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Abstract: Ventricular wall stress (WS) is an important hemodynamic parameter to represent myocar-
dial oxygen demand and ventricular workload. The normalization of WS is regarded as a physi-
ological feedback signal that regulates the rate and extent of ventricular hypertrophy to maintain
myocardial homeostasis. Although hypertrophy is an adaptive response to increased biomechanical
stress, persistent hypertrophic stimulation forces the stressed myocardium into a progressive mal-
adaptive process called ventricular remodeling, consisting of ventricular dilatation and dysfunction
in conjunction with the development of myocyte hypertrophy, apoptosis, and fibrosis. The critical
determinant of this pathological transition is not fully understood, but an energetic mismatch due
to uncontrolled WS is thought to be a central mechanism. Despite extensive basic investigations
conducted to understand the complex signaling pathways involved in this maladaptive process,
clinical diagnostic studies that translate these molecular and cellular changes are relatively limited.
Echocardiographic assessment with or without direct measurement of left ventricular pressure used
to be a mainstay in estimating ventricular WS in clinical medicine, but in recent years more and more
noninvasive applications with magnetic resonance imaging have been studied. In this review article,
basic clinical applications of WS assessment are discussed to help understand the progression of
ventricular remodeling.

Keywords: remodeling; heart failure; hypertrophy; maladaptive transition; echocardiogram; mag-
netic resonance imaging

1. Ventricular Remodeling as a Dynamic, Pathological Process Leading to
Symptomatic Heart Failure

Heart failure is a progressive lethal disease that is a major cause of morbidity and
mortality in the modern world [1]. Ventricular myocardium possesses a dynamic compen-
satory capacity to maintain necessary oxygen delivery to the peripheral tissues. Myocardial
hypertrophy initially develops as a protective and adaptive growth mechanism in response
to increased ventricular workload and/or a decrease in intrinsic myocardial function, but
the disruption of this regulatory adaptational process can result in maladaptive remodeling
responsible for progressive hemodynamic deterioration [2–4]. It is thus essential to eluci-
date the underlying regulatory mechanisms that protect the myocardium from developing
pathological transition [5–9].

Ventricular remodeling refers to a maladaptive pathological process consisting of
progressive myocardial hypertrophy, fibrosis, and myocyte cell death in conjunction with
ventricular dysfunction and dilatation [2–10]. Historically, ventricular remodeling follow-
ing myocardial infarction, which not only involves ischemic myocardium but also remote
nonischemic myocardium, leading to hemodynamic deterioration and symptomatic heart
failure, has been studied extensively [11–13]. A complex series of transcriptional, signaling,

J. Cardiovasc. Dev. Dis. 2021, 8, 122. https://doi.org/10.3390/jcdd8100122 https://www.mdpi.com/journal/jcdd

https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://doi.org/10.3390/jcdd8100122
https://doi.org/10.3390/jcdd8100122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcdd8100122
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd8100122?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2021, 8, 122 2 of 11

neurohormonal, structural, electrophysiological, and functional events occur within the
cardiac myocytes as well as in the extracellular matrix [2,7–9]. Weber et al. summarized
this transition into three phases in the pressure-overloaded myocardium. In a first evolu-
tionary phase, the myocardium shows initial adaptational responses with preserved pump
function and oxygen delivery. The second physiologic phase is characterized by reversible
structural and biochemical remodeling within a coordinated balance. This is followed by a
pathologic phase that is progressive and irreversible with compromised pump function
and oxygen delivery [14]. Thus, the assessment of myocardial deformation is an essential
determinant in understanding the progression of ventricular remodeling (Figure 1).
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Figure 1. A sequence of ventricular remodeling in post-myocardial infarction (post-MI) (A) and persistent pressure overload
(B) models from compensatory (evolutionary and physiologic) to maladaptive (pathologic) stages. During the compensatory
stage, the ventricular myocardium undergoes initial morphological and biochemical changes (compensatory responses) to
maintain necessary cardiac output and to regulate myocardial oxygen demand under control. A pathologic transition into
an irreversible and progressive stage may occur when the regulatory capacity of myocardial oxygen demand is disrupted.
LVEDV = left ventricular end-diastolic volume; MI = myocardial infarction.

