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Respiratory Research

Crosstalk between diacylglycerol kinase 
and protein kinase A in the regulation of airway 
smooth muscle cell proliferation
Miguel A. Hernandez‑Lara1, Santosh Kumar Yadav1, Stanley Conaway Jr.1, Sushrut D. Shah1, 
Raymond B. Penn1 and Deepak A. Deshpande1*    

Abstract 

Background  Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol 
(DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle 
(ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capac‑
ity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple 
molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced 
ASM cell proliferation by the small molecular DGK inhibitor I (DGK I).

Methods  We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using 
immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA 
inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and 
cell proliferation was assessed.

Results  DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK 
inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as 
demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation 
were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggest‑
ing a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition.

Conclusions  Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by 
DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contrib‑
utes to airway remodeling in asthma.

Keywords  Diacylglycerol kinase, Protein kinase A, Airway smooth muscle, Airway remodeling, Proliferation

Introduction
Airway remodeling is a major component of asthma 
pathogenesis that includes structural changes such as 
increased airway wall thickening [1]. Increased airway 
smooth muscle (ASM) mass caused by ASM hyperpla-
sia and hypertrophy contributes significantly to airway 
wall thickening and causes increased resistance to air-
flow [1]. Thus, therapeutically targeting ASM remodeling 
has emerged as a promising approach for severe asthma 
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treatment [2]. Identifying novel regulators of ASM prolif-
eration is critical in developing anti-remodeling therapies 
for use in asthma.

ASM cell proliferation is regulated by multiple air-
way inflammatory mediators including growth factors, 
cytokines, chemokines, and other proteins and pep-
tides that are agonists of G protein-coupled receptors 
(GPCR) and growth factor receptors that induce promi-
togenic signaling in ASM cells [3–12]. These mediators 
include Gq-coupled GPCR agonists such as thrombin, 
leukotrienes, and growth factors such as platelet-derived 
growth factor, epithelial growth factor, and vascular 
growth factor [3–5, 13]. Growth factors promote ASM 
cell growth via activation of receptor tyrosine kinase 
(RTK) pathways whereas GPCR agonists promote Gq-
mediated activation of phospholipase C [14]. A previous 
study from our lab demonstrated synergy between RTK 
and Gq-coupled GPCR signaling pathways in regulating 
ASM cell proliferation [3–5]. Activation of Gq signaling 
(as well as RTK signaling) in ASM cells results in the acti-
vation of phospholipase C which in turn converts phos-
phoinositide bis phosphate into inositide tris-phosphate 
and diacylglycerol (DAG) [14]. DAG-mediated signaling 
is regulated by a class of lipid kinase enzymes belong-
ing to DAG kinase (DGK) [15, 16]. Recent studies from 
our lab have demonstrated that α and ζ isoforms of DGK 
play a central role in the regulation of ASM cell contrac-
tion [17, 18], proliferation [19], and allergen-induced 
airway inflammation, hyperresponsiveness, and features 
of airway remodeling in mice [19, 20] using molecular 
(knockout and knockdown) and pharmacological (DGK 
inhibitor) approaches. We demonstrated that DGK inhi-
bition perturbs the stoichiometry of phospholipids DAG 
and phosphatidic acid (PA) in ASM cells and regulates 
ASM cell proliferation [19]. Interestingly, our studies 
demonstrated an anti-mitogenic effect of DGK inhibi-
tion despite promoting DAG-mediated activation of pro-
tein kinase C (PKC) and extracellular signal-regulated 
kinase (ERK)-mediated signaling, which is typically pro-
mitogenic signal [19]. Therefore, in this study, we aimed 
to delineate molecular pathways that are involved in the 
inhibition of ASM cell proliferation by DGK.

Previous studies have shown that agonists of Gs-cou-
pled GPCRs inhibit ASM cell proliferation and protein 
kinase A (PKA) plays a central role in this process [21–
24]. Activation by Gs-coupled GPCR by various agonists 
such as beta-agonists, prostaglandin E2 (PGE2) results in 
the activation of heterotrimeric Gs and dissociation of its 
α and βγ subunits [21–25]. The α subunit directly inter-
acts with and activates adenylyl cyclase, which hydro-
lyzes ATP to generate cyclic adenosine monophosphate 
(cAMP). cAMP inhibits ASM cell proliferation via acti-
vation of the cAMP-dependent protein kinase, PKA [24]. 

