

Thomas Jefferson University Jefferson Digital Commons

Department of Obstetrics and Gynecology Faculty Papers

Department of Obstetrics and Gynecology

3-1-2023

Pregnancy Outcome of Women with Paroxysmal Nocturnal Hemoglobinuria

Fabrizio Zullo

Elisabetta Gragnano

Gabriele Saccone

Vincenzo Berghella Thomas Jefferson University

Fabrizio Pane

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/obgynfp

Part of the Obstetrics and Gynecology Commons
<u>Let us know how access to this document benefits you</u>

Recommended Citation

Zullo, Fabrizio; Gragnano, Elisabetta; Saccone, Gabriele; Berghella, Vincenzo; Pane, Fabrizio; and Guida, Maurizio, "Pregnancy Outcome of Women with Paroxysmal Nocturnal Hemoglobinuria" (2023). *Department of Obstetrics and Gynecology Faculty Papers.* Paper 102. https://jdc.jefferson.edu/obgynfp/102

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Obstetrics and Gynecology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Authors

Fabrizio Zullo, Elisabetta Gragnano, Gabriele Saccone, Vincenzo Berghella, Fabrizio Pane, and Maurizio Guida

Provisionally accepted for publication

NARRATIVE REVIEW

Pregnancy Outcome of Women with Paroxysmal Nocturnal Hemoglobinuria Short title: Maternal and perinatal outcome in pregnant women with PNH

Doi: 10.36129/jog.2022.33

Fabrizio Zullo MD,¹ Elisabetta Gragnano RN,² Gabriele Saccone MD,² Vincenzo Berghella MD,³ Fabrizio Pane MD,⁴ Maurizio Guida MD²

¹Department of Maternal and Child Health and Urological Sciences, Sapienza University, Rome, Italy.

²Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy

³Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel

⁴Department of Clinical Medicine and Surgery, Hematology Unit, School of Medicine, University of Naples Federico II, Naples, Italy

<u>Correspondence:</u> Gabriele Saccone. Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy

Email: gabriele.saccone.1990@gmail.com

Disclosure: The authors report no conflict of interest **Financial Support:** No financial support was received for this study

ABSTRACT

Objective: To evaluate maternal and perinatal outcomes in pregnant women affected by Paroxysmal Nocturnal Hemoglobinuria (PNH) treated with eculizumab with a case series and literature review.

Methods: This was a case series study with literature review. Clinical records of all consecutive pregnant women with PNH were included in the study. The systematic review was conducted using electronic databases from inception of each database through May 2021. No restrictions for language or geographic location were applied. All reports of women with PNH in pregnancy, treated with eculizumab, were included in the review. Reports of women not treated or treated with other drugs rather than eculizumab (e.g. low molecular weight heparin alone) were excluded from the study. Maternal and perinatal outcomes were evaluated.

Results: Fifteen studies, including 24 pregnancies with PNH, were included in the review. All included women received eculizumab during the pregnancy, of them 10 received the treatment for the entire length of their gestation. Gestational age at delivery was reported in 18 cases, with preterm birth at less than 37 weeks occurring in fifteen women (83%). 57.1% of the women delivered by cesarean delivery. The cases series added three new cases in the literature. Two cases were already on eculizumab before pregnancy, while in one case eculizumab therapy was initiated in the second trimester of pregnancy. In all the three cases, there were no thrombotic complications, maternal or neonatal deaths, or fetal structural abnormalities.

Conclusion: PNH in pregnant women may be associated with an increased risk of obstetric complications, such us cesarean delivery or preterm birth. Eculizumab appears to be safe and effective for managing PNH during pregnancy.

INTRODUCTION

Paroxysmal Nocturnal Hemoglobinuria (PNH) is an acquired stem cell hematopoietic disorder complicated by recurrent hemolysis, bone marrow failure and both arterial and venous thrombosis (1). PNH is a unique disease, and its clinical manifestations are caused by the deficiency in glycosylphosphatidylinositol-anchored proteins (GPI-APs) (2).