Initial myocardial deformation or persistent stretching of the myocyte activates a
complex set of signaling pathways mainly mediated by a stretch sensor integrin, many of
which appear to enhance the hypertrophic response either by autocrine/paracrine factors
(angiotensin II, interleukin-6 family, insulin growth factor-1, and possibly endothelin-1)
or direct activation of the ion channels, Na+/H+ exchanger, or heterotrimeric G proteins
of the Gq and Gi class [15]. Initial ventricular geometric changes, hypertrophy, and
chamber dilatation are implemented primarily to maintain cardiac output and to normalize
the increased myocardial oxygen demand. However, unresolved myocardial energetic
abnormality continues to activate these signaling pathways, resulting in progressive and
irreversible ventricular remodeling responsible for congestive heart failure. To understand
the progression of ventricular remodeling, it is critical to reliably assess the degree of
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myocardial stretch or deformation. Wall stress (WS) is an important physiological marker
that represents the mechanical and geometric changes in the ventricular myocardium.

2. Physiological Significance of Ventricular Wall Stress

Early recognition and assessment of subclinical ventricular geometric changes are
essential in identifying the progression of ventricular remodeling. Increased ventricular
volume, hypertrophy, decreased ventricular function, and increased systolic WS are com-
mon parameters used to measure the overall ventricular performance and severity of the
myocardial disease [16,17]. Systolic WS not only represents the ventricular afterload status
against which the myocardium has to work to pump out blood, but also elucidates the
degree of myocardial deformation reflecting a combination of primary disease processes
and secondary compensatory responses [10].

Physiological significance of WS stems from the following: (1) myocardial WS is one of
the primary determinants of myocardial oxygen consumption [18–20]; (2) normalization of
WS is thought to be a physiological feedback signal that regulates the hypertrophic response
to minimize an excessive workload on the ventricular myocardium [4]; and (3) interactions
between WS, geometric changes, and energetic outcome consist of a fundamental process
in understanding ventricular mechanics [21]. When ventricular cavity size enlarges after
myocardial infarction or left ventricular (LV) pressure increases with persistent pressure
overload (PO), the ventricular myocardium undergoes eccentric or concentric hypertrophy,
respectively, to normalize WS in order to minimize the increase in myocardial oxygen de-
mand. As long as the oxygen supply and demand balance in the myocardium is controlled,
the ventricular myocardium can maintain an ordinary cardiac output without pathologic
transition. Once this balance is jeopardized, the progressive pathologic remodeling pro-
ceeds with hemodynamic deterioration and symptomatic congestive heart failure (see
Figure 1). However, activation of stretch-induced signaling pathways induces pathological
transformation of the myocardial tissue, including myocyte hypertrophy, apoptosis, and
extracellular matrix changes (fibrosis), even in subclinical stages when the cardiac output is
still preserved [15,22,23]. It is critical to identify this early phase of ventricular remodeling.

3. Transition for Compensatory Hypertrophy to Maladaptive Remodeling: Is
Compensatory Hypertrophy Always Benign?

Early pioneering work by Grossman et al. proposed a stress-adaptation hypothesis
in which increased ventricular wall thickness is induced by an adaptive response based
on the law of Laplace [24]. Although conventional WS theory supports the physiological
need of hypertrophy that primarily normalizes the increased WS, the development of
compensatory hypertrophy in response to increased biomechanical stress (e.g., chronic PO)
may not always be an adaptive physiological response [25]. Comprehensive review articles
discussing the mechanisms of physiological and pathological cardiac hypertrophy are
found elsewhere [9,26]. Gene expressions and signaling pathways noted in physiological
hypertrophy and maladaptive remodeling commonly differ (cell growth, cell survival,
fatty acid oxidation, and mitochondrial biogenesis vs. inflammation, apoptosis, fibrosis,
glycolysis, and fetal isoforms), and some are involved in both physiological and patho-
logical processes [25]. Pathological transition is characterized by further activation of the
neurohormonal and cytokine system and consequent microscopic myocardial changes at
cellular and tissue levels, including fibrosis and apoptosis [26]. However, the distinction
between benign compensatory hypertrophy and pathological maladaptive remodeling is
not always clear [27].