Thus Gs-cAMP-PKA is a predominant anti-mitogenic 
pathway in ASM cells. However, the role of DGK inhi-
bition-induced Gs signaling in ASM cell proliferation is 
not known. Therefore, herein we sought to investigate the 
role of cAMP-PKA in DGK-mediated regulation of ASM 
cell proliferation. In our published paper, in the context of 
contractile inhibition by acute DGK inhibition, we noted 
a cyclooxygenase  II (COXII) induction and PKA activa-
tion and we therefore hypothesized that PKA mediates 
the anti-mitogenic effect. Our findings presented in this 
manuscript demonstrate that chronic pharmacological 
inhibition of DGK increase paracrine secretion of PGE2 
via a PKC/ERK1/2-dependent induction of COXII. PGE2 
in turn promotes cAMP-PKA signaling to inhibit ASM 
cell proliferation. These findings establish a novel mecha-
nism by which temporal regulation of DGK cross-talks 
with Gs-PKA pathway to regulate ASM cell proliferation 
and further advances DGK as a potential therapeutic tar-
get to mitigate ASM remodeling associated with asthma.

Materials and methods
Materials
The primary antibody against VASP (610448) was from 
BD biosciences. Antibody for p-CREB (9198S)  and 
COXII (12282S), human Platelet-Derived Growth Factor 
BB (PDGF-BB) (8912), and RIPA cell lysis buffer (9806) 
were purchased from Cell Signaling Technology (Beverly, 
MA, USA). Primary antibody against β-actin (58522) 
and diacylglycerol kinase Inhibitor I (R59022, referred 
as DGK I) were purchased from Sigma (St. Louis, MO, 
USA). Secondary antibodies IRDye 680RD or 800CW 
were from LI-COR (Lincoln, NE, USA). Insulin-trans-
ferrin-selenium (ITS) was from Thermo Fisher Scientific 
(41400045; Waltham, MA, USA). Protease and phos-
phatase inhibitors were from Bimake (Houston, TX, 
USA). All polyacrylamide gel casting, running, and trans-
fer reagents and equipment were from Bio-Rad Laborato-
ries (Hercules, CA, USA) or previously identified sources 
[22, 26]. CyQuant cell proliferation assay kit was from 
Life Technologies (Grand Island, NY, USA). PGE2 com-
petitive ELISA (# 514010) was from Cayman Chemicals 
(Ann Arbor, MI, USA).

Cell culture
Human ASM cells were isolated from de-identified lung 
donors and cultured (passage 2–6) using HAM’s F-12 
media supplemented with 10% FBS, penicillin/strepto-
mycin, HEPES buffer, CaCl2, l-Glutamine (Gibco), and 
NaOH. Human ASM cell cultures were replenished with 
fresh media every 2 days [27]. Cells were cultured until 
80% confluency and serum-starved with HAM’s F-12 
medium containing 1% ITS for 24 h before experiment.
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Viral transfection of human ASM cells
Retrovirus for the expression of green fluorescent pro-
tein (GFP) or the GFP-chimera of the PKA inhibitory 
peptide (PKI) was produced by co-transfecting GP2-
293 cells with p-vesicular stomatitis virus (VSV)-G vec-
tor (encoding the pantropic VSV-G envelope protein) 
and either pLPCX-GFP or pLPCX-PKI-GFP. Culture 
media containing viral particles were harvested after 
48 h of transfection and used to infect primary human 
ASM cell cultures as described previously [22, 23, 28]. 
Human ASM cell cultures were subsequently selected 
for homogeneity with puromycin (5 µg/ml) (Tocris Bio-
science, UK).

Cell proliferation assay
Human ASM cells were plated in a 96-well plate for 
CyQuant assay at a density of 5000 cells per well and 
maintained in complete Ham’s F-12 medium supple-
mented with 10% FBS. After 24  h, cells were serum-
starved with HAM’s F-12 medium containing 1% ITS 
and treated with PDGF (10 ng/ml) or DGK I (0–20 
µM) + PDGF (10 ng/ml) for 48  h. A subset of cells was 
also treated with DMSO (vehicle control).

