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Abstract: Glycosaminoglycans (GAGs) are present in proteoglycans, which play critical physiological
roles in various tissues. They are known to be elevated in mucopolysaccharidoses (MPS), a group of
rare inherited metabolic diseases in which the lysosomal enzyme required to break down one or more
GAG is deficient. In a previous study, we found elevation of GAGs in a subset of patients without
MPS. In the current study, we aim to investigate serum GAG levels in patients with conditions beyond
MPS. In our investigated samples, the largest group of patients had a clinical diagnosis of viral or non-
viral encephalopathy. Clinical diagnoses and conditions also included epilepsy, fatty acid metabolism
disorders, respiratory and renal disorders, liver disorders, hypoglycemia, developmental disorders,
hyperCKemia, myopathy, acidosis, and vomiting disorders. While there was no conclusive evidence
across all ages for any disease, serum GAG levels were elevated in patients with encephalopathy
and some patients with other conditions. These preliminary findings suggest that serum GAGs are
potential biomarkers in MPS and other disorders. In conclusion, we propose that GAGs elevated in
blood can be used as biomarkers in the diagnosis and prognosis of various diseases in childhood;
however, further designed experiments with larger sample sizes are required.

Keywords: glycosaminoglycan; encephalopathy; serum; LC-MS/MS; mucopolysaccharidoses

1. Introduction

In the human body, carbohydrates exist as GAGs: sulfated polysaccharide chains.
These GAG chains attach to core proteins, forming proteoglycans (PGs), which have various
functions, including cell signaling, stimulating growth and development, and extracellular
matrix (ECM) hydration. The core proteins of proteoglycans can be transmembrane;
therefore, GAGs can be a part of the ECM or part of the glycocalyx. GAGs include
chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS),
and hyaluronic acid (HA). HA differs from the other GAGs, as it is neither sulfated nor
linked to a core protein [1].
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Each GAG chain is found in different cells and tissues and has various roles in the
central nervous system (CNS), visceral organs, and connective tissues. Chondroitin sulfate
proteoglycans (CSPGs), which commonly contain both CS and DS, are the most abundant
proteoglycan in the CNS. CSPGs typically act as barrier molecules, directing axon growth
and synapse formation. The PGs of the lectican family, which contain mainly CS as well
as KS [2], are the main constituents of the brain ECM. These PGs bind with HA and
link proteins in the brain ECM with neurons [3]. Like CSPGs, KS proteoglycans (KSPGs)
in the CNS are also mainly involved in neuronal outgrowth and synapse organization.
Additionally, KSPGs also play a role in neurotransmission and nerve regeneration [2]. Both
CS and KS are known to play a role in glial scarring and regeneration following brain
injury. CS and DS have also been shown to bind to morphogens, making them essential
in CNS development and mediating cell proliferation [4]. The main function of HA in
the CNS is its structural role in forming the brain ECM, but it has also been shown to
bind to growth factors and cytokines. Additionally, low molecular weight HA is involved
with inflammation after CNS injury [4]. Finally, HS proteoglycans (HSPGs) constitute a
significant component of the vascular basement membrane in brain [5]. They bind with
signaling molecules, preventing their degradation and creating storage pools. HSPGs also
form ternary complexes with signaling molecules and their receptors to promote signaling.

Mucopolysaccharidoses (MPS) are a group of inherited metabolic disorders in which
patients have a deficiency of a lysosomal enzyme required to degrade one or more GAG,
leading to an accumulation of GAGs in the lysosomes. This accumulation interrupts
normal cell physiology, resulting in a complex syndrome with symptoms including skeletal
dysplasia, organ dysfunction, developmental delay, cognitive impairment, hearing loss, and
joint rigidity or hypermobility. Currently, enzyme replacement therapy and hematopoietic
stem cell transplantation are available clinically for MPS. Both treatments provide a better
prognosis if patients are treated at an early age. DS, HS, and KS are commonly used as
biomarkers for high-risk or newborn screening of MPS [6,7].

Previous studies have shown that some PGs are elevated or altered in various speci-
mens (urine, blood, cerebrospinal fluid, tissues) in some diseases [8,9]. For example, the
DSPG endocan is elevated in patients with stable chronic obstructive pulmonary disease
(COPD) (n = 47) [8], and syndecan-4, an HSPG, is elevated in response to bacterial pneumo-
nia (n = 30) [9]. Further studies have demonstrated the elevation of specific GAGs in some
diseases or conditions, mainly in adulthood. For instance, GAGs constitute a large part
of the endothelial glycocalyx in the vascular lumen, which is perturbed in illnesses with
systematic inflammation, such as respiratory failure or septic shock, leading to an increase
in highly sulfated HS fragments in the blood (n = 17) [10]. The endothelial glycocalyx
has also been implicated in post-cardiac arrest syndrome in adults, indicating that cardiac
arrest or resuscitations can shed the glycocalyx components syndecan-1, HS, and HA into
blood circulation. Additionally, patients who survive cardiac arrest have lower HS and
syndecan-1 levels than deceased patients, indicating that the extent of glycocalyx perturba-
tion and corresponding levels of GAGs in blood could indicate prognosis in these adult
patients (n = 25) [11]. However, there has not been a study concerning the measurement of
each GAG in blood specimens covering a wide range of common diseases and inherited
metabolic disorders, especially in childhood.

In previous studies investigating GAG levels in blood or dried blood spots (DBS) of
MPS patients, we found elevated GAG levels in a subset of control individuals as well as
in patients confirmed to have MPS [7,12]. It was determined that these control samples did
not come from MPS patients with clinical findings and enzyme activity assays. Therefore,
it is essential to discover which diseases and conditions cause the elevation of GAGs,
determine which GAGs are elevated in each, and explore whether the measurement of
GAGs is a valuable tool for disease prognosis and monitoring therapeutic effects.

In the present study, the data of patients with conditions including MPS and other
diseases have been grouped according to clinical diagnosis. The clinical diagnosis groups
include respiratory and renal disorders, fatty acid metabolism disorders, viral infections,
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vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental
disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. We aim to investigate
GAG expression in the blood of pediatric patients with various conditions and compare
the levels of circulating GAGs to the levels of patients with MPS and age-matched controls.
In summary, this is a novel study involving patients with various diseases to determine if
GAGs can be used as biomarkers.

2. Materials and Methods
2.1. Subjects

For patients and control subjects, we measured two types of HS—O-sulfated HS
(∆DiHS-0S) and N-sulfated HS (∆DiHS-NS), DS (∆Di-4S), two types of KS—mono-sulfated
KS and di-sulfated KS, and the ratio of di-sulfated KS to total KS. These are the GAGs that
are measured to screen for MPS [6,7,12].

