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SUMMARY

Primary liver cancer is a rising cause of cancer deaths in the US. Although immunotherapy with immune
checkpoint inhibitors induces a potent response in a subset of patients, response rates vary among individ-
uals. Predicting which patients will respond to immune checkpoint inhibitors is of great interest in the field. In
a retrospective arm of the National Cancer Institute Cancers of the Liver: Accelerating Research of Immuno-
therapy by a Transdisciplinary Network (NCI-CLARITY) study, we use archived formalin-fixed, paraffin-
embedded samples to profile the transcriptome and genomic alterations among 86 hepatocellular carcinoma
and cholangiocarcinoma patients prior to and following immune checkpoint inhibitor treatment. Using super-
vised and unsupervised approaches, we identify stable molecular subtypes linked to overall survival and
distinguished by two axes of aggressive tumor biology and microenvironmental features. Moreover, molec-
ular responses to immune checkpoint inhibitor treatment differ between subtypes. Thus, patients with
heterogeneous liver cancer may be stratified bymolecular status indicative of treatment response to immune
checkpoint inhibitors.

INTRODUCTION

Primary liver cancers (PLCs), encompassing hepatocellular

carcinoma (HCC), and biliary tract cancers (BTCs), including

intra- and extrahepatic cholangiocarcinoma (iCCA and eCCA,

respectively), are leading causes of cancer mortality worldwide

with rising incidence in the US.1–3 While early-stage liver cancer

may be curable by interventional options, including resection,

ablation, or transplantation,most patients presentwith advanced

disease, poor prognosis,4 and limited treatment options.
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More recently, immunotherapy-based treatments, including

immune checkpoint inhibitors (ICIs), have revolutionized PLC

treatment. Positive results from large randomized phase III trials

have provided three first-line ICI treatment options for advanced

HCC patients (atezolizumab plus bevacizumab,5 tremelimumab

plus durvalumab, and durvalumab monotherapy, found to

be noninferior to sorafenib6) as well as gemcitabine/cisplatin

plus durvalumab as the standard of care first-line therapy in

advanced CCA.7 However, only 13%–30% of patients achieve

an objective response rate to these immunotherapy regimens

with suboptimal median survival.5,8,9 Therefore, identification of

predicative biomarkers of treatment response and outcome is

urgently needed to select patients who are likely to respond.

However, because tumor biopsy collection during trials is lack-

ing, and a limited number of patients undergo such regimens

at individual clinical sites, our understanding of themolecular un-

derpinnings of immunotherapy response in PLC patients re-

mains poor. Additionally, most genomics studies have utilized

frozen tumor tissue and, in some cases, adjacent non-tumor tis-

sue as the starting material to interrogate tumor and microenvi-

ronmental molecular alterations;4,10–13 however, the majority

of available specimens used for clinical diagnosis are formalin-

fixed, paraffin-embedded (FFPE) tissue. Interrogating FFPE

tissue may provide a more suitable route to efficiently identify

relevant molecular alterations through establishment of routine

diagnostic tests.

In this vein, we initiated the NCI-CLARITY study (National Can-

cer Institute Cancers of the Liver: Accelerating Research of

Immunotherapy by a Transdisciplinary Network), a multisite pro-

spective study of PLC clinical trial data and accompanying bio-

specimens, focused on exploring the underlying mechanisms

that determine immunotherapy responses. Here, we report on

a parallel retrospective arm of NCI-CLARITY entailing molecular

classification of 230 primary HCC and BTC tumors (mainly iCCA)

and adjacent non-tumor tissues, largely stored as FFPE attained

before and following ICI treatment, using total RNA sequencing

(RNA-seq) and whole-exome sequencing (WES) (Figure 1A). In

this study, we established an FFPE-based workflow for compre-

hensive transcriptome and whole exome profiling of PLC to

identify molecular features associated with ICI response and

outcome. We identified four stable survival-related molecular

subgroups defined by orthogonal axes of aggressive tumor

biology and immune infiltration, the latter associated with ICI

response. Furthermore, although the underlying molecular sta-

tus of tumors prior to ICI treatment was largely maintained

following treatment, somemolecular responses tracked with pa-

tient outcome. Thus, outcome-related and intersecting molecu-

lar axes are apparent in FFPE liver tumors prior to ICI treatment,

components of which could serve as indicators of treatment

response.