Pure physiological or compensatory hypertrophy is seen in physical growth and
maturation, athletes (exercise-induced hypertrophy), and during pregnancy. Echocardio-
graphic assessment of LV myocardial mass in children up to age 12 revealed an incremental
increase of LV mass with age, independent of sex [28]. Exercise-induced cardiac adap-
tation, especially eccentric hypertrophy in response to high-level endurance training, is
regarded as a benign and favorable response that augments ventricular stroke volume,
cardiac output, and aerobic fitness [29,30]. Among elite athletes, incomplete resolution
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of the LV cavity enlargement was observed in 22%, even after 5 years of the cessation of
training, suggesting that permanent myocardial damage can occur as a consequence of
prolonged training [31]. The heart undergoes modest eccentric hypertrophy in response
to sustained volume overload during the second and third trimester of pregnancy, which
reverses spontaneously after delivery [32]. This physiological hypertrophy is induced by
volume overload, concomitant myocardial stretch, and changes in sex hormones (estrogen)
via multiple hypertrophy-related signaling pathways [33]. Even with these physiological
hypertrophies, however, pathological transition can occur. Rarely, patients can develop
dilated cardiomyopathy late in the pregnancy or early in the puerperium, designated as
peripartum cardiomyopathy, the etiology of which remains largely unknown [34].

The presence of hypertrophy is widely known as a major risk factor for increased
cardiovascular morbidity and mortality in adulthood [35–38], implying that physiolog-
ical hypertrophy may not always be a benign adaptation. Two groups challenged the
longstanding hypothesis that compensatory hypertrophy acts to maintain normal cardiac
function by normalizing WS. Hill et al. demonstrated that the abolition of the hypertrophic
response to PO by inhibiting calcineurin with cyclosporin A prevented LV hypertrophy and
attenuated LV decompensation [39]. A similar observation was reported by Esposito et al.
who proved that the development of hypertrophy and normalization of WS may not be
necessary to preserve cardiac function by using genetically engineered mice and their wild
type (WT) controls in a PO model [40]. On the contrary, PO-induced hypertrophied WT
mice showed progressive deterioration in cardiac function and LV chamber enlargement.
These findings suggest that PO-induced hypertrophy is not always required to preserve
ventricular performance. A sustained PO is often due to a mixed stimulus that produces
both beneficial and adverse maladaptive remodeling simultaneously, by which the WS
correction theory does not always apply [27] (Figure 2). Further research is warranted to
delineate this complex biological response to PO.
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Figure 2. Transition from the compensatory to maladaptive stage in ventricular remodeling. (A) After myocardial
stress or injury, ventricular myocardium is exposed to both (a) pathological changes and (b) cardioprotective responses.
(B) Progression of ventricular remodeling may be presented as net effects of (a) pathological changes and (b) cardioprotective
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responses. Thus, ventricular dysfunction may be masked by initial compensatory cardioprotective responses (hypertrophy)
despite activation of the multiple maladaptive signaling pathways induced by persistent abnormal myocardial stretch or
biomechanical stretch. The net outcome between maladaptive and cardioprotective responses may determine the overall
ventricular dysfunction and systemic perfusion. It is plausible that pathological alteration is already initiated in the early
phase and that the maladaptive phase commences when compensatory responses fail to normalize wall stress (Figure 1).

4. Clinical Significance of Ventricular Wall Stress

Quantification of ventricular WS is important as increased WS plays an integral role
in understanding the development and progression of LV remodeling. Ventricular WS is
estimated according to Laplace’s law, where the heart is modeled by a sphere using the
formula below (P: pressure, r: radius, h: wall thickness).

WS = P·r/h

Sandler and Dodge [41] approximated LV as a thin-walled ellipsoid and derived the
formula into that shown below.

WS = P·r2/h·(2r + h)

Originally, WS was obtained through simultaneous measurement of LV pressure by
cardiac catheterization and echocardiographic measurement of LV dimensions [24,42].
Later, systolic blood pressure by cuff measurement was proven to be a reliable surrogate
of peak LV pressure, and this enabled us to calculate WS noninvasively with echocardio-
graphic measurement and simultaneous cuff blood pressure measurement [42,43]. Reichek
et al. showed a close correlation between invasively measured end-systolic LV pressure
and noninvasive cuff systolic pressure (noninvasive P = 1.07·end-systolic P + 0.8 mmHg;
r = 0.89) and demonstrated that LV end-systolic WS reliably represents LV afterload, which
was negatively correlated with LV systolic function [42]. Douglas et al. reported substantial
differences in WS measurement between M-mode meridional, two-dimensional merid-
ional, and two-dimensional circumferential stresses [44]. Greim et al. showed an excellent
correlation between end-systolic pressure-area product (obtained by the end-systolic cavity
area in a two-dimensional echocardiogram multiplied by systolic arterial pressure) and
end-systolic WS and proposed that end-systolic pressure-area product may be used as an
alternative reliable method to assess LV WS [45]. In a strict sense, end-systolic WS and
peak-systolic WS have different definitions and values [46–48]. However, other studies
indicate that these two WS are comparable [49–51], supporting the validity of using cuff-
measured systolic blood pressure measurement as a surrogate of end-systolic pressure to
estimate end-systolic WS.