This was a retrospective study using clinical data and serum samples from Shimane
University. Both male and female patients were included. All patients were Japanese;
therefore, although we expect that we would see similar results across other populations,
we cannot draw conclusions about similarities in people of different ethnic backgrounds
based on the current data. Serum samples were obtained with informed consent from 276
patients with various clinical conditions and diagnoses (Table S1). Patient ages ranged from
zero to sixty-two years; however, only 14 patients (5.1%) were over the age of fifteen, so that
this was primarily a pediatric study. Among the patients with various clinical conditions,
140 patients (51%) were 0–2.9 years old, 35 patients (13%) were 3–4.9 years old, 53 patients
(19%) were 5–9.9 years old, 30 patients (11%) were 10–14.9 years old, 7 patients (2.5%) were
15–19.9 years old, and 11 patients (4.0%) were 20 years old or older. Clinical diagnosis
and enzyme activity assays confirmed that patients did not have MPS. Using the clinical
diagnoses provided by Shimane University, patient data were sorted into groups according
to diagnosis. Clinical diagnoses for respiratory or renal disorders included pneumonia,
asthma, bronchitis, chronic obstructive pulmonary disease (COPD), and rhabdomyolysis.
Fatty acid metabolism disorders diagnoses included carnitine deficiency, Reye’s syndrome,
carnitine palmitoyltranferase 2 (CPT2) deficiency, medium-chain acyl-CoA dehydrogenase
(MCAD) deficiency, and very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency.
Viral infections included rotavirus, hand-foot-mouth disease, and influenza. Vomiting
disorders were all cyclic vomiting syndrome. Clinical diagnoses for liver disorders in-
cluded hyperbilirubinemia and liver dysfunction. Clinical diagnoses for epilepsy included
West syndrome, tonic-clonic seizures, and febrile seizures. Heart conditions included
hypertrophic cardiomyopathy, abnormal ECG, mitral regurgitation (MR), myocarditis,
and ventricular tachycardia. Clinical diagnoses for acidosis included glutaric acidemia II
(GAII) and methylmalonic acidemia. Viral encephalopathy viruses included respiratory
syncytial virus (RSV), influenza A, influenza B, rotavirus, human herpesvirus 6 (HHV-6),
and norovirus. Non-viral encephalopathy diagnoses included megalencephaly, hypo-
glycemia encephalopathy, epileptic encephalopathy, hypoxic-ischemic encephalopathy,
Leigh syndrome, periventricular leukomalacia, ifosfamide-induced encephalopathy, acute
focal bacterial nephritis (AFBN) encephalopathy, and leukoencephalopathy. Twenty-two
patients were clinically diagnosed with respiratory or renal conditions, 21 patients were
diagnosed with some sort of fatty acid metabolism disorder, 7 patients were diagnosed with
viral infections without encephalopathy or other symptoms, 13 patients were diagnosed
with vomiting disorders, 18 patients were diagnosed with liver disorders, 33 patients were
diagnosed with epilepsy, 22 patients were diagnosed with hypoglycemia, 12 patients were
diagnosed with myopathy, 14 patients were diagnosed with developmental disorders,
12 patients were diagnosed with hyperCKemia, 15 patients were diagnosed with a heart
condition, 16 patients were diagnosed with acidosis, 51 patients were diagnosed with
viral encephalopathy, and 69 patients were diagnosed with non-viral encephalopathy. The
total number of patients in these groups adds up to more than 276 patients because some
patients had overlapping conditions and were thus used in more than one group.
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We compared the GAG levels of patients with various clinically diagnosed conditions
to the levels of patients with MPS (Table S2). Blood samples from patients with MPS were
collected with informed consent at Gifu University. MPS patients were from various ethnic
backgrounds and included both male and female patients. The breakdown of MPS type
and age is shown below (Table 1).

Table 1. Types of mucopolysaccharidosis (MPS) and ages of patients with MPS.

Diagnosis Total 0–2.9 3–4.9 5–9.9 10–14.9 15–19.9 20+

MPS I 2 – – – 2 – –
MPS II 47 – 7 17 9 7 7

MPS IIIA 6 – – 2 1 2 1
MPS IIIB 11 – 2 5 2 – 2
MPS IVA 42 – 3 15 8 11 5
MPS IVB 5 – – – 2 3 –
MPS VII 2 – – – – – 2

Control values were obtained from data collected for a previous study [12]. The
control values were obtained with informed consent from patients at Shimane University
(Tables S3–S8). The breakdown of age for the control values is shown below (Table 2).

Table 2. Number of control values for each glycosaminoglycan (GAG) broken into age group.
The GAG measurements included are O-sulfated heparan sulfate (DiHS-0S), N-sulfated heparan
sulfate (DiHS-NS), dermatan sulfate (Di-4S), mono-sulfated keratan sulfate (Mono-S KS), di-sulfated
keratan sulfate (Di-S KS), and the ratio of di-sulfated keratan sulfate to total keratan sulfate (Di-S
KS/Total KS).

GAG Total 0–2.9 3–4.9 5–9.9 10–14.9 15–19.9 20+

DiHS-0S 260 125 33 52 27 8 15
DiHS-NS 274 142 34 49 27 7 15

Di-4S 283 149 35 57 27 7 8
Mono-sulfated KS 313 166 36 58 32 8 13

Di-sulfated KS 282 146 32 50 31 8 15
Di-S KS/Total KS 264 139 29 47 28 7 14

We also collected 198 dried blood spot samples from control newborns, including
one MPS II patient, in a double-blind manner. Procedures were approved by IRBs at
Nemours/AIDHC (approval number: 281498-21).

2.2. Enzymes and Standards

Enzymes and stock solutions used to make standards were obtained from Seikagaku
Corporation (Tokyo, Japan). Heparitinase, chondroitinase B, and keratanase II were used
to digest the polysaccharide GAG chains into their respective disaccharides: 2-deoxy-2-
sulfamino-4-(4-deoxy-a-L-threo-hex-4-enopyranosyluronic acid)-D-glucose (∆DiHS-NS),
2-acetamido-2-deoxy-4-O-(4-deoxy-a-L-threo-hex-4-enopyranosyluronic acid)-D-glucose
(∆DiHS-0S), 2-acetamido-2-deoxy-4-O-(4-deoxy-a-L-threo-hex-4-enopyranosyluronic acid)-
4-O-sulfo-D-glucose (∆Di-4S; DS), mono-sulfated KS (Galß1-4GlcNAc(6S)), and di-sulfated
KS (Gal(6S)ß 1-4GlcNAc(6S)). Stock solutions of the above disaccharides were used to make
standard solutions by serial dilution consisting of 1000 ng/mL, 500 ng/mL, 250 ng/mL,
125 ng/mL, 62.5 ng/mL, 31.25 ng/mL, 15.625 ng/mL, and 7.8125 ng/mL of ∆DiHS-
NS, ∆DiHS-0S, and ∆Di-4S, and 10,000 ng/mL, 5000 ng/mL, 2500 ng/mL, 1250 ng/mL,
625 ng/mL, 312.5 ng/mL, 156.25 ng/mL, and 78.125 ng/mL mono-sulfated KS and di-
sulfated KS. Chondrosine was used as an internal standard.
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2.3. Sample Preparations

In AcroPrepTM Advance 96-Well Filter Plates with Ultrafiltration Omega 10K mem-
brane filters (Pall Corporation, Port Washington, NY, USA), in order, the following was
added: 10 microliters of sample or standard; 90 microliters of 0.5 M Tris buffer pH 7.0;
40 microliters of a cocktail consisting of heparitinase (0.5 mU/sample), chondroitinase B
and keratanase (both 1 mU/sample), and internal standard (5 µg/mL); 60 microliters of
0.5 M Tris buffer pH 7.0. The filter plate was incubated overnight on a 96-well receiver
plate at 37 ◦C to digest the polysaccharides. The filter plate was then placed on a new
receiver plate and centrifuged for 15 min at 2500 rpm to filter the digested disaccharides.
The processed samples were injected and measured using liquid chromatography-tandem
mass spectrometry (LC-MS/MS).