RESULTS

Samples
We analyzed tumor biopsy specimens from 86 patients (56 HCC

and 30 BTC) who received ICI treatment at five US clinical sites in

a combined NCI-CLARITY retrospective cohort (Figure 1A). The

broad diversity in treatment protocol, histological diagnosis, and

prior treatment as well as etiology allowed us to comprehen-

sively profile the variation present in this cohort (Table 1). Among

these patients, 74 had a baseline tumor specimen prior to immu-

notherapy treatment (50 HCC and 24 BTC), 37 had a tumor spec-

imen following immunotherapy treatment (17 HCC and 20 BTC),

and 27 had an available specimen at both time points (13 HCC

and 14 BTC). In addition, four HCC patients had serial tumors

with up to five time points following immunotherapy treatment.

RNA-seq and WES were performed on tumor and adjacent

non-tumor tissue.

Feasibility of molecular profiling using archival tissue
Genomic data studies on solid tumors have largely been gener-

ated using frozen tissue; however, most clinical tissue speci-

mens are typically available as FFPE specimens. Although the

fixation process introduces artifacts, including DNA fragmenta-

tion and base deamination,14 and FFPE samples often yield

limited nucleic acid, reducing library complexity,15 use of

archival FFPE tissue for comprehensive genomic analyses could

greatly expand the pool of tumors available for analysis and be

the premise for establishment of routine diagnostic tests.

To determine whether FFPE tissues could be used for tran-

scriptomics analysis, we extensively analyzed biological and

technical sources of variation among specimens. First, to deter-

mine the impact of technical variation on observed transcrip-

tomic differences, we used variance partitioning to estimate

the variation in expression explained by biological and technical

variables for each gene across 201 primary liver tumors and

adjacent non-tumor specimens (Figure S1A). We found that bio-

logical variation, such as patient of origin, histological diagnosis,

or sample malignancy, outweighed technical variation among

the most variable genes. We then quantified the impact of the

amount of input RNA used in library creation on transcriptomic

variation using four high-quality liver transplant samples from

which multiple libraries were prepared using 5 ng or 100 ng of

RNA from the same extraction. The number of expressed genes

was higher for the 100-ng replicates than for the 5-ng replicates,

as was expression correlation between replicates (Wilcoxon

test, p = 0.03; Figure S1B); however, the samples clustered by

patient regardless of input RNA amount (Figure S1C), confirming

that true biological variation could be captured with low-input

libraries.

We next investigated the impact of sample storage method,

which may introduce systematic artifacts that could be

conflated with true variation, using two sample sets where the

same tumor was stored in multiple media. In the first set, six tu-

mors were each stored in FFPE, RNALater (2 replicates), and

OCT blocks (2 replicates) for a total of five replicates per tumor.

Among these tumors, expression correlation was slightly higher

between replicates with the same storage method (Wilcoxon

test, p = 0.03; same storage comparisons n = 10, median corre-

lation = 0.77; different storage comparisons n = 38, median cor-

relation = 0.70). However, as before, samples still clustered by

patient (Figure S1D), whereby expression variation because of

patient of origin was far stronger than variation by storage

method (Figure S1E). Thus, there was relatively little influence

of storagemethod on expression variation. The second set con-

sisted of 54 pairs of FFPE and frozen samples from the same

2 Cell Reports Medicine 4, 101052, June 20, 2023

Article
ll

OPEN ACCESS



tumor and time point. There was no significant difference in

expression correlation between these storage pairs and FFPE

sections from the same block (Wilcoxon test, p = 0.10) or tu-

mors from a different time point from the same patient stored

using the same method (Wilcoxon p = 0.87; Figure S1F). The

correlation between the storage pairs decreased with de-dupli-

cated read depth, confirming that concordance is greater with

greater library complexity (Figure S1G). However, several path-

ways were enriched among the differentially expressed genes

(DEGs) between FFPE and frozen pairs (Figure S1H), some of

which have been observed previously.16 Together, these ana-

lyses confirmed the feasibility of using FFPE samples for tran-

scriptomics analysis, provided that sufficient input RNA was

available to generate complex libraries.