The lack of the complement regulatory proteins CD55 and CD59, who are anchored to the cell surface by the GPI-APS, appears to be the main causative mechanism of complications occurring in PNH affected patients(3). CD55 orchestrate the pathways leading to the formation and stability of the C3 and C5 convertases (4) whereas CD59 interferes with the terminal effector complement, blocking the incorporation of C9 onto the C5b–C8 complex, forming the MAC (5).

PNH erythrocytes are highly vulnerable to complement-mediated lysis owing to a reduction, or absence, of 2 important GPI-anchored complement regulatory membrane proteins, CD55 and CD59 (3). The observed dysregulation of complement mediated cell lysis is the underlying mechanism of the chronic hemolytic anemia that are frequently observed in these patients.

Thrombosis is another typical manifestation and is the leading cause of death in PNH (6). However, the pathophysiology and mechanism underlying the thrombophilia in PNH is not well understood.

Physiologically, pregnancy is accompanied by changes in the coagulation and fibrinolytic systems. These include increases in several clotting factors, a decrease in protein S levels and inhibition of fibrinolysis.

As gestation progresses, there is also a significant fall in the activity of activated protein C. Pregnancy in itself causes approximately a five-fold increased risk of deep venous thrombosis (7). Also, intravascular breakthrough hemolysis is more severe during pregnancy with higher transfusion dependence (8).

Therapy of PNH include treatment of the acute attacks, including steroids, and transfusions, and long-term therapy with anticoagulant, such as warfarin.

On March 2007, the FDA approved the use of Eculizumab for treating PNH. Prior to eculizumab the median life expectancy of an individual with PNH was approximately 10 years and obstetric outcome in pregnant patients were poor. Since that time, short and midterm studies of patients on eculizumab demonstrate that the drug returns the patient to a normal life expectancy, improves quality of life, and decreases the need for blood transfusions

Eculizumab is a humanized monoclonal antibody, that inhibits and prevents the C5 factor cleavage into its final products: C5a and C5b, a potent proinflammatory molecule and a C5b-C9 complex particle respectively. Eculizumab inhibits the intravascular hemolysis that leads to anemia but most importantly, by arresting complement mediated RBC destruction it prevents the release of thrombogenic products stored inside the RBC, thus reducing thrombotic complications (9).

Eculizumab therapy is started at moment of diagnosis by following an induction-maintenance protocol. Patients usually start with 600mg IV eculizumab every 7 days for 4 weeks followed by 900mg 7 days later and a lifelong maintenance dose of 900mg every 14 days (10).

No studies have shown security of eculizumab in pregnancy and placental passage may occur (11), but ELISA based essay for complement activity in the newborn showed that eculizumab at therapeutic dose in the pregnant women did not affect the complement system of the newborn (12).

Therefore, before eculizumab, a humanized anti-C5 monoclonal antibody (13) came into clinical use, pregnancy was relatively discouraged in PNH women. Nowadays, in the eculizumab era, although there are no RCT proving the effectiveness and security in pregnancy, maternal and neonatal morbidity is significantly decreased (14).

Objective

The aim of this study was to evaluate maternal and perinatal outcomes in pregnant women affected by PNH with a literature review and a case series.

METHODS

Literature review

The search for the systematic review was conducted using MEDLINE, EMBASE, Scopus, ClinicalTrials.gov, OVID and Cochrane Library as electronic databases. Articles were identified with the use of a combination of the following text words: "Paroxysmal Nocturnal Hemoglobinuria" "Marchiafava-Micheli syndrome" and "pregnancy," from inception of each database through May 2021. Review of articles also included the abstracts of all references retrieved from the search. No restrictions for language or geographic location were applied. All reports of women with PNH in pregnancy, treated with eculizumab, were included in the review. Reports of women not treated or treated with other drugs rather than eculizumab (e.g. low molecular weight heparin alone) were excluded from the study because these treatments did not reflect current clinical practice. For each study, maternal and perinatal outcomes were extracted. The electronic search, the eligibility of the studies, and data extraction were independently assessed by two authors (FZ, GS). Definition of the evaluated outcomes were according to the definition of the original included study.