2.4. LC-MS/MS

The chromatographic system used has been described in earlier studies [12–17]. The
mobile phases were 100 mM ammonia (A) and 100% acetonitrile (B). The initial composition
of 100% A was held for 1 min, linearly modified to 30% B at 4 min, maintained at 30% B at
5.5 min, returned to 0% B at 6 min, and maintained at 0% B until 10 min. The flow rate was
0.7 milliliter per minute. DS was measured as Di-0S due to digestion of Di-4S to Di-0S by a
4S-sulfatase present in the chondroitinase B. The concentration of each disaccharide was
calculated by QQQ Quantitative Analysis software.

2.5. Statistical Analysis

This is an observational study to investigate serum GAG levels in patients with MPS
and encephalopathy (viral or non-viral) and compare with the levels in control subjects.
Patient data were grouped according to diagnosis or condition. Since GAG levels are also
influenced by age, patient data were then divided into the following age groups: x < 3 years,
3 ≤ x < 5 years, 5 ≤ x < 10 years, 10 ≤ x < 15 years, and over 15 years of age. Examination of
box plots exhibited a similar shape in the distribution of GAGs, except a few sparse outliers,
across diagnostic groups for each age category. A non-parametric Kruskal–Wallis one-way
analysis of variance (ANOVA) was performed to compare median GAG levels between ten
groups for each GAG at each age group, including the control group, viral encephalopathy
patients, non-viral encephalopathy patients, MPS I patients, MPS II patients, MPS IIIA
patients, MPS IIIB patients, MPS IVA patients, MPS IVB patients, and MPS VII patients.

Additionally, a Dunn’s post-hoc test was used to determine statistical significance
between the control and encephalopathy as well as between the control and MPS groups.
All tests were two-tailed at the overall level of significance of 0.05. The statistical software
packages R, version 3.5.2, and SPSS, version 27, were used for data analyses (Armonk, NY,
USA). Despite well-known limitations, data from observational studies have become an
increasingly important source of evidence, and thus, these results have relevance [18].

3. Results
3.1. Conditions with Elevated GAG Levels

We detected high levels of DiHS-0S, DiHS-NS, Di-4S, di-sulfated KS, and di-sulfated
KS/total KS in some patients with viral encephalopathy and some patients with non-viral
encephalopathy. A patient with heart disease had high levels of DiHS-0S, DiHS-NS, and
Di-4S. A patient with a viral infection had high levels of DiHS-0S and DiHS-NS. Some
patients with epilepsy had high levels of DiHS-0S, DiHS-NS, di-sulfated KS, and di-sulfated
KS/total KS. A patient with a developmental disorder had high levels of DiHS-NS. Some
patients with hypoglycemia had high levels of Di-4S, mono-sulfated KS, di-sulfated KS,
and di-sulfated KS/total KS. A patient with fatty acid metabolism disorders had high levels
of di-sulfated KS. Some patients with acidosis had high levels of Di-4S, di-sulfated KS, and
di-sulfated KS/total KS. However, the sample size in most groups was too small to run
statistical analyses. Only the encephalopathy groups had large enough sample sizes to
conduct further statistical analysis.
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3.2. Encephalopathy GAG Levels

We compared the median, minimum, and maximum values for the control group, viral
encephalopathy group, non-viral encephalopathy group, and various MPS types (Table 3).

Table 3. Median along with minimum and maximum glycosaminoglycans (GAGs) for control values and patients with
viral encephalopathy (VE), non-viral encephalopathy (NVE), or mucopolysaccharidosis (MPS). The p-value for the non-
parametric Kruskal–Wallis one-way analysis of variance (ANOVA) test run between the control, encephalopathy, and MPS
groups is shown for each GAG at each age group. Statistically significant p-values for the Kruskal–Wallis ANOVA test
are marked with an asterisk. Statistical differences between the control and encephalopathy groups or the control and
MPS groups were determined with Dunn post-hoc testing and are marked with §. A significance level of 0.05 was used for
both tests.

DiHS-0S DiHS-NS Di-4S Di-Sulfated KS Mono-Sulfated
KS

Di-Sulfated/
Total KS

Age Diagnosis Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

0–2.9 Control 74.5 (21, 137) 11 (1, 28) 21.4 (2, 40) 129.1 (15, 285) 731 (253, 1193) 14.4 (5, 27)
NVE 116.7 (24, 1129) § 17.6 (1, 393) § 26.5 (2, 70) § 184.1 (15, 488) § 633.5 (253, 1201) 21.9 (5, 38) §
VE 236.1 (40, 928) § 37.5 (4, 353) § 38.1 (5, 113) § 305.3 (74, 630) § 825.2 (375, 1458) 23.9 (10, 35) §

MPS I – – – – – –
MPS II – – – – – –

MPS IIIA – – – – – –
MPS IIIB – – – – – –
MPS IVA – – – – – –
MPS IVB – – – – – –
MPS VII – – – – – –
p value <0.001 * 0.003 * <0.001 * <0.001 * 0.06 <0.001 *

3–4.9 Control 62.9 (3, 99) 7.3 (0, 19) 20.1 (1, 33) 143.7 (75, 288) 687.9 (293, 1199) 16.2 (10, 29)
NVE 64.7 (58, 189) 8.9 (5, 28) 25.1 (15, 41) 278.5 (99, 355) 622.4 (400, 853) 25 (20, 38) §
VE 64.9 (3, 3227) 8.9 (0, 1934) 15.9 (1, 158) 179.2 (75, 516) 659.4 (293, 1042) 18.1 (10, 52)

MPS I – – – – – –
MPS II 140.5 (65, 222) § 55 (18, 85) § 137.3 (6, 223) § 187.3 (172, 403) 1306.7 (915, 1879) § 15.8 (9, 19)

MPS IIIA – – – – – –
MPS IIIB 258.2 (189, 327) § 79.7 (53, 106) § 30.3 (24, 36) 191.5 (162, 221) 775.6 (702, 850) 19.7 (19, 21)
MPS IVA 38.2 (16, 65) 9.2 (1, 14) 2.4 (1, 3) 272 (160, 323) 761 (643, 1142) 22 (20, 26)
MPS IVB – – – – – –
MPS VII – – – – – –
p value 0.001 * 0.001 * 0.002 * 0.157 0.002 * 0.005 *

5–9.9 Control 63.7 (20, 97) 7.9 (1, 15) 19.8 (2, 33) 160.4 (62, 330) 694.6 (284, 1068) 18 (12, 31)
NVE 78 (32, 140) 14.3 (1, 24) § 21 (2, 50) 173.7 (73, 501) 613.4 (284, 1135) 26.6 (12, 43) §
VE 67.2 (30, 123) 8.8 (3, 33) 22.5 (16, 33) 160.4 (87, 639) 669.9 (405, 1140) 22.3 (16, 36) §

MPS I – – – – – –
MPS II 147.9 (35, 393) § 50.4 (8, 99) § 89.7 (25, 315) § 402.3 (174, 557) § 1556.9 (795, 2198) § 20.9 (16, 26)