Western blotting
Human ASM cells were plated in 12-well plates and 
maintained in HAM’s F-12 + 10% FBS media for 24  h. 
Cells were then serum-starved with HAM’s F-12 medium 
containing 1% ITS for 24  h followed by pre-treatment 
with vehicle or pan-PKC (Bis I), MEK (U0126) or ERK2 
(Vx11e) inhibitor for 10  min, and then stimulated with 
vehicle or DGK I (20 µM) for 24 h. In a subset of experi-
ments, cells were stimulated with vehicle or DGK I (20 
µM) for 0, 5, 10, 15 and 30  min, or 24  h. Human ASM 
cells were lysed in RIPA buffer (CST, USA) supplemented 
with protease and phosphatase inhibitor (Bimake) at 4 °C 
for 30 min. Lysates were then mixed with Laemmli buffer 
(Bio-Rad) containing 10% β-mercaptoethanol and boiled 
at 95 °C for 5  min. Samples were separated on SDS-
PAGE, and transferred onto a nitrocellulose membrane 
and blocked using 3% BSA in TBST for 1 h. Target pro-
teins were detected via incubation with antigen-specific 
primary antibodies [COXII (1:1000), p-CREB (1:1000), 
VASP (1:5000), p-ERK1/2 (1:1000), β-actin (1:50,000)] 
overnight in 3% BSA in TBST. A secondary antibody 
(1:10,000 in 3% BSA in TBST) conjugated with an infra-
red dye, either at 680 or 800 nm wavelength, was used to 
detect target protein using Odyssey infrared scanner (LI-
COR Biosciences, Lincoln, USA). Protein band intensity 
was quantified using Odyssey software as described pre-
viously [19].

PGE2 assay
Human ASM cells were seeded in 12-well plates, and 
serum-starved with HAM’s F-12 medium containing 1% 
ITS 24  h later. Cells were treated with vehicle or DGK 
I (20 µM) for 30  min–24  h. The supernatants were col-
lected at different time points and assayed for PGE2 con-
tent using a competitive ELISA approach (Ann Arbor, 
MI, USA) according to the manufacturer’s protocol.

Statistical analysis
All data are presented as mean ± SEM values from ‘n’ 
number of lines derived from distinct lung donors. 
Individual data points from a single experiment were 
calculated as the mean value from 3 replicate observa-
tions for CyQuant assay and data were reported as fold 
change from the basal conditions. Densitometry data of 
western blot are normalized using band intensities to 
vehicle-treated cells. PGE2 concentrations were deter-
mined by extrapolation from a standard curve. One-way 
ANOVA with Bonferroni post-hoc analysis was used to 
determine statistical differences among treatment groups 
using GraphPad Prism IX software (La Jolla, CA, USA). 
A p ≤ 0.05 was considered sufficient to reject the null 
hypothesis.

Results
DGK inhibition attenuates proliferation in GFP‑, 
not PKI‑GFP‑, expressing ASM cells
To examine the role of PKA in regulating ASM cell prolif-
eration we utilized GFP or PKI-GFP chimera expressing 
cells. We previously established that expression of PKI 
peptide in ASM cells inhibits PKA activity efficiently [22, 
24]. ASM cells were pretreated for 10  min with DGK I 
(5–20 µM) followed by stimulation with platelet-derived 
growth factor (PDGF) (10 ng/mL) for 48 h. DGK I inhib-
ited PDGF-mediated ASM cell proliferation in GFP-
expressing cells and not in PKI-GFP-expressing ASM 
cells (Fig.  1A). Transduction of GFP in human ASM 
cells was further confirmed by fluorescence microscopy 
(Fig.  1B). These data demonstrate that DGK inhibition 
attenuates PDGF-induced ASM cell proliferation, and 
PKA plays a critical role in the anti-mitogenic effect of 
DGK inhibition.