Case series

This was a single center case-series study. Clinical records of all consecutive pregnant women with PNH who were referred to University of Naples Federico II (Naples, Italy) from January 1, 2015 to December 1, 2019 were included in a dedicated database. Maternal and perinatal outcomes were evaluated.

RESULTS

Literature review

Fifteen studies (8,11-24), including 24 pregnancies with PNH, were included in the review (Figure 1). 13 studies were in English (8,11-17,19-21,23,24), one in Hungarian (15), and one in Japanese (16).

The 24 included pregnancies resulted in 23 healthy babies (21 singletons, 2 twins), one early miscarriage and one elective termination of pregnancy (Table 1). The granulocyte clone size in percentage reported a mean of 77.6%. LDH levels at baseline were available in 18 cases, ranged from 585 UI/ml to 10,300 UI/ml with a mean value of 2271 UI/ml. Anticoagulation with low molecular weight heparin (LMWH) was prescribed in 18 cases (Table 2).

All included women received therapy with eculizumab during the pregnancy. Fourteen women were treated with eculizumab for the entire length of their gestation. Ten women received eculizumab at different times during the pregnancy. One woman received Eculizumab up to the 4th week of gestation, and three women received eculizumab up to the 5th week of gestation. One woman received eculizumab from the 10th week of gestation, one from the 11th, one from the 18th, two from the 27th, one from the 30th. Seven patients experienced breakthrough maternal hemolysis, and nine women received at least one RBC transfusion during pregnancy. Two patients experienced a thrombotic event (Table 2).

Gestational age at delivery was reported in 18 cases, with 28 weeks being the lowest and 40 weeks being the highest gestational age at delivery with a mean value of 36 weeks. Preterm birth at less than 37 weeks occurred in fifteen women (15/18, 83%). Mode of delivery was reported in 21 pregnancy. Twelve women underwent a Cesarean section (12/21-57%) for cardiotocographic indication or failure of labour and seven women delivered vaginally (7-21-33%) (Table 3). Mean birth weight was 2,481 grams ranging from 853 to 4,000 grams. No congenital abnormalities were reported (Table 4).

Case-series

During the study period, three women affected by PNH and treated with eculizumab were referred to our Institution (Table 5, Table 6). Case 1 started eculizumab therapy at the time of PNH diagnosis in the second trimester of pregnancy. The woman was admitted for inpatient monitoring for early severe intrauterine growth restriction and delivered an 1,850-gr baby at 33 0/5 weeks of gestation. Case 2 and case 3 did not experience adverse outcome and delivered at term by planned cesarean delivery for breech presentation, and by vaginal delivery, respectively.

COMMENT

Main findings

This study aimed to evaluate maternal and perinatal outcomes in pregnant women affected by PNH and treated with eculizumab. We presented three cases of PNH in which pregnancies were successfully managed with eculizumab therapy. In all cases PNH had been diagnosed before the women became pregnant. Two cases were already on eculizumab, while in one case eculizumab therapy was initiated in the second trimester of pregnancy. In our cases, there were no thrombotic complications, maternal or neonatal deaths, or fetal structural abnormalities.

The literature review showed only 15 studies (8,17-29), including 24 pregnancies. Pooled data showed a high rate of cesarean delivery (57.1%), admission to neonatal intensive care unit (NICU) (8.7%), and preterm birth (83%). Despite the therapy, 7 women experienced hemolysis, 9 women received RBC transfusions, and 2 women experienced a thrombotic event during the pregnancy.