End-systolic WS primarily represents afterload status, but its clinical applications are
multifold. Colan et al. validated an excellent inverse relationship between peak-systolic
WS and the heart rate-corrected velocity of circumferential fiber shortening (Vcf) in healthy
patients, and demonstrated that a slope of the regression line of the two represents contrac-
tile reserve independent of preload [52]. Fontanet et al. applied this principle to patients
with and without left ventricular hypertrophy (LVH), and revealed that patients with LVH
were characterized by a decreased contractile state and increased end-systolic WS at the
baseline and a blunted myocardial contractile state in response to dobutamine stimulation.
The end-systolic WS-Vcf regression line with dobutamine stimulation illustrates an intrin-
sic myocardial contractile reserve [49]. This specific relationship has been proven to be
sensitive to a pharmacologically-induced inotropic state independent of loading condition
in an animal model [53]. The relative wellness of the LV myocardium has been illustrated
by normal end-systolic WS. Lamers et al. investigated the end-systolic WS-Vcf relationship
in children with sickle cell disease (age 9.4 ± 4.1 years) who were subject to an abnormal
loading condition due to chronic anemia, and found that children with sickle cell disease
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had reduced myocardial contractility, suggesting a masked myocardial abnormality in this
population [54].

In 56 adult patients with asymptomatic chronic aortic insufficiency, Greenberg et al.
demonstrated a decline in LV ejection fraction with exercise in those who had increased
end-systolic WS, consistent with an early manifestation of the deterioration of LV systolic
function. The authors postulated that a lack of adequate hypertrophy to normalize WS
may have resulted in a loss of the compensatory mechanism, which caused a decline in the
ejection fraction during exercise [55]. Haykowsky et al. showed that there was no increase
in end-systolic WS through a brief heavy leg-press exercise in healthy trained athletes, but
there was a 28% increase in sedentary subjects. Attenuated end-systolic WS in athletes was
explained by an acute increase in LV wall thickness accompanied by a decline in the LV
cavity dimensions [56]. Myocardial oxygen consumption did not change with resistance
exercise in healthy trained individuals. Stable end-systolic WS may indicate a relatively
healthy myocardium still within a compensatory phase.

By using speckle-tracking and other advanced echocardiographic technologies in
otherwise asymptomatic middle-aged adults, Chirinos and colleagues studied early and
late systolic WS in association with echocardiographic parameters of systolic and dias-
tolic LV function. They demonstrated that early systolic WS is associated with a greater
longitudinal systolic function and early diastolic relaxation, whereas late systolic WS was
independently associated with early diastolic relaxation and decreased longitudinal sys-
tolic function, suggesting the role of time-varying myocardial afterload as a determinant of
myocardial relaxation [57]. Regional and global myocardial strain can be quantitatively
assessed through the motion of speckles identified on routine two-dimensional images
representing myocardial deformation and more specific ventricular dynamics less depen-
dent on the loading conditions [58]. The relationship between global strain obtained by
speckle-tracking imaging and WS was investigated by Hurlburt et al., who demonstrated a
modest but statistically significant inverse relationship between strain and end-systolic WS
(r = −0.29; p < 0.05) in 60 healthy adult volunteers [59]. This relationship was supported
by another group, suggesting that LV stain is, in part, dependent on afterload, and that
myocardial systolic function should be evaluated based on the relationship between strain
and WS [60].