DGK inhibition enhances cyclooxygenase II expression 
and PGE2 production in ASM cells
Next, we aimed to establish a mechanism by which DGK 
inhibition mitigates ASM cell proliferation in a PKA-
dependent manner. Inhibition of DGK results in accu-
mulation of DAG species which are known to translocate 
protein kinase C (PKC) to the plasma membrane [18, 
29, 30]. Membrane-bound PKC activates downstream 
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effectors, including ERK1/2 in a Ras-Raf-MEK mecha-
nism [14, 31]. Although ERK1/2 activation can promote 
cell proliferation, previous studies have shown a role for 
ERK1/2 in inducing expression of COXII which induces 
generation of PGE2, an agonist of Gs-coupled GPCRs 
EP2 and EP4 capable of PKA activation [17, 22, 24, 32–
36]. Human ASM cells were treated with DGK I (20 µM) 
for different time periods ranging from 30  min to 24  h. 
Cell culture media was collected and cells were lysed to 
harvest total proteins. DGK I induced COXII expression 
in ASM cells in a time-dependent manner (Fig.  2A, B) 
compared to vehicle-treated ASM cells. Further, COXII 
induction was associated with an increase in PGE2 pro-
duction from ASM cells treated with DGK I, but not in 
vehicle-treated cultures (Fig.  2C). Further, we assessed 
PKA activation by DGK I in ASM cells by immunoblot-
ting for the phosphorylation of two key targets of PKA, 
vasodilator-stimulated phosphoprotein (VASP) and 
cAMP response element-binding protein (CREB). DGK 

inhibition significantly increased phosphorylation of 
CREB and of VASP (Fig. 3). Our data suggest that DGK 
inhibition results in COXII-mediated PGE2 production 
and activation of PKA signaling in ASM cells.

DGK inhibition‑induced COXII expression and PKA 
signaling are mediated by PKC activation
To gain further insight into the mechanism by which 
DGK inhibition induces COXII expression, we 
assessed the role of PKC. We hypothesized that DGK 
I-induced COXII induction, and subsequent activa-
tion of PGE2-Gs-PKA signaling involves activation of 
PKC based on the fact that DAG binds and activates 
PKC very efficiently, and DGK inhibition is expected to 
increase cellular DAG levels. Human ASM cells were 
pretreated with Bis I (10 µM), a pan-PKC inhibitor, for 
10 min followed by treatment with vehicle or DGK I (20 
µM) for 24 h. Cells were lysed and protein lysates were 
used for western blot analysis. There was a significant 

Fig. 1  DGK inhibitor attenuation of ASM cell proliferation involves PKA. GFP- and PKI-GFP-expressing human ASM cells were pretreated with DGK 
I (0–20 µM) followed by PDGF (10 ng/ml) stimulation for 48 h and cell proliferation was measured by assessing total DNA. Graphical representation 
is of mean ± SEM (n = 6 distinct donors) of CyQuant fluorescence normalized to basal (A). Expression of GFP in ASM cells transduced with retroviral 
particles was confirmed by fluorescence microscopy. Representative florescence (top) and brightfield (bottom) images of two different lines are 
shown (B). *p < 0.05 (compared to matched basal) and #p < 0.05 (compared to matched PDGF) using one-way-ANOVA with Bonferroni post-hoc 
analysis
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increase of COXII expression in the presence of DGK I 
which was significantly reduced in the presence of Bis I 
(Fig. 3A, B). To further test activation of PKA we addi-
tionally analyzed downstream effectors of PKA. There 
was a significant decrease in phosphorylation of CREB 
in the presence of Bis I in DGK I-treated ASM cells 
(Fig. 3A, C), as well as a significant reduction in DGK 
I-induced VASP phosphorylation (Fig.  3A, D). These 
data demonstrate DGK I-induced DAG activates PKC, 

leading to the increased expression of COXII and acti-
vation of PKA signaling.

DGK inhibition‑induced COXII expression and PKA 
signaling involves ERK‑MAP kinase
Previous studies demonstrate that DAG-activated PKC 
induces activation of ERK1/2 by phosphorylation [37]. 
We hypothesized that DGK I-induced ERK1/2 activation 
mediates COXII induction and PKA activation. Human 
ASM cells were pretreated with vehicle, MEK1/2 inhibi-
tor U0126 (1 µM), or ERK2 inhibitor Vx11e (1 µM) for 
10 min followed by treatment with vehicle or DGK I (20 
µM) for 24  h. Cells were lysed and protein lysates were 
used for western blotting. Our data demonstrate that 
DGK I alone induced COXII expression that was sig-
nificantly inhibited in U0126 and Vx11e-treated cells 
(Fig. 3A, B). Moreover, induction of p-CREB and p-VASP 
by DGK I was significantly reduced when cells were pre-
treated with U0126, while Vx11e significantly reduced 
p-CREB and modestly reduced p-VASP (Fig.  3A, C, D). 
These data demonstrate DGK I-induced DAG activates 
ERK1/2, leading to the increased expression of COXII 
and activation of PKA signaling via paracrine production 
of PGE2.