A gene signature predictive of survival on ICI therapy
The ability to predict response to ICIs prior to treatment would

greatly benefit patients. Hence, we determinedwhether themo-

lecular state of baseline liver tumors was predictive of patient

A

B C

D E

Figure 1. A baseline gene expression

signature segregates primary liver tumors

into high- and low-survival groups

(A) Overview of the patient cohort, available

samples, and analyses. Subset numbers indicate

those that pass RNA-seq quality control. PLC,

primary liver cancer; HCC, hepatocellular carci-

noma; BTC, biliary tract cancer.

(B) Kaplan-Meier curve of OS probability by sur-

vival signature-predicted risk group, all baseline

tumors (low risk, n = 32 tumors; high risk n = 32

tumors).

(C) Kaplan-Meier curve of OS probability by sur-

vival signature-predicted risk group, HCC tumors

(low risk, n = 30 tumors; high risk n = 11 tumors).

(B and C) The log rank p value is shown.

(D) Pathways enriched among signature genes,

ordered by FDR-corrected p value. Genes were

split by whether they were protective or not, and

enriched gene sets are divided into MSigDB

Hallmark (Hall) and c8 liver cell (LC) types.

(E) Kaplan-Meier curve of OS probability by risk

group predicted for TCGA LIHC and CHOL pri-

mary tumors using the survival signature (low risk,

n = 328 tumors; high risk, n = 79 tumors). The log

rank p value is shown.

response to treatment, considering

overall survival (OS) following ICIs as a

proxy. Baseline tumors of HCC and

BTC were assessed together for the

purpose of classifying tumors based

on unified molecular features rather

than histological subtypes.17 Survival

risk prediction was employed to divide

baseline tumors (n = 64) into high- and

low-survival risk groups based on gene

expression levels (Table S1) and re-

sulted in predicted survival risk groups

with significantly different OS (log rank

test, p < 0.0001; Figure 1B). Although BTC had worse OS

than HCC overall (by-diagnosis log rank test, p = 0.001), 11 of

41 HCC tumors were predicted to be high risk, and 2 of 23

BTC tumors were predicted to be low risk. To rule out con-

founding by histological diagnosis, we confirmed that risk group

survival differences were still significant among HCC alone (log

rank test, p < 0.001; BTC log rank test, p = 0.88 [data not

shown]; Figure 1C). Furthermore, survival modeling on HCC tu-

mors alone using the same input genes as the original model re-

sulted in risk groups with significantly different OS (principal

component [PC1-2], log rank test, p < 0.0001; 10-fold cross

validation [103 CV] permutation, p < 0.01) with similar gene

weights as the original models (Pearson r = 0.85, p < 0.0001)

(data not shown). Therefore, although the survival signature

was trained on HCC and BTC, it reflected molecular states

linked to survival in HCC alone. Gene set analysis on the signa-

ture genes showed that hepatocyte- and liver-function related

gene sets were associated with good survival, while EpCAM+

bile duct gene sets were associated with poor survival,
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suggesting that the survival signature primarily distinguished

less aggressive HCC from more aggressive HCC and BTC (Fig-

ure 1D). The survival signature was then used to predict OS in

independent validation sets (namely, The Cancer Genome Atlas

[TCGA] liver hepatocellular carcinoma [LIHC] and cholangiocar-

cinoma [CHOL] cohorts), which were not treated with ICIs (Fig-

ure 1E). The predicted risk groups had significantly different OS

(log rank test, p = 0.02), although a far smaller proportion of

HCC was assigned to the high-risk group. Taken together, a

survival signature is apparent among patients treated with

ICIs, potentially encoding underlying differences in prognosis

in addition to response to ICIs.

Unsupervised molecular clusters
To provide greater resolution on baseline tumor molecular

states, we next performed unsupervised consensus clustering

on gene expression profiles. We identified four stable molecular

clusters (Figures 2A and S2A–S2C), which largely corresponded

to the survival risk groups (Figure S2D). Consensus clustering,

removing extrahepatic CCA cases, yielded the exact same mo-

lecular clusters (Figure S2E). The molecular clusters also ex-

hibited differences in OS, with cluster 1 (C1) and C2 having

good survival and C3 and C4 having poor survival (Figure 2B).