MPS IIIA 141.8 (93, 190) 41.3 (30, 52) 24.1 (16, 32) 158.6 (102, 216) 594.7 (401, 788) 20.8 (20, 22)
MPS IIIB 131.2 (83, 214) § 45.1 (23, 75) § 19.2 (16, 34) 114.8 (87, 207) 418.3 (322, 730) 21.5 (21, 23)
MPS IVA 35.3 (11, 449) 5.2 (3, 226) 2.9 (1, 25) § 241.2 (5, 595) § 997 (235, 1860) 22.6 (2, 27)
MPS IVB – – – – – –
MPS VII – – – – – –
p value <0.001 * <0.001 * <0.001 * <0.001 * <0.001 * 0.015 *

10–14.9 Control 67.2 (8, 97) 8.2 (4, 13) 20.1 (1, 28) 124.8 (5, 283) 525.8 (218, 840) 18.7 (1, 39)
NVE 88.2 (13, 159) 10 (0, 20) 19.9 (15, 33) 199 (96, 427) 638.7 (296, 1006) 25.7 (20, 30)
VE 96.5 (62, 827) § 13.5 (8, 278) § 48.7 (18, 106) § 223.2 (91, 731) § 447.6 (218, 1189) 33.4 (19, 47) §

MPS I 55.5 (48, 63) 9.4 (9, 10) 2.5 (2, 3) 277.1 (227, 327) 1176.6 (973, 1380) 19 (19, 19)
MPS II 73.1 (41, 301) 61.6 (14, 122) § 48 (27, 398) § 270.3 (139, 501) § 1000.6 (613, 2442) § 20.8 (17, 25)

MPS IIIA 94.3 (94, 94) 27.6 (28, 28) 23 (23, 23) 135.1 (135, 135) 401.4 (401, 401) 25.2 (25, 25)
MPS IIIB 134.5 (56, 213) 40 (15, 65) 19.9 (18, 22) 166.2 (86, 246) 675.1 (421, 929) 19 (17, 21)
MPS IVA 26.3 (13, 130) 4.4 (1, 47) 2.3 (1, 15) § 163.2 (83, 313) 534 (270, 1181) 20.9 (16, 35)
MPS IVB 26.2 (22, 30) 5.8 (4, 7) 2 (2, 2) 197.3 (165, 229) 903.9 (842, 966) 17.8 (16, 19)
MPS VII – – – – – –
p value 0.004 * <0.001 * <0.001 * 0.037 * 0.008 * 0.029 *
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Table 3. Cont.

DiHS-0S DiHS-NS Di-4S Di-Sulfated KS Mono-Sulfated
KS

Di-Sulfated/
Total KS

Age Diagnosis Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

Median
(Min, Max)

15–19.9 Control 41.3 (35, 84) 6.7 (4, 15) 16.9 (1, 25) 73 (52, 256) 322.8 (149, 469) 20.1 (14, 32)
NVE 56.2 (35, 78) 10.7 (7, 15) 20.2 (16, 25) 72.5 (70, 75) 222.7 (149, 297) 26.1 (20, 32)
VE 84.4 (84, 84) 24.5 (24, 24) 20.8 (21, 21) 255.6 (256, 256) 329.2 (329, 329) 43.7 (44, 44)

MPS I – – – – – –
MPS II 61.1 (39, 413) 64.5 (12, 290) § 50.9 (24, 594) § 204.9 (104, 335) 787.4 (380, 1336) § 20.7 (19, 27)

MPS IIIA 108.2 (99, 117) 30.4 (27, 34) 16.5 (11, 22) 85.7 (42, 129) 326.9 (243, 411) 19.4 (15, 24)
MPS IIIB – – – – – –
MPS IVA 30.3 (17, 129) 6.9 (2, 63) 4.7 (1, 21) 174.2 (67, 259) 885.1 (189, 1161) 18.8 (14, 26)
MPS IVB 15.7 (13, 18) § 3.7 (3, 7) 2.9 (2, 4) 66.1 (65, 98) 416.5 (280, 464) 17.5 (14, 19)
MPS VII – – – – – –
p value 0.001 * 0.005 * 0.001 * 0.009 * 0.013 * 0.141

20+ Control 45.5 (31, 88) 6.4 (5, 12) 15.2 (4, 70) 86.8 (33, 207) 280.7 (183, 424) 18.8 (13, 30)
NVE 52.5 (33, 88) 9.8 (5, 12) 43.9 (4, 90) 103.9 (62, 136) 296 (186, 547) 24.6 (15, 36)
VE – – – – – –

MPS I – – – – – –
MPS II 31.9 (27, 177) 58.9 (13, 101) § 25.6 (7, 210) 163.1 (115, 316) § 677.5 (444, 1317) § 20.9 (17, 25)

MPS IIIA 85.1 (85, 85) 26.5 (27, 27) 13.6 (14, 14) 93.6 (94, 94) 331 (331, 331) 22.1 (22, 22)
MPS IIIB 184.9 (140, 230) 47.5 (44, 51) 21.3 (15, 27) 60.7 (57, 64) 286.2 (171, 401) 19.4 (14, 25)
MPS IVA 39.4 (16, 141) 12.6 (4, 69) 4.4 (2, 17) 63.7 (38, 239) 265.6 (141, 544) 21.3 (14, 31)
MPS IVB – – – – – –
MPS VII 238.6 (37, 440) 82.6 (8, 157) 37.7 (13, 62) 142.9 (137, 148) 482.2 (402, 562) 23.3 (20, 27)
p value 0.302 0.003 * 0.124 0.005 * 0.008 * 0.765

There is some variation in median GAG levels across age groups. However, there are
significant differences in all GAGs measured between the control, viral encephalopathy,
non-viral encephalopathy, MPS I, MPS II, MPS IIIA, MPS IIIB, MPS IVA, and MPS IVB.
Of particular note is the 0–2.9 age group, which only contained the control and two
encephalopathy groups. In this comparison, there is a significant difference in DiHS-0S,
DiHS-NS, Di-4S, di-sulfated KS, and di-sulfated KS/total KS between the control group,
viral encephalopathy group, and non-viral encephalopathy group (Table 3). Using Dunn
post-hoc testing for pairwise comparisons in the control group, viral encephalopathy had
significantly higher DiHS-0S, DiHS-NS, Di-4S, and di-sulfated KS medians for the 0–2.9
age group and the 10–14.9 age group and a significantly higher ratio of di-sulfated KS to
total KS for the 0–2.9 age group, the 5–9.9 age group, and the 10–14.9 age group. Non-viral
encephalopathy had significantly higher DiHS-0S, Di-4S, and di-sulfated KS for the 0–2.9
age group, significantly higher DiHS-NS for the 0–2.9 age group and the 5–9.9 age group,
and a significantly higher ratio of di-sulfated KS to total KS for the 0–2.9 age group, 3–4.9
age group, and the 5–9.9 age group. None of the age groups had a statistically significant
difference in average mono-sulfated KS values for either type of encephalopathy.