All women were treated with eculizumab during pregnancy. 42.9% (9/21) of the women were exposed to the drug in the first trimester, and the 95.2% (20/21) in the third trimester of pregnancy. The review reported no drug related side effects. However, one woman experienced an early pregnancy loss at 6 weeks of gestation.²³ As shown in Table 2, 9 women had a granulocyte clone size \geq 90%, among these women only 2 women experienced breakthrough hemolysis.

Conclusions

In summary, PNH in pregnant women may be associated with an increased risk of obstetric complications, such us cesarean delivery or preterm birth. Eculizumab appears to be safe and effective for managing PNH during pregnancy.

REFERENCES

Brodsky RA. Paroxysmal nocturnal hemoglobinuria. Blood. 2014;124(18):2804-2811

Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, Kinoshita T. Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1994;330:249–55.

DeZern AE, Brodsky RA. Paroxysmal nocturnal hemoglobinuria: a complement-mediated hemolytic anemia. Hematol Oncol Clin North Am. 2015;29(3):479–494

Rosse WF. Paroxysmal nocturnal hemoglobinuria as a molecular disease. Medicine. 1997;76(2):63–93.

Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71(1):1–9.

Hill A, Kelly RJ, Hillmen P. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood. 2013 Jun 20;121(25):4985-96

Simcox LE, Ormesher L, Tower C, Greer IA. Thrombophilia and Pregnancy Complications. Int J Mol Sci. 2015;16(12):28418–28428

McKeage, Kate. "Eculizumab: A Review of Its Use in Paroxysmal Nocturnal Haemoglobinuria." Drugs, vol. 71, no. 17, Dec. 2011, pp. 2327–45.

Helley, Dominique, et al. "Evaluation of Hemostasis and Endothelial Function in Patients with Paroxysmal Nocturnal Hemoglobinuria Receiving Eculizumab." Haematologica, vol. 95, no. 4, Apr. 2010, pp. 574–81.

Duineveld, Caroline, et al. "Placental Passage of Eculizumab and Complement Blockade in a Newborn." Kidney International, vol. 95, no. 4, 2019, p. 996.

Hallstensen, Randi Fykse, et al. "Eculizumab Treatment during Pregnancy Does Not Affect the Complement System Activity of the Newborn." Immunobiology, vol. 220, no. 4, Apr. 2015, pp. 452–59.

Kelly R, Arnold L, Richards S, Hill A, Bomken C, Hanley J, Loughney A, Beauchamp J, Khursigara G, Rother RP, Chalmers E, Fyfe A, Fitzsimons E, Nakamura R, Gaya A, Risitano AM, Schubert J, Norfolk D, Simpson N, Hillmen P. The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br J Haematol. 2010 May;149(3):446-5

Patriquin CJ, Kuo KHM. Eculizumab and Beyond: The Past, Present, and Future of Complement Therapeutics. Transfus Med Rev. 2019 Oct;33(4):256-265

Sarno L, Tufano A, Maruotti GM, Martinelli P, Balletta MM, Russo D. Eculizumab in pregnancy: a narrative overview. J Nephrol. 2019 Feb;32(1):17-25

Patriquin C, Leber B. Increased Eculizumab Requirements during Pregnancy in a Patient with Paroxysmal Nocturnal Hemoglobinuria: Case Report and Review of the Literature. Clin Case Rep. 2015 Feb;3(2):88-91

Marasca R, Coluccio V, Santachiara R, Leonardi G, Torelli G, Notaro R, Luzzatto L. Pregnancy in PNH: Another Eculizumab Baby. Br J Haematol. 2010 Sep;150(6):707-8

Danilov AV, Smith H, Craigo S, Feeney DM, Relias V, Miller KB. Paroxysmal Nocturnal Hemoglobinuria (PNH) and Pregnancy in the Era of Eculizumab. Leuk Res. 2009 Jun;33(6):e4-5.

