96 The IL-27 receptor is composed of WSX1 and gp130 (a part of the IL-6 

receptor complex)97,98, and signaling through IL-27 receptors results in phosphorylation of 

Jak and Stat proteins, including Jak1, Jak2, Tyk2, Stat1, Stat3, Stat4 and Stat5.99–102

Initially, IL-27 was thought only to promote Th1 cell differentiation99, but studies have 

shown that this cytokine plays a crucial role in limiting Th17 cell differentiation by 

suppressing RORγt, a key transcription factor for Th17 cells.103 Mice deficient in IL-27 

signaling, either EBI3 or WSX, have increased IL-17 and are more susceptible to 

EAE.103, 104 Data from our laboratory show that IL-27 has a suppressive effect on 

encephalitogenic Th17 cells and the effector phase of EAE.105 The suppression of Th17 

cells and EAE by IL-27 is associated with IL-27-induced production of IL-10 in T cells, 

including Th1 but not Th17 cells.81 IL-27 induction of the IL-10-producing 

immunosuppressive Tr1 cell subset is STAT1- and STAT3-dependent, and induces the 

transcription factor, c-maf, which can in turn activate IL-21 production by T cells.99 Along 

with IL-21, IL-27 can also induce upregulation of IL-21 receptor, which can act in an 

autocrine manner to promote Tr1 cell growth and differentiation.82 Xu et al. showed that in 

the absence of IL-21 signaling in T cells, IL-27 driven generation of Tr1 cells and IL-10 

cytokine production is inhibited.106 However, IL-27 alone can increase IL-10 production for 

only a limited period of time. Studies by Awasthi et al. showed that simultaneous 

stimulation with IL-27 and TGF-β caused a long-lasting production of IL-10 by T cells.80

Because of the significant immunomodulatory properties of IL-27, it is thought to have a 

therapeutic potential in MS. Fitzgerald et al. showed that exogenous IL-27 could reduce the 

severity of EAE when delivered by subcutaneous osmotic pump. IL-27 reduced infiltration 

of Th17 cells into the CNS and inhibited IL-17A production by myelin-specific T cells.105 A 

recent study by Mascanfioni et al. showed that IL-27 signaling in DC upregulates CD39 

expression and limits EAE severity by reducing the extracellular levels of ATP. They 

showed that these IL-27-conditioned DC can suppress EAE when administered i.v. in a 

chronic EAE model.107 These studies show the variety of potential therapeutic uses for 

IL-27.
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Mediators of tolerance

I.v. tolerance

In EAE, antigen-specific tolerance can be achieved by i.v. administration of 

encephalitogenic antigens.108 Treatment of CD4+ T cells with antigen has been shown to 

reduce the production of cytokines and decrease the extent of their antigen-specific 

proliferation.108, 109 This is augmented by multiple treatments with antigen, especially for 

memory T cells, which might not be fully suppressed on interaction with only one round of 

antigen.110 Induction of i.v. tolerance is associated with the disappearance of transgene-

positive T cells from peripheral lymphoid tissues.110 In an adoptive transfer model of EAE, 

multiple i.v. injections of MBP to recipient mice after transfer of MBP-specific TCR 

transgenic T cells prevented disease.111 Administering antigen i.v. is more effective in 

inducing tolerance after disease onset when compared with mucosal routes.112, 113

Antigen-specific tolerance is produced by a multifactorial mechanism. Mechanisms of 

tolerance induction include clonal deletion, anergy, induction of regulatory T cell 

populations and upregulation of CTLA-4.12–14,108,114,115 Induction of i.v. tolerance is 

associated with the disappearance of transgene-positive T cells from peripheral lymphoid 

tissues. Our group has shown that i.v. injection of the myelin autoantigen suppressed 

antigen-specific Th1 and Th17 responses, and induced nTregs and IL-10-producing Tr1 

cells (Figure 1).116,117 Li et al. discovered that i.v. tolerized mice had increased proportions 

of tolerogenic DC in their spleens and CNS. When these DC were transferred into recipient 

mice with ongoing EAE, they were able to suppress disease by inhibiting MOG35–55-

specific T cell proliferation, and by inducing nTregs and the regulatory cytokines, IL-10 and 

IL-27.117

I.v. tolerance is currently being explored as a potential therapeutic for the treatment of MS. 

Common methods of introducing antigen i.v. include using a soluble peptide or linking the 

peptide to splenocytes or microparticles. However, the use of soluble peptide i.v. carries the 

risk of an anaphylactic reaction, which has been shown to develop in several strains of 

mice.118 The administration of antigen-coupled splenocytes or microparticles is not known 

to cause these types of reaction and thus provides a safer method of peptide delivery.

Antigens of interest can be coupled to splenocytes using 1-ethyl-3-(3-

dimethylaminopropyl)-carbodimide.119 Infusion of these antigen-linked splenocyctes has 

been shown to induce the rapid production of IL-10 and TGF-β, leading to anergy of 

pathogenic T cells and the induction of Tregs.119, 120 It is thought that antigen-linked 

splenocyctes undergo rapid apoptosis after i.v. infusion, and this apoptotic debris is taken up 

by marginal zone macrophages, leading to the production of IL-10.121 Additionally, the 

antigen-linked splenocyctes might interact directly with autoreactive T cells, leading to 

anergy.