3.3. GAG Levels of Various Conditions

The y-axes for Figures 1–6 have been log-transformed due to extreme outliers. Without
the transformations, outliers made it difficult to see the distributions of GAG measurements.
HS and DS decrease slightly with age (Figures 1–3), while mono-sulfated and di-sulfated
KS drop rapidly (Figures 4 and 5). The ratio of di-sulfated KS to total KS is the only value
that increases with age (Figure 6).
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Some patients with viral encephalopathy, non-viral encephalopathy, heart disorders,
and viruses had serum ∆DiHS-0S well above control values. These patients had higher
∆DiHS-0S levels than MPS patients at a similar age (Figure 1). This is unexpected, as HS
accumulates in patients with MPS I, MPS II, MPS III and MPS VII as a primary storage
material [19].
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Some patients with viral encephalopathy, non-viral encephalopathy, heart disorders,
viruses, epilepsy, and developmental disorders had serum ∆DiHS-NS well above con-
trol values. Furthermore, some patients with viruses, viral encephalopathy, non-viral
encephalopathy, and heart disorders had higher ∆DiHS-NS levels than MPS patients at a
similar age (Figure 2). Typically, HS accumulates in patients with MPS I, MPS II, MPS III
and MPS VII as a primary storage material [19].

Some patients with viral encephalopathy, non-viral encephalopathy, heart disorders,
hypoglycemia, epilepsy, and acidosis had serum Di-4S well above control values. However,
none of these diagnosis groups had Di-4S levels higher than MPS II (Figure 3).

Some patients with viral encephalopathy and hypoglycemia had higher mono-sulfated
KS values than controls. Most MPS II and some MPS IVA patients had mono-sulfated
KS values higher than the control values, the viral encephalopathy values, and the hy-
poglycemia values (Figure 4). KS is known to accumulate in patients with MPS IV as a
primary storage material [19].

Some patients with viral encephalopathy, non-viral encephalopathy, fatty acid metabolism
disorders, hypoglycemia, epilepsy, and acidosis had serum di-sulfated KS well above con-
trol values. Furthermore, some patients with viral encephalopathy, acidosis, and epilepsy
had higher di-sulfated KS values than patients with MPS at a similar age (Figure 5). This is
unexpected since KS accumulates in patients with MPS IV [19].

Some patients with viral encephalopathy, non-viral encephalopathy, hypoglycemia,
epilepsy, and acidosis had a ratio of serum di-sulfated KS to total serum KS well above the
control values. Furthermore, most patients also had higher ratio values than patients with
MPS at a similar age (Figure 6).

3.4. GAG Levels of Newborns

Out of 198 DBS samples, two samples provided a significant elevation of specific
GAGs. The sample with MPS II showed that the concentration levels of Di-0S, HS-0S, HS-
NS, mono-sulfated KS, and di-sulfated KS were 30.9 ng/mL, 141.6 ng/mL, 26.04 ng/mL,
146.0 ng/mL, and 35.6 ng/mL, respectively [7]. HS-0S and HS-NS levels were above the
established cutoff values of 90 ng/mL and 23 ng/mL, respectively [6]. Another sample
was derived from an extremely premature infant with extremely low birth weight (birth
weight; 582 g at 24 gestational weeks, female). The concentration levels of Di-0S, HS-0S, HS-
NS, mono-sulfated KS, and di-sulfated KS were 137.3 ng/mL, 104.6 ng/mL, 12.6 ng/mL,
187.6 ng/mL, and 39.2 ng/mL, respectively. Di-0S and HS-0S levels were above the
established cutoff values of 88 ng/mL and 90 ng/mL, respectively.

4. Discussion

This is, to the best of our knowledge, the first study to measure blood GAG levels in
patients with a wide range of pediatric diseases and conditions. We have demonstrated the
elevation of serum GAGs in conditions beyond MPS. GAG elevation was seen in a group of
patients with encephalopathy, patients with other childhood disorders, and an extremely
premature infant.

Note that the control GAG values were represented with a linear model (Figures 1–6).
The y-axes were log-transformed, so any linear relationship on the graphs would have
implied an exponential relationship. The coefficients of determination were low for all
models, but this is not an issue, as we were not searching for an exponential relationship
since GAGs do not increase exponentially with age; rather, they display the average GAG
level across ages.

Any statistical significance of the non-parametric Kruskal−Wallis ANOVA test in-
dicates that the variation mostly explains variations in GAG levels due to groups rather
than residuals. We saw statistical significances for the non-parametric Kruskal−Wallis
ANOVA test for all GAGs tested in at least five age groups; however, these comparisons
also included MPS patients, so it is expected that there would be a statistical significant
difference, and we cannot conclude that the encephalopathy group caused this significance.
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The 0–2.9 age group only contained the control and two encephalopathy groups. In this
comparison, there is still a significant difference in DiHS-0S, DiHS-NS, Di-4S, di-sulfated KS,
and di-sulfated KS/total KS when only comparing the control group, viral encephalopathy
group, and non-viral encephalopathy group (Table 3).

PGs and GAGs are altered in some diseases in quality and quantity [8–10,20–22]. In
particular, conditions in which the endothelial glycocalyx is damaged result in the elevation
of plasma and serum GAGs. Serum HS has been found to be elevated in respiratory failure
due to indirect lung injury, while serum HA was elevated following direct lung injury
in adulthood (age range: 32–68 years); additionally, the persistence of elevated HS in
the blood days after injury could indicate impaired GAG clearance as well as glycocalyx
degradation [10]. Adult patients (average age: 67.1 ± 3.1 years) with bacterial pneumonia
were found to have elevated serum syndecan-4 levels (an HSPG). Additionally, serum
syndecan-4 levels had a negative correlation with severity, and syndecan-4 knockout mice
had higher mortality rates than control mice when infected, suggesting that syndecan-4
plays a protective role in bacterial pneumonia [9]. Serum endocan, a DSPG expressed
in endothelial cells of the lungs and kidneys, is elevated in adult patients (age range:
40–75 years) with COPD and could serve as a severity marker for acute inflammatory
lung diseases with endothelial involvement [8]. Serum HS and HA were elevated in adult
patients (age range; 45–86 years) with septic shock (n = 24) [20]. Therefore, we hypothesized
that GAG levels would be elevated in the respiratory and renal conditions group even in
childhood. Surprisingly, we did not see any patients with high serum GAGs in this group.
However, we did see high serum GAGs in patients with viral encephalopathy, non-viral
encephalopathy, a heart disorder (heart disease), viral infections, epilepsy, a developmental
disorder, hypoglycemia, fatty acid metabolism disorder, and acidosis. However, only
the encephalopathy group had a sample size large enough to run statistical analyses;
therefore, further investigation is needed for conclusive evidence that all other conditions
are correlated with an upregulation in the serum GAG level.

A patient with a viral infection had high levels of DiHS-0S and DiHS-NS
(Figures 1 and 2). The potential mechanism of GAG elevation caused by viral infections
remains unknown; however, GAGs have been shown to facilitate the binding and entry of
viruses into cells during infection. HS has been established as the initial point of interaction
for hepatitis B and herpes [23,24]. These interactions between HS and viruses could play a
role in elevating serum HS in patients with viral infections.