Sharma R, Keyzner A, Liu J, Bradley T, Allen SL. Successful Pregnancy Outcome in Paroxysmal Nocturnal Hemoglobinuria (PNH) Following Escalated Eculizumab Dosing to Control Breakthrough Hemolysis. Leuk Res Rep. 2015 May 16;4(1):36-8

Li D, Wang L, Horiuchi I, Kimura SI, Chikazawa K, Kimura A, Sasaki S, Kuwata T, Takagi K. Preoperative Administration of Eculizumab to Prevent Surgery-Triggered Hemolysis during Cesarean Section with Paroxysmal Nocturnal Hemoglobinuria. Clin Case Rep. 2018 Jul 25;6(9):1807-180

Bastos JMC, Pinheiro PL, Rocha LC, Bicalho EC, Cazeli AB, Marcondes SS, Pinasco GC. Therapeutic Challenges in Pregnant Women with Paroxysmal Nocturnal Hemoglobinuria: A Case Report. Medicine (Baltimore). 2018 Sep;97(36):e12155

Lauritsch-Hernandez LS, Kraehenmann F, Balabanov S, Kimmich N. Eculizumab Application during Pregnancy in a Patient with Paroxysmal Nocturnal Hemoglobinuria: A Case Report with Review of the Literature. Clin Case Rep. 2018 Jun 27;6(8):1582-1587

Horányi D, Várkonyi A, Nagy GR, Bodó I, Masszi T. [Rare case of a pregnancy in a woman with paroxysmal nocturnal hemoglobinuria. Case report]. Orv Hetil. 2016 Jun 5;157(23):916-8

Patel A, Unnikrishnan A, Murphy M, Egerman R, Wheeler S, Richards A, Wingard J. Paroxysmal Nocturnal Hemoglobinuria in Pregnancy: A Dilemma in Treatment and Thromboprophylaxis. Case Rep Hematol. 2017;2017:7289126

Vekemans MC, Lambert C, Ferrant A, Saussoy P, Havelange V, Debiève F, Van Den Neste E, Michaux L. Management of Pregnancy in Paroxysmal Nocturnal Hemoglobinuria on Long-Term Eculizumab. Blood Coagul Fibrinolysis. 2015 Jun;26(4):464-6

Gessoni G, Canistro R, Bergamini L, Valverde S, Gessoni F, Nani G, Beggio S, Spillare P, Tregnaghi A. Postpartum Thrombotic Complication in a Patient with Paroxysmal Nocturnal Hemoglobinuria. Blood Coagul Fibrinolysis. 2015 Jun;26(4):458-63

Miyasaka N, Miura O, Kawaguchi T, Arima N, Morishita E, Usuki K, Morita Y, Nishiwaki K, Ninomiya H, Gotoh A, Imashuku S, Urabe A, Shichishima T, Nishimura J, Kanakura Y. Pregnancy Outcomes of Patients with Paroxysmal Nocturnal Hemoglobinuria Treated with Eculizumab: A Japanese Experience and Updated Review. Int J Hematol. 2016 Jun;103(6):703-12 Rodríguez-Ferreras A, Velasco-Roces L. Eculizumab-Related Abortion in a Woman with Paroxysmal Nocturnal Hemoglobinuria: A Case Report. J Reprod Infertil. 2019 Oct-Dec;20(4):252-255

Ando Y, Kida M, Saika M, Chizuka A, Hangaishi A, Urabe A, Usuki K. Pregnancy and delivery in a PNH patient treated with eculizumab. Rinsho Ketsueki. 2014 Nov;55(11):2288-93