Survival differences by cluster were still evident when restricted

to HCC (Figure 2C), but not in BTC alone, perhaps because of the

small number of samples in C1 and C2 (Figure S2F). Interest-

ingly, C4 exhibited progression-free survival (PFS) similar to C1

and C2, particularly when only HCC was considered

(Figures 2D, S2G, and S2H), indicating that the diseases are

potentially and temporarily controlled with ICIs. Thus, there

were natural molecular divisions in baseline tumors related to pa-

tient outcome to ICI treatment.

Table 1. Patient characteristics

HCC BTC Total

Number of patients 56 30 86

Site

NIH Clinical Center 22 (39%) 23 (77%) 45 (52%)

Georgetown University 18 (32%) 1 (3%) 19 (22%)

Massachusetts General

Hospital

7 (13%) 4 (13%) 11 (13%)

University of California San

Francisco

7 (13%) 2 (7%) 9 (10%)

Thomas Jefferson

University

2 (4%) 0 2 (2%)

Age

Age at diagnosis (median) 35–84 (63) 20–79 (63) 20–84 (63)

Unknown 8 (14%) 4 (13%) 12 (14%)

Sex

Male 45 (80%) 18 (60%) 63 (73%)

Female 11 (20%) 12 (40%) 23 (27%)

Race

White 26 (46%) 29 (97%) 55 (64%)

Black or African American 18 (32%) 0 18 (21%)

Asian 7 (13%) 1 (3%) 8 (9%)

Native Hawaiian or other

Pacific Islander

1 (2%) 0 1 (1%)

Other 2 (4%) 0 2 (2%)

Unknown 2 (4%) 0 2 (2%)

Ethnicity

Hispanic or Latino 3 (5%) 1 (3%) 4 (5%)

Not Hispanic or Latino 53 (96%) 28 (93%) 81 (94%)

Unknown 0 1 (3%) 1 (1%)

Hepatitis B virus (HBV) status

No 43 (77%) 27 (90%) 70 (81%)

Yes 13 (23%) 3 (10%) 16 (19%)

Hepatitis C virus (HCV) status

No 28 (50%) 26 (87%) 54 (63%)

Yes 27 (48%) 4 (13%) 31 (36%)

Unknown 1 (2%) 0 1 (1%)

Steatohepatitis

No 42 (75%) 27 (90%) 69 (80%)

Yes 8 (14%) 3 (10%) 11 (13%)

Unknown 6 (11%) 0 6 (7%)

Alcohol abuse

No 33 (59%) 28 (93%) 61 (71%)

Yes 23 (41%) 2 (7%) 25 (29%)

Cirrhosis

No 24 (43%) 28 (93%) 52 (60%)

Yes 32 (57%) 2 (7%) 34 (40%)

Prior treatment

No 16 (29%) 1 (3%) 17 (20%)

Yes 32 (57%) 27 (90%) 59 (69%)

Unknown 8 (14%) 2 (7%) 10 (12%)

Table 1. Continued

HCC BTC Total

Best RECIST v.1.1 response

CR 1 (2%) 0 1 (1%)

PR 6 (11%) 3 (10%) 9 (10%)

SD 25 (45%) 12 (40%) 37 (43%)

PD 18 (32%) 12 (40%) 30 (35%)

Non-evaluable 3 (5%) 1 (3%) 4 (6%)

Unknown 3 (5%) 2 (7%) 5 (6%)

Immunotherapy category

Single-agent ICI 15 (27%) 9 (30%) 24 (28%)

Single-agent ICI with

VEGF inhibitor

13 (23%) 0 13 (15%)

Single-agent ICI with

targeted therapy

3 (5%) 3 (10%) 6 (7%)

Combination ICI 24 (43%) 18 (60%) 42 (49%)

Combination ICI with

targeted therapy

1 (2%) 0 1 (1%)

BTC, biliary tract cancer; HCC, hepatocellular carcinoma; CR, complete

response; PR, partial response; SD, stable disease; PD, progressive dis-

ease; ICI, immune checkpoint inhibitor; TKI, tyrosine kinase inhibitor.
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We then determined whether the molecular clusters were

associated with clinical variables. The clusters exhibited some

stratification by histological diagnosis, with C1–C3 primarily

composed of HCC and C4 primarily of BTC (chi-square test,

false discovery rate [FDR]-adjusted p = 0.008; Figure S3A), and

the majority of the C4-specific DEGs were also differentially ex-

pressed between baseline HCC and BTC tumors (Figure S3B;