Recently, Lutterotti et al. examined these principles of tolerance in a translational phase 1 

trial in human subjects.122 They studied nine patients with RR-MS or secondary progressive 

MS who were reactive to one of seven myelin proteins. For this trial, they administered a 

one-dose cocktail of myelin proteins, chemically coupled to the patients’ own peripheral 
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blood mononuclear cells. They studied escalating doses from 1 × 103 and 3 × 109 peripheral 

blood mononuclear cells, and patients were observed over a 3-month period post-infusion. 

The primary purpose of the study was to establish feasibility, safety and tolerability of this 

regimen, which, overall, proved to be feasible, with generally mild side-effects. At higher 

doses, the study authors noted a decrease in T cell response to the myelin proteins indicative 

of successful tolerization.

The production and storage of leukocytes is, however, expensive and problematic. In a 

recent study, Getts et al. developed a new method of i.v. tolerance induction by covalently 

coupling myelin-specific antigens to biodegradable microparticles.119 These microparticles 

were made of a relatively inexpensive polystyrene or poly(lactide-co-glycolide) measuring 

500 nm in diameter. The antigen-linked particles were then i.v. injected into mice suffering 

from relapsing EAE, leading to significant amelioration of clinical disease.119 These 

antigen-coupled microparticles suppressed Th1 and Th17 cell proliferation, and the primary 

mechanism of tolerance induction observed was T cell anergy. Hunter et al. continued this 

line of research, and found that i.v. administration of antigen-linked nanoparticles led to 

amelioration of disease.123 These studies highlight the potential therapeutic uses of antigen-

specific i.v. tolerance for the treatment of MS.

Galectin-1

The role of lectin-binding proteins and tolerance induction in autoimmunity is an emerging 

field. It has been observed that galectin-1, a member of the β-galactosidase binding protein 

family, plays an important immunoregulatory role in EAE.124, 125 Galectin-1 is synthesized 

and secreted by nTregs and iTregs, as well as by activated B cells and T cells, inflammatory 

macrophages, and decidual natural killer cells, and it is upregulated on TCR 

activation.126, 127 Mice deficient in galectin-1 have augmented Th1 and Th17 responses, and 

are more susceptible to autoimmune diseases and immune-mediated fetal rejection when 

compared with wild-type mice.125

Ilarregui et al. showed that galectin-1 significantly increased the development of Tr1 cells in 

vitro through the generation of tolerogenic DC.124 These tolerogenic DC produce IL-27, 

which acts on T cells and promotes their IL-10 production. Additionally, treatment of naïve 

T cells with recombinant mouse galectin-1 induced Tr1 cells, which were able to suppress 

Th1- and Th17-mediated inflammation.124 Galectin-1 is upregulated in Treg cells on TCR 

activation, and blockade of galectin-1 binding reduces inhibitory activity of human and 

mouse Tregs.128–130

Conclusions

MS is a complex disease with the involvement of multiple pathways that can lead to CNS 

inflammation. Studies on the primary pathogenic (Th1/Th17) and the tolerogenic (Treg/Tr1/

IL-27-producing) mechanisms used to combat these pathogenic responses have considerably 

enhanced our knowledge of disease pathogenesis. By continuing to study their underlying 

mechanisms, we can further understand the complex balance these cells must maintain to 

preserve homeostasis in the healthy individual.
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There is evidence that the currently established medications for MS work, at least in part, by 

using these tolerogenic mechanisms. Recent findings have shown the potential therapeutic 

uses of tolerogenic cells and antigen-coupled nanoparticles to treat EAE and MS. By 

continuing to explore this field of research, we should be able to develop improved 

therapeutic interventions that better target the underlying dysfunction, potentially resulting 

in more effective therapy and with fewer adverse events. In short, induction of these 

tolerogenic immune cell subsets can help to direct the future of MS therapeutics.
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Figure 1. 
Myelin oligodendrocyte glycoprotein (MOG35–55) i.v. inhibited the development of 

experimental autoimmune encephalomyelitis (EAE). EAE was induced in C57BL/6 mice by 

immunization with MOG35–55/CFA, and pertussis toxin was given on days 0 and 2. At days 

0, 3 and 6 p.i., mice were i.v. injected with 200 μg MOG35–55 to induce tolerance with the 

same volume of phosphate-buffered saline (PBS) to serve as control. (a) Daily clinical 

scores of each mouse group (10 mice each group; P < 0.01). (b) Splenocytes in duplicate 

from mice in (a) were isolated at day 21 p.i., and cultured with 10 μg/mL MOG35–55 for 72 

h. Production of interleukin (IL)-17, interferon (IFN)-γ, IL-27p28 and IL-10 in supernatants 

was analyzed by enzyme-linked immunosorbent assay. Data were pooled from two 

independent experiments and presented as mean value ± SEM (n = 10). *P < 0.05, **P < 

0.01, ***P < 0.001.
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