TABLES

Table 1. Characteristics of the studies included in the review

	Study location	N of included women with PNH	Study language
Danilov 2009 ¹³	Boston, MA USA	1 singleton pregnancy	English
Marasca 2010 ¹²	Modena, Italy	1 singleton pregnancy	English
Kelly 2010 ⁸	Leeds, UK	6 singleton pregnancies and one twin pregnancy	English
Ando 2014 ²⁴	Tokyo, Japam	1 singleton pregnancy	Japanese
Gessoni 2015 ²¹	Chioggia, Italy	1 singleton pregnancy	English
Patriquin 2015 ¹¹	Patriquin 2015 ¹¹ Hamilton, Canada		English
Vekemans 2015 ²⁰ Brussels, Belgium		1 singleton pregnancy	English
Sharma 2015 ¹⁴ Lake Success, NY USA		1 singleton pregnancy	English
Miyasaka 2016 ²²	Miyasaka 2016 ²² Tokyo, Japan		English
Horànyi 2016 ¹⁸	Horànyi 2016 ¹⁸ Budapest, Hungary		Hungarian
Patel 2017 ¹⁹	Gainesville, FL USA	1 singleton pregnancy	English
Bastos 2018 ¹⁶	Vitoria, Brazil	1 singleton pregnancy	English
Li 2018 ¹⁵	Saitama, Japan	2 singleton pregnancies	English
Lauritsch-Hernandez 2018 ¹⁷	Zurich, Switzerland	1 singleton pregnancy	English
Rodríguez-Ferreras 2019 ²³	Oviedo, Spain	1 singleton pregnancy	English
TOTAL	-	24 pregnancies, 25 fetuses	-

PNH, Paroxysmal Nocturnal Hemoglobinuria

Table 2. Characte	ale 2. Characteristics and outcome of the women included in the review								
	PNH Clone size (%)	LDH at baseline (U/L)	Anti- coagulation Therapy	Eculizumab use in Pregnancy	Eculizumab augmentation needed	Maternal Hemolysis	Maternal Thrombosis	Maternal RBC transfusion	Other maternal complications
Danilov 2009 ¹³	30	1500	LMWH	Starting from 30 weeks and in post-partum	Yes 600-900 mg	NR	NR	Yes, 2 units	Thrombocytopenia
Marasca 2010 ¹²	69	NR	LMWH	Entire Pregnancy	None needed	NR	NR	NR	NR
Kelly 2010 ⁸	70	1,336	NR	Up to 5 weeks	ITOP	NR	NR	NR	NR
Kelly 2010 ⁸	93	2,376	LMWH	Up to 5 weeks	None needed	NR	NR	NR	NR
Kelly 2010 ⁸	96	2,014	NR	Up to 5 weeks	None needed	NR	NR	NR	Fever of unknown origin
Kelly 2010 ⁸	87	1,263	LMWH	Up to 4 weeks	None needed	NR	NR	NR	NR
Kelly 2010 ⁸	100	10,300	LMWH	Entire pregnancy	Yes, shortened infusion interval	Yes, at 26 weeks.	NR	Yes	NR
Kelly 2010 ⁸	97	1,616	LMWH	Starting from 27 weeks	Shortened Interval	NR	Postpartum portal vein thrombosis	NR	Postpartum hemorrhage
Kelly 2010 ⁸	98	2,642	LMWH	Entire Pregnancy	None needed	NR	NR	NR	NR
Ando 2014 ²⁴	56	2,300	None	Entire pregnancy	None Needed	Yes, mild.	NR	NR	NR
Gessoni 2015 ²¹	78	3,380	LMWH	Entire pregnancy	Yes, shortened interval.	Yes, severe and recurrent	NR	Yes, 26 units	Postpartum pleuroperitoneal effusion, pulmonary embolism, upper limbs thrombophlebitis.
Patriquin 2015 ¹¹	23	2,000	LMWH	Entire pregnancy	Yes, increased dose and	Yes, recurrent	NR	Yes, 25 units	NR