5. Noninvasive Measurement of Wall Stress as a Biomarker for Ventricular
Remodeling

Ventricular WS has been studied in conjunction with the development and progression
of ventricular remodeling. In an experimental post-myocardial infarction model, increased
WS was closely associated with geometric changes in LV, including volume and infarct
area [13,23]. The degree of myocyte apoptosis was shown to be closely correlated with
LV systolic WS in patients with severe dilated cardiomyopathy [61]. Rohde et al. showed
progressive increase in regional end-systolic WS in experimental post-myocardial infarc-
tion that was associated with increased extracellular matrix remodeling indicated by the
immune-expression of matrix metalloproteinase-9 protein and macrophage infiltrate in a rat
model [62]. In 40 symptomatic patients with aortic stenosis, Vanderheyden et al. reported
that the plasma B type natriuretic peptide (BNP) level was correlated with both systolic and
diastolic WS, not with systolic function, suggesting that BNP may be an excellent screening
tool for LV diastolic dysfunction in patients with pressure overload cardiomyopathy and
normal systolic function [63]. A similar finding was noted in patients with chronic heart
failure, where the plasma BNP showed a closer correlation with end-diastolic WS than any
other hemodynamic parameters including systolic WS [64].

Dong et al. introduced a novel concept of integrated wall stress (IWS), which reflected
the entire workload sensed by the LV myocardium. They proposed that IWS is a more
responsible physiological marker for total LV afterload than one-point measurement of WS.
Unchanged IWS with dobutamine stimulation was noted in normal mice, whereas IWS
was significantly increased in post-myocardial infarction mice with dobutamine. There
was a good correlation between IWS (equivalent to average WS) and a product of peak
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systolic WS and heart rate (r = 0.70), postulating that a product of peak systolic WS-heart
rate serves as a feasible marker for LV workload [65]. Similarly, Devereux and colleagues
demonstrated that a product of LV mass, WS, and heart rate correlated well with myocardial
oxygen demand in adult patients with hypertension, and was associated with higher rates
of myocardial infarction and cardiovascular mortality [66]. The same principal was also
studied in patients with aortic stenosis [67].

A summary of WS measurements using echocardiogram is shown in Table 1.

Table 1. Clinical Applications of Systolic Wall Stress (WS) in Echocardiogram.

1. End-systolic WS (1): Ventricular afterload
-Inversely correlated with systolic performance
2. End-systolic WS (2): Myocardial oxygen demand/consumption
-End-systolic WS represents primary determinant of myocardial oxygen demand (Strauer et al. 1977 [20])
3. Noninvasive determination of LV end-systolic WS
-Utilization of cuff systolic blood pressure: Well correlated with invasive LV pressure measurement [42,43]
4. End-systolic WS-Vcf relationship (Colan et al. 1984 [52]; Hoit et al. 1997 [53]; Lamers et al. 2006 [54])
-Vcf/HR is inversely related to end-systolic WS
-A marker for load-dependent myocardial contractile status
5. Integrated WS (Dong et al. 2013 [65])
-Average WS over a unit time
-Stable with dobutamine stimulation in healthy heart
-Good correlation with Peak-systolic WS × HR
6. WS-HR-LV mass product (Devereux et al. 2000 [66]; Gerdts et al. 2019 [67])
-Myocardial oxygen demand is estimated from LV mass × end-systolic WS × HR
-Associated with higher mortality and morbidity in patients with aortic stenosis
7. Early and late systolic WS (Chirinos et al. 2013 [57])
-Early systolic WS: Associated with greater longitudinal systolic function and enhanced early diastolic relaxation
-Late systolic WS: Associated with decreased diastolic relaxation and decreased longitudinal systolic function

HR = heart rate; LV = left ventricular; Vcf = velocity of circumferential fiber shortening; WS = wall stress.

6. Assessing Global and Regional Ventricular Wall Stress by Magnetic
Resonance Imaging

Cardiac magnetic resonance imaging (cMRI) has been applied for the assessment
of ventricular WS. Instead of diameter changes in M-mode using echocardiogram, cMRI
enables utilization of the area measurement (two-dimensional) or volume measurement
(three-dimensional) to calculate WS according to Laplace’s law. Similar to echocardiogram,
LV WS via cMRI requires LV pressure measurement either by cardiac catheterization or by
noninvasive blood pressure measurement, but MRI can provide a more accurate assessment
of the three-dimensional LV geometry superior to the echocardiographic approach.