Table S2). However, detailed analyses of cluster assignments

and gene expression levels supported the joint clustering of

HCC and BTC (Figures S3C–S3E). While a few clinical and tech-

nical variables distinguished the molecular clusters, such as

enrichment of Child-Pugh score B in HCC samples in C4 (chi-

square test, FDR-adjusted p = 0.045; Figures S3F-S3I; STAR

Methods), there was no association with other demographic,

etiological, or pathological features (Tables S3 and S4). Thus,

molecular states could be shared by tumors with different histo-

logical diagnoses andwere not confounded by other clinical vari-

ables or technical artifacts.

Next, we compared the identified molecular clusters with pre-

viously described subclasses18–20 and found a strong associa-

tion (chi-square test with simulated p value, p < 0.05) between

subclasses (Figure S4A). In particular, good-survival C1 and

C2 were enriched in Hoshida subclass S3, representing differen-

tiated tumors with high hepatocyte function, good survival, and

enrichment of b-catenin mutations. They were also enriched

for TCGA LIHC subclass iC2, representing low-grade tumors.

A B

DC

Figure 2. Baseline tumors form molecular

clusters with differences in OS that corre-

spond to survival risk groups

(A) Semi-supervised hierarchical clustering of

baseline tumors on cluster-specific DEGs. Tumors

were clustered using Euclidean distance with

complete linkage within each cluster (C1, n = 13

tumors; C2, n = 15; C3, n = 15; C4, n = 21). Heatmap

displays expression Z scores by row.

(B) Kaplan-Meier curve for OS probability since

C1D1 of immunotherapy by molecular cluster, all

baseline tumors (same numbers as in A).

(C) Kaplan-Meier curve for OS probability since

C1D1 of immunotherapy by molecular cluster, HCC

tumors only (C1, n = 12 tumors; C2, n = 13; C3, n =

11; C4, n = 5).

(D) Kaplan-Meier curve for PFS probability since

C1D1 of immunotherapy by molecular cluster, HCC

tumors (same numbers as in C).

(B–D) The overall log rank test p value is shown. The

embedded table presents pairwise log rank test p

values with Benjamini-Hochberg correction.

In contrast, the poor-survival C3 and C4

were enriched for TCGA subclass iC1,

characterized by high tumor grade, lower

differentiation, proliferation, and poor sur-

vival, and C3 was enriched for the Hoshida

S2 subclass, also characterized by prolif-

eration. C4, which contained advanced

HCC tumors and BTC, was also enriched

for the Hoshida S1 subclass, character-

ized by enrichment of WNT signaling,

vascular invasion, and epithelial-mesenchymal transition as

well as the Yamashita EpCAM+ stemness signature. These re-

sults supported an axis of aggressive tumor biology or differen-

tiation as the primary driver of the observed survival differences

between molecular clusters.

RECIST response
We then explored Response Evaluation Criteria in Solid Tumors

(RECIST) response in relation to the molecular clusters because

RECIST is used extensively to provide a direct readout of

response to immunotherapy treatment. We defined responders

as patients with a complete response (CR) or partial response

(PR) and non-responders as patients with stable disease (SD)

or progressive disease (PD). Although the response rate was

not significantly different across the molecular clusters overall

and in HCC or BTC alone (chi-square test, p > 0.05;

Figures 3A and S4B), all of the 6 responders were in good sur-

vival C2 and poor survival C4 (2 HCC and 2 HCC/2 BTC,

respectively). There was no significant difference in response

rate by diagnosis (chi-square test, p = 1). As expected, re-

sponders had better OS than non-responders (Figures 3B

and S4C). Although no DEG was significant after multiple hy-

pothesis correction, DEGs with an uncorrected p < 0.01 that

were upregulated in responders vs. non-responders were en-

riched in immune-related gene sets (Table S5; Figure 3C).