					shortened interval		0		
Vekemans 2015 ²⁰	98	NR	LMWH	Entire pregnancy	Additional dose before delivery	NR	NR	Yes, 2 units every 2 week	NR
Sharma 2015 ¹⁴	90	NR	LMWH	Entire pregnancy	Significant increase in dose	NR	NR	Yes	NR
Miyasaka 2016 ²²	96	2,200	LMWH	Entire pregnancy	None needed	Yes	NR	NR	NR
Miyasaka 2016 ²²	71	2,300	LMWH	From 27 weeks	None Needed	NR	NR	Yes, 10 units	Heparin induced thrombocytopenia
Miyasaka 2016 ²²	81	2,300	LMWH	From 18 weeks	None needed	NR	NR	NR	Postpartum hemorrhage
Horànyi 2016 ¹⁸	90	1,000	LMWH	From 11 week	Yes, increased dose	NR	Sinus thrombosis	NR	NR
Patel 2017 ¹⁹	50	NR	LMWH	From 10 week	None needed	NR	NR	NR	NR
Bastos 2018 ¹⁶	NR	1,111	LMWH	Entire pregnancy	Yes, increased dose	Yes, severe and recurrent	NR	Yes, 10 units	Acute kidney injury
Li 2018 ¹⁵	NR	NR	None	Entire pregnancy	None needed	NR	NR	NR	Failed induction of labor
Li 2018 ¹⁵	NR	NR	None	Entire pregnancy	Yes, preoperative	NR	NR	NR	NR
Lauritsch- Hernandez 2018 ¹⁷	80	585	LMWH	Entire pregnancy	Yes, shortened interval.	Yes	NR	Yes, 2 units	GDM, gestational HTN, thrombocytopenia
Rodríguez- Ferreras 2019 ²³	80	658	None	Entire pregnancy	NR	NR	NR	NR	NR

PNH, Paroxysmal Nocturnal Hemoglobinuria; LDH, lactate dehydrogenase; RBC, red blood cells; NR, not reported; LMWH, low molecular weight heparin; ITOP, induced termination of pregnancy . of p.

	Gestational age delivery	Mode of delivery	Preeclampsia
Danilov 2009 ¹³	36	Cesarean Section	No
Marasca 2010 ¹²	38	Vaginal Birth	No
Kelly 2010 ⁸	5	Induced termination of pregnancy	No
Kelly 2010 ⁸	NR	NR	No
Kelly 2010 ⁸	NR	NR	No
Kelly 2010 ⁸	NR	NR	No
Kelly 2010 ⁸	Term	Vaginal Birth	No
Kelly 2010 ⁸	35	Cesarean Section	No
Kelly 2010 ⁸	28	Cesarean Section	Yes
Ando 2014 ²⁴	37	Cesarean Section	No
Gessoni 2015 ²¹	37	Cesarean Section	No
Patriquin 2015 ¹¹	36	Cesarean section	No
Vekemans 2015 ²⁰	38	Vaginal Birth	No
Sharma 2015 ¹⁴	36	Cesarean Section	No
Miyasaka 2016 ²²	37	Vaginal Birth	No
Miyasaka 2016 ²²	28	Cesarean Section	Yes
Miyasaka 2016 ²²	40	Vaginal Birth	No
Horànyi 2016 ¹⁸	39	Vaginal Birth	No
Patel 2017 ¹⁹	37	Vaginal Birth	No
Bastos 2018 ¹⁶	35	Cesarean Section	No
Li 2018 ¹⁵	40	Cesarean Section	No
Li 2018 ¹⁵	37	Cesarean Section	No
Lauritsch-Hernandez 2018 ¹⁷	37	Cesarean Section	No
Rodríguez-Ferreras 2019 ²³	6	Early miscarriage	-
TOTAL	Mean 36 weeks [28 to 40]	Cesarean delivery 12/21 (57.1%) Vaginal delivery 7/21 (33.3%)	2/23 (8.7%)