Auffermann et al. measured LV systolic WS with cine MRI and simultaneous blood
pressure measurement (carotid pulse tracing), and assessed WS in 22 patients with LV
volume overload due to aortic and/or mitral insufficiency, with and without myocardial
disease, to study the clinical significance of systolic WS in identifying those at risk for
a poor prognosis after valve surgery [68]. They demonstrated that LV output and WS
rise progressively with increasing LV volume overload and that disproportionally high
systolic WS relative to regurgitant volume indicates myopathic changes, suggesting that
systolic WS is an important determinant to predict post-surgical outcomes. By combining
the MRI measurement and LV pressure obtained by cardiac catheterization, Alter and
colleagues showed that the BNP level was correlated well with both end-diastolic and
end-systolic WS, indicating that the cellular stretch is a major trigger for BNP release [69,70].
These data suggest that the diagnostic use of BNP should primarily be directed to assess
ventricular WS rather than the extent of functional impairment of the LV myocardium. The
principle of global LV WS calculation based on Laplace’s law is essentially the same between
echocardiography and MRI, but it was found that LV WS obtained by echocardiogram
was systematically lower than that obtained by MRI [69]. The same group of investigators
examined LV end-systolic and end-diastolic WS and late gadolinium enhancement (LGE)
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in 300 patients with nonischemic dilated cardiomyopathy with MRI. They showed that
increased LV WS and LV mass were associated with the degree of LGE, proposing that
capillary leakage by excessive myocardial stretching features pathological remodeling [71].
By calculating end-systolic WS with the LV dimension from MRI, and LV systolic pressure
estimated from echocardiographic pressure gradient and systolic blood pressure in patients
with severe aortic stenosis, end-systolic WS was shown to be significantly correlated with
severity of remodeling, neurohormonal activation, and severity of symptoms [72]. Wall
stress is an important determinant of heart failure progression and thus may explain the
unfavorable prognostic role of LGE [73].

Genet et al. studied a computational model using MRI and personalized compu-
tational cardiac mechanics modeling with the finite-element (FE) method, not Laplace’s
law, and proposed that validated regional WS can be used to assess ventricular status in
response to heart failure treatment [74]. Computational simulation based on FE analysis
with MRI was applied to assess the severity of dilated cardiomyopathy by WS represented
by the average stress, calculated as the mean value between the longitudinal fiber stress
and the cross-fiber stress, which enabled risk-stratification of dilated cardiomyopathy by
noninvasively predicting myocardial stress and pump performance [75]. Wollmuth et al.
introduced three-dimensional global end-systolic LV WS determined by MRI and FE assess-
ment, and emphasized that MRI-derived WS measurement provides better accuracy for
assessing LV performance with chronic aortic insufficiency than that of echocardiographic
assessment utilizing simplified spherical geometric shape assumption [76].

Zhong et al. introduced a new concept of pressure-normalized stress (σ/P) as an
index of WS (σ: WS, P: pressure) by MRI, and compared σ/P with WS obtained with blood
pressure measurement in 40 patients with ischemic cardiomyopathy. They demonstrated
that σ/P correlated well with the measured WS in all three different regions (remote,
border, and infarct zones) and that surgical ventricular restoration reduced both σ/P and
WS and improved systolic function by reducing LV volume [77]. The clinical significance
of pressure-normalized WS was also asserted by others as a crucial index of geometric
influence on WS [78,79]. They demonstrated that increased LV end-diastolic WS pre-
ceded LV hypertrophy in patients with nonischemic dilated cardiomyopathy [78]. This
volume-based WS index allowed us to approximate the real WS in the absence of invasive
pressure measurements.

7. Conclusions

Wall stress is an important concept to understand for the maladaptive transition from
physiological to pathological hypertrophy. End-systolic (or peak systolic) WS represents
ventricular afterload and estimates myocardial oxygen consumption that can be reliably
obtained noninvasively through echocardiogram and simultaneous cuff blood pressure
measurement. In combination with other hemodynamic parameters, systolic WS can
provide a reliable assessment of afterload status, myocardial oxygen demand, and devel-
opment of ventricular remodeling. Although the current approaches of estimating WS in
M-mode echocardiography may be limited because of its oversimplification of LV geometry,
it still provides certain useful information regarding the disease process and prognosis.
New computerized approaches with MRI have enabled us to estimate WS based on re-
gional myocardial deformation and volume assessment. Further involvement of advanced
technology is warranted for better delineation of the subclinical failing myocardium.
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