Some patients with epilepsy had high levels of DiHS-0S, DiHS-NS, di-sulfated KS,
and di-sulfated KS/total KS (Figures 1, 2, 5 and 6). MPS patients often experience epileptic
seizures because of the buildup of GAGs in the brain [21]. However, GAGs seem to play
a different role in patients with epilepsy: CSPGs are altered. In the adult CNS, PGs and
proteins condense around strategic locations—the best-studied location being perineuronal
nets (PNNs), lattice-like structures that surround cells, most often parvalbumin-expressing
inhibitory neurons (PV-cells) [3]. Neuronal remodeling is seen in patients with epilepsy, and
the number of PNNs is decreased. This disruption causes dysregulation in the excitation-
inhibition balance in the brain. Seizures also may lead to the degradation of aggrecan, a
CS- and KS-rich proteoglycan, by matrix metalloproteinases (MMPs) [1]. Additionally, a
decrease in the CS and KS proteoglycan phosphacan corresponding with a decrease in
PNNs and an increase in the CSPG neurocan was observed in a rat model with induced
seizures [22]. The effect of epilepsy on serum GAG levels has not been widely studied.
However, based on previous studies, we speculate that neuronal remodeling and successive
degradation of PGs could increase serum GAGs levels, especially CS and KS.

The encephalopathy groups had larger sample sizes, and, therefore, statistical analyses
were run between viral encephalopathy, non-viral encephalopathy, and a control group.
Serum GAG levels are related to encephalopathy (Table 3); however, there was a lack of
conclusive evidence across age groups, likely because some age groups included relatively
small numbers of patients and/or control samples. Larger samples are required across age
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groups. Notably, some patients with encephalopathy had a more significant elevation than
MPS patients.

Encephalopathy is any disease or injury that affects the structure or function of the
brain. Many events can cause encephalopathy, including infection, tumor, and stroke.
While there are no previous studies concerning serum GAG levels in encephalopathy, there
are some studies that deal with these underlying causes. Patients had an increase in serum
CS, HS, and KS seven days after an ischemic stroke, and these GAG levels returned to
baseline ninety days later. These results also showed sheddase activity and found that
GAG chains shed before proteoglycans (n = 9–14) [25]. This finding suggests that patients
with encephalopathy caused by stroke may have elevated serum CS, HS and KS levels
as well. Additionally, upregulation of heparanase in vascular cells and astrocytes was
found in a mouse model following stroke. The upregulation of heparanase, along with
the degradation of HSPGs, may correspond to angiogenesis and tissue repair in the brain
following stroke [26].

Previous studies explored elevated GAG levels and/or related PGs in astrocytes,
neurons, and endothelial cells after brain injury, often in mouse or rat models [27–29].
McKeon et al. discovered elevated levels of a CS/KS-PG and cytotactin/tenascin in as-
trocytes corresponded with glial scarring in a rat model after cerebral cortex injury [27].
This is unsurprising, as the primary roles of KSPGs and CSPGs in the CNS are directing
neuron growth and synapse organization [2,3]. Additionally, Kato et al. found upregulated
KS expression in the hippocampus of patients with astrocytic tumors, suggesting that
KS may relate to malignancy in tumors [28]. Leadbeater et al. found an upregulation
of HSPGs in astrocytes, neurons, and endothelial cells after cerebral cortex injury in a
rat model associated with an upregulation in fibroblast growth factor 2 and fibroblast
growth factor receptor 1 [29]. This association suggests that HSPGs such as syndecan-2,
glypican-1, perlecan, and syndecan-3 are involved with angiogenesis and tissue regen-
eration after brain injury. The remodeling of CSPGs, HSPGs, and KSPGs in the brain
following injury and disease could be related to the elevation of serum HS and KS in pa-
tients with encephalopathy seen in this study. However, the mechanism of GAG elevation
associated with encephalopathy remains unknown, so an elevation of circulating GAG
fragments may cause encephalopathy. For example, sepsis causes the shedding of the
endothelial glycocalyx, and circulating HS has contributed to cognitive impairment in
sepsis patients (n = 17) [30]. Hippensteel et al. concluded that circulating HS may be used
as a biomarker to identify adult septic patients (age range: 41–64.5 years) at high risk for
cognitive impairment.

We have also demonstrated that the extremely premature infant provides a significant
DS and HS elevation in the DBS sample. The DS level was much higher than that in a
severe form of MPS II. The indexed case had normal development after birth at 3 years of
age without any brain damage. It is of great interest to understand whether premature
brain and body at the developing stage need more specific GAGs with a high level of
GAGs in blood or not. Further investigation with more DBS samples at newborns is
under development.

There are several limitations for the current study. First, it was a retrospective study.
Although the encephalopathy group included the analysis of the largest number of blood
samples (n = 120 patients; viral, 51, non-viral, 69) compared to previous studies of other
disorders (n = 8–47 patients) [8–12,25,28,30,31], most sample groups were small, affecting
the statistical analysis. Further experiments with larger sample sizes are necessary to
confirm these results. Additionally, encephalopathy is often caused by an underlying
disease or condition, so it is unclear whether the underlying cause affects GAG levels
or encephalopathy itself does. Furthermore, some patients had multiple diagnoses, and
were thus included in both groups. In these cases it is not clear which diagnosis would
cause GAG elevation. This relates to another limitation of the study. Due to this being a
retrospective study, it is impossible to distinguish whether any elevated GAGs preceded
the condition, making GAGs an excellent candidate for biomarkers, or if elevated GAGs
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are symptoms following the onset of a condition. To truly make this distinction, further
studies focusing on a single disease or condition would need to investigate GAG levels
in a mouse model throughout disease progression. However, if elevated GAGs are seen
in mice before the onset of symptoms, as in MPS, then GAGs may be a good candidate
for biomarkers.

Based on each GAG’s function in the CNS, we hypothesize that DS and KS elevation
may be related to scarring in the brain post-injury, while HS elevation may be related to
angiogenesis and tissue repair mechanisms. While it does have limitations, this study
provides insight into the level of GAGs in blood associated with various diseases, especially
in pediatric patients following brain-associated disease.

We have demonstrated that some patients have an elevation of one or more GAG,
especially patients with encephalopathy. This is a significant finding, as GAGs thus have
potential to be used as a biomarker for encephalopathy. While this result shows promise,
this is still a preliminary investigation of multiple conditions. Further studies into disease
progression and severity focusing on a single condition would be necessary to establish
GAGs as biomarkers for other diseases.

5. Conclusions

Patients with MPS are known to have high levels of serum GAGs due to the accumu-
lation of GAGs in the lysosome. Patients with other conditions also have an elevation of
GAGs. Viral and non-viral encephalopathy are associated with elevated GAG levels. This
can make GAGs useful biomarkers for various conditions beyond MPS.

The mechanism of GAG elevation in patients with encephalopathy remains unknown.
Further studies into the disease progression of encephalopathy are necessary to confirm
that GAG elevation precedes the onset of major symptoms of encephalopathy. This is a
retrospective study limited by the sample sizes of disease groups, so the results give a
preliminary look into various conditions associated with GAG elevation. Further studies
into the effect of disease severity and the relationship of GAGs with different diseases and
conditions are required before GAGs can be established as biomarkers for the diagnosis
and prognosis of the disease. These findings create a foundation for further exploration of
elevated serum GAGs in diseases beyond MPS.
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shown in ng/mL, Table S5: Control values for dermatan sulfate (Di-4S) shown in ng/mL, Table S6:
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for di-sulfated keratan sulfate shown in ng/mL, Table S8: Control values for the ratio of di-sulfated
keratan sulfate (KS) to total keratan sulfate.