 Table 3. Obstetrics outcome of the women included in the review

NR, not reported

	Miscarriage	Fetal death	Neonatal death	Birth weight (gr)	Admission to NICU	Congenital abnormalities
Danilov 2009 ¹³	No	No	No	NR	No	No
Marasca 2010 ¹²	No	No	No	3430	No	No
Celly 2010 ⁸	No	No	No	NR	No	No
Xelly 2010 ⁸	No	No	No	NR	No	No
Xelly 2010 ⁸	No	No	No	NR	No	No
Kelly 2010 ⁸	No	No	No	NR	No	No
Kelly 2010 ⁸	No	No	No	4000	No	No
Kelly 2010 ⁸	No	No	No	2400-2000	No	No
Kelly 2010 ⁸	No	No	No	900	Yes	No
Ando 2014 ²⁴	No	No	No	2428	No	No
Gessoni 2015 ²¹	No	No	No	NR	No	No
Patriquin 2015 ¹¹	No	No	No	NR	No	No
Vekemans 2015 ²⁰	No	No	No	NR	No	No
Sharma 2015 ¹⁴	No	No	No	NR	No	No

Miyasaka 2016 ²²	No	No	No	NR	No	No
Miyasaka 2016 ²²	No	No	No	2662	No	No
Miyasaka 2016 ²²	No	No	No	853	Yes	No
Horànyi 2016 ¹⁸	No	No	No	3110	No	No
Patel 2017 ¹⁹	No	No	No	NR	No	No
Bastos 2018 ¹⁶	No	No	No	2140	No	No
Li 2018 ¹⁵	No	No	No	2775	No	No
Li 2018 ¹⁵	No	No	No	NR	No	No
Lauritsch- Hernandez 2018 ¹⁷	No	No	No	2730	No	No
Rodríguez- Ferreras 2019 ²³	Yes at 6 weeks	-	-	-	-	-
TOTAL	1/24 (4.2%)	0/23	0/23	Mean 2,481 grams [853 to 4,000]	2/23 (8.7%)	0/23
						6

Table 5. Cases included in the case series: maternal outcomes

	Case 1	Case 2	Case 3	TOTAL
Diagnosis of PNH	At 16 weeks of	Before pregnancy	Before pregnancy	-
First prenatal visit	At 9 weeks	At 11 weeks	At 7 weeks	-
PNH clone size (%)	85	60	75	Mean 73
LDH at baseline (U/L)	1,650	850	540	Mean 1,013
Anti-coagulation therapy	LMWH	LMWH	LMWH	-
Eculizumab use in pregnancy	Starting from 18 weeks	Entire pregnancy	Entire pregnancy	-
Eculizumab augmentation needed	No	No	No	0/3
Maternal hemolysis	Yes	No	No	1/3 (33.3%)
Maternal thrombosis	No	No	No	0/3
Maternal RBC transfusion	No	No	No	0/3
Preeclampsia	No	No	No	0/3
Gestational age at delivery	33 0/5 weeks	38 2/7 weeks	40 6/7 weeks	-
Preterm birth	Yes	No	No	1/3 (33.3%)
Mode of delivery	Cesarean delivery	Cesarean delivery	Vaginal delivery	Cesarean delivery 2/3 (66.7%) Vaginal delivery 1/3 (33.3%)

PNH, Paroxysmal Nocturnal Hemoglobinuria; LDH, lactate dehydrogenase; RBC, red blood cells

Table 6. Cases included in the case series: perinatal outcome	omes
---	------

	Case 1	Case 2	Case 3	TOTAL
Miscarriage	No	No	No	0/3
Fetal death	No	No	No	0/3
Neonatal death	No	No	No	0/3
Birth weight (gr)	1,850	3,350	3,180	Mean 2793
Intrauterine growth restriction	Yes	No	No	1/3 (33.3%)
Admission to NICU	Yes	No	No	1/3 (33.3%)
Congenital abnormalities	No	No	No	0/3

NICU, admission to neonatal intensive care unit

FIGURES

Figure 1. Study flow chart