DGK inhibition increases ERK1/2 phosphorylation 
in a time‑dependent manner
To gain further insight on the role of ERK1/2 in DGK 
I- mediated COXII induction, we assessed activation of 
ERK1/2 by DGK inhibition. We hypothesized that treat-
ment of cells with DGK I activates ERK1/2. Human ASM 
cells were treated with vehicle or DGK I (20 µM) for 0, 5, 
10, 15, and 30 min. Cells were lysed and protein lysates 
were used for western blotting. Our data reveal that DGK 
I induced transient ERK1/2 phosphorylation and was sig-
nificantly increased between 5 and 10  min (Fig.  4A, B) 
compared to vehicle and reached a basal level by 30 min. 
These data suggest that DGK inhibition indeed promotes 
ERK1/2 activity in a time-dependent manner. Collec-
tively, our data demonstrate that DGK inhibition induces 
ERK1/2 activation leading to COXII induction, PGE2 
secretion and PKA activation in human ASM cells. PKA 
activation results in inhibition of ASM cell proliferation.

Discussion
ASM cell proliferation is regulated by growth factors 
and GPCR agonists, and induction of protein kinase A 
(PKA) signaling mitigates growth-factor-mediated ASM 
cell growth and migration [22, 24, 38]. Gs-coupled GPCR 
agonists such as β-agonists and PGE2 are predominant 
inducers of PKA activity in ASM cells. Our studies have 
also shown that PGE2 is one of the strongest induc-
ers of cAMP-PKA signaling in ASM cells, potentially 

Fig. 2  DGK inhibition enhances COXII expression and PGE2 
production. Human ASM cells were treated with DGK I (20 µM) in 
a time-dependent manner. Cells were lysed and immunoblotted 
for COXII and β-actin (A). Graphical representation of mean ± SEM 
of COXII densitometry data normalized to basal conditions (B). 
Supernatant collected was subjected to ELISA to assay amounts of 
PGE2 (pg/ml) secreted and data were normalized to vehicle-treated 
condition (C). Data above are mean ± SEM (n = 3–4 distinct 
donors). *p < 0.05 (DMSO vs. DGK I at matched time points) using 
one-way-ANOVA with Bonferroni post-hoc analysis. Please note that 
the gel images shown are cropped from the full length images
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explaining its superior anti-mitogenic effect [24]. We 
previously reported DGK inhibition attenuates ASM cell 
proliferation by inhibiting mitogenic signaling pathways 
induced by second-messenger phosphatidic acid [19]. 
In the present study, we sought to delineate the anti-
mitogenic mechanisms of DGK inhibition in ASM cells. 
We demonstrate that treatment of ASM cells with DGK 
inhibitor I induces expression of COXII which results in 
increased production of PGE2. We further demonstrate 
that COXII expression is mediated by increased PKC and 
ERK1/2 activity, associated with increased DAG levels. 
We propose that DGK inhibition increases DAG mem-
brane phospholipid levels, which in turn activates PKC/
ERK1/2-mediated induction of COXII expression and 
production of PGE2. PGE2 activates Gs-coupled GPCR 

signaling and induces PKA activity, attenuating ASM cell 
proliferation (Fig.  5). These findings are consistent with 
our previous study showing DGK inhibition reduces 
ASM cell contraction by COXII-mediated PGE2 produc-
tion and activation of Gs-coupled GPCR signaling [18]. 
DGK-mediated regulation of ASM contraction via COXII 
induction was observed when the cells were treated with 
DGK inhibitor for 15 min. In this study, we demonstrate 
that COXII induction by DGK inhibition persists for an 
extended period to influence ASM cell proliferation.