Author Contributions: Conceptualization, P.C.A., S.K., S.Y., H.K., Y.S. and S.T.; methodology, P.C.A.,
S.K., S.Y., H.K., Y.A. and S.T.; validation, P.C.A., S.K., S.Y., H.K., Y.A. and S.T.; formal analysis,
P.C.A., S.K., S.Y., H.K., and S.T.; interpretation of data, P.C.A., S.K., S.Y., H.K., Y.A., E.R., Y.S., B.C.
and S.T.; resources, H.K. and S.T.; data curation, P.C.A., S.K., S.Y., H.K., J.H., W.X., B.C. and S.T.;
writing—original draft preparation, P.C.A. and S.T.; writing—review and editing, P.C.A., S.K., S.Y.,
H.K., E.R., J.H., W.X., Y.S. and S.T.; visualization, P.C.A., S.K., S.Y., H.K. and S.T.; supervision, S.T.;
project administration, S.T.; funding acquisition, H.K. and S.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by grants from National MPS Society Research Grant, Austrian
MPS society, The Carol Ann Foundation, Angelo R. Cali & Mary V. Cali Family Foundation, Inc.,
The Vain and Harry Fish Foundation, Inc., The Bennett Foundation, Jacob Randall Foundation, and
Nemours Funds. S.T. was supported by an Institutional Development Award from the National
Institute of General Medical Sciences of National Institutes of Health (P30GM114736) and the Eunice
Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes

https://www.mdpi.com/article/10.3390/diagnostics11091563/s1
https://www.mdpi.com/article/10.3390/diagnostics11091563/s1


Diagnostics 2021, 11, 1563 15 of 16

of Health (NICHD) (1R01HD065767 and 1R01HD102545-01A1). H.K. was funded by the Project for
Baby and Infant in Research of Health and Development to Adolescent and Young adult (BIRTHDAY)
from the Japan Agency for Medical Research and Development (AMED; grant No. JP18gk0110017).
The content of the article was not influenced by the sponsors.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Nemours/AIDHC
(protocol code IRB#: 281498 and APPROVED on 6 December 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All relevant data are within the manuscript. Any data interpretation is
available on the request.

Acknowledgments: This work was supported by Tokiko from Seikagaku Corporation. The authors
thank S. Yano and T. Esumi for support and assistance with this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miyata, S.; Kitagawa, H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin

sulfate and hyaluronan. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2420–2434. [CrossRef]
2. Caterson, B.; Melrose, J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018, 28,

182–206. [CrossRef]
3. Zimmermann, D.R.; Dours-Zimmermann, M.T. Extracellular matrix of the central nervous system: From neglect to challenge.

Histochem. Cell. Biol. 2008, 130, 635–653. [CrossRef]
4. Smith, P.D.; Coulson-Thomas, V.J.; Foscarin, S.; Kwok, J.C.; Fawcett, J.W. “GAG-ing with the neuron”: The role of glycosamino-

glycan patterning in the central nervous system. Exp. Neurol. 2015, 274 Pt B, 100–114. [CrossRef]
5. Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cerebr. Blood

Flow Met. 2017, 37, 3300–3317. [CrossRef]
6. Kubaski, F.; Mason, R.W.; Nakatomi, A.; Shintaku, H.; Xie, L.; van Vlies, N.N.; Church, H.; Giugliani, R.; Kobayashi, H.;

Yamaguchi, S.; et al. Newborn screening for mucopolysaccharidoses: A pilot study of measurement of glycosaminoglycans by
tandem mass spectrometry. J. Inherit. Metab. Dis. 2017, 40, 151–158. [CrossRef]

7. Stapleton, M.; Kubaski, F.; Mason, R.W.; Shintaku, H.; Kobayashi, H.; Yamaguchi, S.; Taketani, T.; Suzuki, Y.; Orii, K.; Orii, T.; et al.
Newborn screening for mucopolysaccharidoses: Measurement of glycosaminoglycans by LC-MS/MS. Mol. Genet. Metab. Rep.
2020, 22, 100563. [CrossRef]

8. Pihtili, A.; Bingol, Z.; Kiyan, E. Serum endocan levels in patients with stable COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13,
3367–3372. [CrossRef]

9. Nikaido, T.; Tanino, Y.; Wang, X.; Sato, S.; Misa, K.; Fukuhara, N.; Sato, Y.; Fukuhara, A.; Uematsu, M.; Suzuki, Y.; et al. Serum
Syndecan-4 as a possible biomarker in patients with acute pneumonia. J. Infect. Dis. 2015, 212, 1500–1508. [CrossRef] [PubMed]

10. Schmidt, E.P.; Li, G.; Li, L.; Fu, L.; Yang, Y.; Overdier, K.H.; Douglas, I.S.; Lindhardt, R.J. The circulating glycosaminoglycan
signature of respiratory failure in critically ill adults. J. Biol. Chem. 2014, 289, 8194–8202. [CrossRef] [PubMed]

11. Grundmann, S.; Fink, K.; Rabadzhieva, L.; Bourgeois, N.; Schwab, T.; Moser, M.; Bode, C.; Busch, H.J. Perturbation of the
endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation 2012, 83, 715–720. [CrossRef]

12. Khan, S.A.; Mason, R.W.; Giugliani, R.; Orii, K.; Fukao, T.; Suzuki, Y.; Yamaguchi, S.; Kobayashi, H.; Orii, T.; Tomatsu, S.
Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol. Genet. Metab. 2018, 125, 44–52.
[CrossRef]

13. Tomatsu, S.; Shimada, T.; Mason, R.W.; Kelly, J.; LaMarr, W.A.; Yasuda, E.; Shibata, Y.; Futatsumori, H.; Montano, A.M.; Yamaguchi,
S.; et al. Assay for glycosaminoglycans by Tandem Mass Spectrometry and its applications. J. Anal. Bioanal. Technol. 2014, 2014
(Suppl. 2), 6. [CrossRef]

14. Tomatsu, S.; Fujii, T.; Fukushi, M.; Oguma, T.; Shimada, T.; Maeda, M.; Kida, K.; Shibata, Y.; Futatsumori, H.; Montaño, A.M.;
et al. Newborn screening and diagnosis of mucopolysaccharidoses. Minireview Mol. Genet Metab. 2013, 110, 42–53. [CrossRef]
[PubMed]

15. Kubaski, F.; Suzuki, Y.; Orii, K.; Giugliani, R.; Church, H.J.; Mason, R.W.; Dung, V.C.; Ngoc, C.T.; Yamaguchi, S.; Kobayashi, H.;
et al. Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses. Mol. Genet.
Metab. 2017, 120, 247–254. [CrossRef] [PubMed]

16. Shimada, T.; Tomatsu, S.; Mason, R.W.; Yasuda, E.; Mackenzie, W.G.; Hossain, J.; Shibata, Y.; Montano, A.M.; Kubaski, F.;
Giugliani, R.; et al. Di-sulfated keratan sulfate as a novel biomarker for mucopolysaccharidosis II, IVA, and IVB. JIMD Rep. 2015,
21, 1–13. [CrossRef] [PubMed]