ASM cell pro-mitogenic signaling is canonically medi-
ated by growth factor-activated ERK1/2 and PI3K 
signaling, and Gq signaling can cooperate with RTK 
signaling to synergistically promote ASM cell prolifera-
tion [4, 5, 13]. In terms of second messengers, membrane 

Fig. 3  DGK inhibitor-induced COXII production and PKA activation is mediated via PKC-ERK1/2 signaling. Human ASM cells were pretreated with 
vehicle, Bis I (10 µM), U0126 (1 µM), or Vx11e (1 µM) for 10 min followed by stimulation with vehicle or DGK I (20 µM) for 24 h. Cells were lysed and 
immunoblotted for COXII, p-CREB, VASP, and β-actin (A). Graphical representation of mean ± SEM (n = 3–5 distinct donors) for COXII (B), p-CREB 
(C) and VASP (D). The densitometry data for COXII and p-CREB are normalized to basal conditions. Densitometry data for VASP phosphorylation 
are presented as percent (%) VASP shift (p-VASP/total VASP). *p < 0.05 (compared to vehicle basal) and #p < 0.05 (compared to DGK I basal) using 
one-way-ANOVA with Bonferroni post-hoc analysis. Please note that the gel images shown are cropped from the full length images
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phospholipids including DAG are generated upon stim-
ulation of ASM cells with extracellular stimuli and play 
a role in Gq and RTK signal transduction in ASM cells. 
DAG species are generated by activation of Gq-coupled 
GPCR and RTK signaling and are regulated by DGK, a 
lipid kinase [14, 39]. Inhibition of DGK increases DAG 
levels in ASM cells and is expected to further promote 
pro-mitogenic signaling. In contrast, our present and 
recently published studies suggest that DGK inhibition 
attenuates ASM cell proliferation [19]. Gs-coupled GPCR 
signaling via activation of PKA has been shown to inhibit 
mitogenic signaling in ASM cells [22–24]. Therefore, in 
this study, we explored the potential role of PKA in the 
anti-mitogenic effect of DGK inhibition.

We employed a well-established genetic approach 
to inhibit PKA activity in ASM cells involving a stable 
expression of PKA inhibitory peptide, PKI [23]. Our 
data suggest that DGK-mediated regulation of ASM cell 
proliferation indeed involve PKA activation. However, 
PKA activation in ASM cells is mediated by Gs-coupled 
GPCRs that activate PKA by increasing cAMP levels 
and regulate cell proliferation by modulating several 

downstream signals [22, 23]. The mechanism by which 
PKA is activated when DGK is inhibited was the focus 
of the subsequent studies. Our findings demonstrate that 
DGK inhibition promotes COXII-mediated production 
of PGE2 which in turn activates Gs-PKA signaling and 
inhibition of proliferation of ASM cells in addition to 
what we have shown in our published paper wherein we 
reported a COXII induction and PKA activation in the 
context of regulation of ASM contraction by acute inhibi-
tion of DGK.

We further explored the mechanism by which DGK 
inhibition results in COXII induction. First, DGK inhi-
bition results in upregulation of COXII protein for 24 h 
suggesting a prolonged activation. Previously, we showed 
that acute inhibition of DGK induces COXII-PGE2-PKA-
mediated relaxation of ASM cells [17]. Sustained induc-
tion of COXII by DGK inhibition are relevant in the 
context of cell proliferation, secretion, and migration, 
all of which are important in airway diseases. Next, we 
investigated the mechanism by which COXII is activated 
by DAG/DGK. In this context, our studies suggested a 
role for PKC and ERK1/2 in activating PKA signaling in 

Fig. 4  DGK inhibition activates ERK1/2 signaling in a time-dependent manner. Human ASM cells were treated with vehicle or DGK I (20 µM) for 0, 
5, 10, 15 and 30 min. Cells were lysed and immunoblotted for ERK1/2 phosphorylation and β-actin (A). Graphical representation of mean ± SEM 
(n = 3 distinct donors) for ERK1/2 phosphorylation (B). The densitometry data for ERK1/2 phosphorylation by DGK I were normalized to matched 
vehicle-treated controls at each time point, and graphed as fold change from the basal. *p < 0.05 (compared to vehicle basal) using one-way-ANOVA 
with Bonferroni post-hoc analysis. Please note that the gel images shown are cropped from the full length images
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ASM cells when the cells are treated with DGK inhibitor. 
In the presence of DGK inhibitor alone we demonstrate 
increased production of COXII which was significantly 
decreased in the presence of either PKC or MEK/ERK 
inhibitors. PKC containing a DAG-binding C1 domain 
is a major target protein of DAG [40, 41] and increased 
DAG levels in cells in the presence of DGK inhibi-
tor is expected to enhance PKC activity. Further, previ-
ous studies show a crosstalk between PKC and ERK1/2 
downstream of DAG [33]. Enhanced DAG levels in cells 
presumably augmented PKC and ERK1/2 activity when 
cells were treated with DGK inhibitor. Activation of PKC/
ERK1/2 has been shown to play an important role in the 
induction of COXII expression, a mechanism by which 
prostaglandins are produced in the cell [37]. Our findings 
presented herein are consistent with the previously pub-
lished literature implicating the role of PKC/ERK1/2 in 
COXII induction. In fact, we demonstrate that DGK inhi-
bition transiently activate ERK1/2 in ASM cells. Simi-
larly, in ASM cells, activation of ERK1/2 MAPK signaling 
was shown to be necessary for cytokine-induced COXII 
expression and PGE2 production [36, 42, 43].

In the present studies, we observed an increase in 
COXII expression and PKA activation in the presence 
of a DGK inhibitor, all of which were decreased in the 

presence of PKC and MEK/ERK1/2 inhibitors. This fur-
ther highlights the potential cross-talk between PKC and 
ERK1/2 in regulating cell function [33], however, it also 
raises the question of compartmentalized signaling com-
plexes. While PKC proteins are translocated from cytosol 
to membrane upon activation, ERK1/2 signaling remains 
cytosolic. PKC activation is likely upstream in the context 
of DGK inhibition considering PKC has a DAG-binding 
domain and move closer to membrane upon stimulation 
of cells by an external signal. Additionally, DGK enzyme 
activity is regulated by (i) second messengers (Ca2+) (ii) 
protein-protein interactions (PKC MARCKS domain) or 
(iii) cellular sub-localization [39, 44, 45]. It is probable 
that the proximity of DGK and PKC to the cell membrane 
allow for feed-forward signaling inducing a stronger, 
more vigorous signal inducing COXII production. Future 
studies characterizing the compartmentalization of these 
proteins are necessary to confidently draw conclusions.

While our studies demonstrated induction of COXII 
expression under DGK inhibition, we did not ascertain 
the other mechanism by which COXII activity can be 
regulated. This includes posttranslational modifications 
such as phosphorylation, glycosylation, nitrosylation, 
intracellular trafficking, ubiquitination, and ER-associ-
ated degradation (ERAD) [32, 46]. Studies have reported 

Fig. 5  DGK inhibition mitigates airway smooth muscle cell proliferation by inducing anti-mitogenic signaling involving PKA. The proposed 
mechanism demonstrates that enhanced accumulation of DAG levels by DGK inhibitor induces PGE2 secretion via a PKC-ERK1/2-COXII axis. Secreted 
PGE2 potentiates PKA-mediated anti-mitogenic signaling by activating Gs-coupled GPCRs
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phosphorylation events of COXII increase PGE2 produc-
tion [34], and others suggested that protein-protein inter-
actions modulate COXII activity without change in COX 
protein expression [47]. Interestingly, studies highlighted 
an important role for DGKε isoform in kidney, brain and 
adipose tissue to induce COXII expression and activity 
[48–50]. Although isotype specific role of DGK in this 
study was not assessed, our study suggest that DGK inhi-
bition promotes PKA activation and inhibition of prolif-
eration of ASM cells. Both DGK α and ζ isoforms could 
potentially contribute to ASM cell proliferation.

Conclusions
Overall, the present studies allude to a novel anti-
mitogenic mechanism for ASM cells in the pres-
ence of a DGK inhibitor mediated by PKA activation 
involving PKC/ERK1/2-mediated induction of COXII 
and PGE2 secretion. This leads to the paracrine/auto-
crine activation of Gs-coupled GPCRs, presumably 
EP-2 and -4 receptors, resulting in inhibition of ASM 
cell proliferation by PKA. Our current and previously 
published studies further advance DGK as a potential 
target for mitigating ASM-mediated pathophysiological 
responses such as airway remodeling and hyperrespon-
siveness in airway diseases, including asthma.
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