17. Shimada, T.; Tomatsu, S.; Yasuda, E.; Mason, R.W.; Mackenzie, W.G.; Shibata, Y.; Kubaski, F.; Giugliani, R.; Yamaguchi, S.; Suzuki,
Y.; et al. Chondroitin 6-sulfate as a novel biomarker for mucopolysaccharidosis IVA and VII. JIMD Rep. 2014, 16, 15–24. [CrossRef]

http://doi.org/10.1016/j.bbagen.2017.06.010
http://doi.org/10.1093/glycob/cwy003
http://doi.org/10.1007/s00418-008-0485-9
http://doi.org/10.1016/j.expneurol.2015.08.004
http://doi.org/10.1177/0271678X17722436
http://doi.org/10.1007/s10545-016-9981-6
http://doi.org/10.1016/j.ymgmr.2019.100563
http://doi.org/10.2147/COPD.S182731
http://doi.org/10.1093/infdis/jiv234
http://www.ncbi.nlm.nih.gov/pubmed/25895983
http://doi.org/10.1074/jbc.M113.539452
http://www.ncbi.nlm.nih.gov/pubmed/24509853
http://doi.org/10.1016/j.resuscitation.2012.01.028
http://doi.org/10.1016/j.ymgme.2018.04.011
http://doi.org/10.4172/2155-9872.S2-006
http://doi.org/10.1016/j.ymgme.2013.06.007
http://www.ncbi.nlm.nih.gov/pubmed/23860310
http://doi.org/10.1016/j.ymgme.2016.12.010
http://www.ncbi.nlm.nih.gov/pubmed/28065440
http://doi.org/10.1007/8904_2014_330
http://www.ncbi.nlm.nih.gov/pubmed/25712379
http://doi.org/10.1007/8904_2014_311


Diagnostics 2021, 11, 1563 16 of 16

18. Ligthelm, R.J.; Borzì, V.; Gumprecht, J.; Kawamori, R.; Wenying, Y.; Valensi, P. Importance of observational studies in clinical
practice. Clin. Ther. 2007, 29 Pt 1, 1284–1292. [CrossRef]

19. Celik, B.; Tomatsu, S.C.; Tomatsu, S.; Khan, S.A. Epidemiology of mucopolysaccharidoses update. Diagnostics 2021, 11, 273.
[CrossRef]

20. Nelson, A.; Berkestedt, I.; Bodelsson, M. Circulating glycosaminoglycans species in septic shock. Acta. Anaesthesiol. Scand. 2014,
58, 36–43. [CrossRef]

21. Scarpa, M.; Lourenço, C.M.; Amartino, H. Epilepsy in mucopolysaccharidosis disorders. Mol. Genet. Metab. 2017, 122, 55–61.
[CrossRef] [PubMed]

22. Okamoto, M.; Sakiyama, J.; Mori, S.; Kurazono, S.; Usui, S.; Hasegawa, M.; Oohira, A. Kainic acid-induced convulsions cause
prolonged changes in the chondroitin sulfate proteoglycans neurocan and phosphacan in the limbic structures. Exp. Neurobiol.
2003, 184, 179–195. [CrossRef]

23. Leistner, C.M.; Gruen-Bernhard, S.; Glebe, D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell
Microbiol. 2008, 10, 122–133. [CrossRef] [PubMed]

24. WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 1989, 63, 52–58.
[CrossRef] [PubMed]

25. DellaValle, B.; Hasseldam, H.; Johansen, F.F.; Iversen, H.K.; Rungby, J.; Hempel, C. Multiple soluble components of the glycocalyx
are increased in patient plasma after ischemic stroke. Stroke 2019, 50, 2948–2951. [CrossRef]

26. Li, J.; Li, J.P.; Zhang, X.; Lu, Z.; Yu, S.P.; Wei, L. Expression of heparanase in vasculature cells and astrocytes of the mouse brain
after focal cerebral ischemia. Brain Res. 2012, 1433, 137–144. [CrossRef]

27. McKeon, R.J.; Schreiber, R.C.; Rudge, J.S.; Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS
injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 1991, 11, 3398–3411. [CrossRef]

28. Kato, Y.; Hayatsu, N.; Kaneko, M.K.; Ogasawara, S.; Hamano, T.; Takahashi, S.; Nishikawa, R.; Matsutani, M.; Mishima, K.;
Narimatsu, H. Increased expression of highly sulfated keratan sulfate synthesized in malignant astrocytic tumors. Biochem.
Biophys. Res. Commun. 2006, 369, 1041–1046. [CrossRef]

29. Leadbeater, W.E.; Gonzalez, A.-M.; Logaras, N.; Berry, M.; Turnbull, J.E.; Logan, A. Intracellular trafficking in neurons and glia
of fibroblast growth factor-2, fibroblast growth factor receptor 1 and heparan sulphate proteoglycans in the injured adult rat
cerebral cortex. J. Neurochem. 2006, 96, 1189–1200. [CrossRef]

30. Hippensteel, J.A.; Anderson, B.J.; Orfila, J.E.; McMurtry, S.A.; Dietz, R.M.; Su, G.; Ford, J.A.; Oshima, K.; Yang, Y.; Zhang, F.; et al.
Circulating heparan sulfate fragments mediate septic cognitive dysfunction. J. Clin. Investig. 2019, 129, 1779–1784. [CrossRef]

31. Lukas Martin, L.; Peters, C.; Schmitz, S.; Moellmann, J.; Martincuks, A.; Heussen, N.; Lehrke, M.; Müller-Newen, G.; Marx,
G.; Schuerholz, T. Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine
Cardiomyocytes. Shock 2015, 44, 569–577. [CrossRef] [PubMed]

http://doi.org/10.1016/j.clinthera.2007.07.004
http://doi.org/10.3390/diagnostics11020273
http://doi.org/10.1111/aas.12223
http://doi.org/10.1016/j.ymgme.2017.10.006
http://www.ncbi.nlm.nih.gov/pubmed/29170080
http://doi.org/10.1016/S0014-4886(03)00251-6
http://doi.org/10.1111/j.1462-5822.2007.01023.x
http://www.ncbi.nlm.nih.gov/pubmed/18086046
http://doi.org/10.1128/jvi.63.1.52-58.1989
http://www.ncbi.nlm.nih.gov/pubmed/2535752
http://doi.org/10.1161/STROKEAHA.119.025953
http://doi.org/10.1016/j.brainres.2011.11.032
http://doi.org/10.1523/JNEUROSCI.11-11-03398.1991
http://doi.org/10.1016/j.bbrc.2008.02.130
http://doi.org/10.1111/j.1471-4159.2005.03632.x
http://doi.org/10.1172/JCI124485
http://doi.org/10.1097/SHK.0000000000000462
http://www.ncbi.nlm.nih.gov/pubmed/26529654

	Glycosaminoglycans as Biomarkers for Mucopolysaccharidoses and Other Disorders
	Let us know how access to this document benefits you
	Recommended Citation
	Authors

	Introduction 
	Materials and Methods 
	Subjects 
	Enzymes and Standards 
	Sample Preparations 
	LC-MS/MS 
	Statistical Analysis 

	Results 
	Conditions with Elevated GAG Levels 
	Encephalopathy GAG Levels 
	GAG Levels of Various Conditions 
	GAG Levels of Newborns 

	Discussion 
	Conclusions 
	References