This was confirmed using CIBERSORTx, which showed an
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enrichment of CD8 T cells in responders (Wilcoxon test, uncor-

rected p < 0.05; Figures 3D and S4D). Therefore, responders

appeared to have greater immune infiltration at baseline relative

to non-responders, where immediate response to ICI treatment

may be orthogonal to OS differences.

Tumor-intrinsic and stromal differences between
clusters
Despite similar survival profiles, differences in RECIST

response within the good- and poor-survival clusters sug-

gested underlying differences in tumor biology. We next

sought to further elucidate which molecular features distin-

guished the stable molecular clusters, including tumor-

intrinsic and microenvironmental features. To provide an

overview of the cellular composition of each cluster, we first

performed unsupervised principal-component analysis (PCA)

on enrichment scores for liver cell-specific signature gene

sets (MSigDB c8 module,21 gene sets). The four clusters

clearly separated along PC1 and PC2 (Figure 4A). PC2 sepa-

rated the good- and poor-survival clusters, with the strongest

contribution from the hepatocyte gene set (good survival C1

and C2) and EpCAM+ bile duct gene sets (poor survival C3

and C4), recapitulating the original survival signature. There

was strong concordance in the loadings of similar gene sets

despite limited overlap in their constituent genes (binary

A B

DC

Figure 3. Responders exhibit immune infil-

tration differences compared with non-re-

sponders

(A) Response (RECIST v.1.1) on immunotherapy by

molecular cluster (C1, n = 13 tumors; C2, n = 15;

C3, n = 15; C4, n = 21). Gray represents non-

evaluable and unknown patients.

(B) Kaplan-Meier curve for OS probability since

C1D1 of immunotherapy by response, all baseline

tumors (responder, n = 6 tumors; non-responder,

n = 51). The overall log rank test p value is shown.

(C) Pathways enriched among DEGs in responders

vs. non-responders, ordered by FDR-corrected p

value. Enriched gene sets are divided into MSigDB

Hallmark and c8 LC types.

(D) CIBERSORTx cell type CD8 T cells, enriched in

responders vs. non-responders (Wilcoxon test,

uncorrected p < 0.05; numbers as in B). Boxplots:

center line, median; box limits, first and third

quartiles; whiskers, values % 1.5 times the inter-

quartile range from box limits; points, outliers.

score: bile duct cells, 0.48–0.81; hepa-

tocytes, 0.41–0.93). In contrast, PC1

separated C1 and C3 from C2 and C4,

with stronger contributions of stromal

cell types. The involvement of several

liver sinusoidal endothelial cells

(LSECs), micro-vascular endothelial

cells (MVECs), and stellate cell gene

sets, all related to increased vasculari-

zation, was strongest in the direction

of C4, indicating higher tumor aggres-

siveness. In contrast, C2 was associ-

ated with greater immune infiltration, with stronger contribu-

tions from B cell, natural killer (NK)/NK T cell, and Kupffer

cell gene sets. This was further established using

CIBERSORTx, which showed that, although there was high

variability within clusters (Figure S4E), plasma cells, CD8+

T cells, monocytes (Wilcoxon test, uncorrected p < 0.01),

naive B cells, and memory B cells were enriched within C2

relative to all other samples (Figures 4B and S4F). In contrast,

M2 macrophages were enriched in C4 and eosinophils in C3.

Together, these data indicated that, although tumor-intrinsic

features (namely, tumor aggressiveness or stemness) ap-

peared to distinguish the good- from poor-survival clusters,

there existed orthogonal differences in the tumor microenvi-

ronment that may shape response to treatment.

To further investigate high-level processes enriched in each

tumor cluster, we profiled the enrichment of MSigDB liver cell

gene sets and Hallmark gene sets (Figures 4C and 4D). As ex-

pected, C1 and C2 were enriched for hepatocytes and gene

sets reflective of normal liver function. In contrast, C3 had lower

levels of hepatocytes despite being predominately HCC. C2 also

showed enrichment in B cell-related gene sets relative to other

clusters (Figure S4G). C1 had lower enrichment for EpCAM+

bile duct cell gene sets, especially in comparison with C4, and

the expression of EpCAM was also far lower in C1 (data not

shown). C4 was most enriched for numerous pathways related
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A B

C D

E

Figure 4. Tumor-intrinsic and stromal features distinguish molecular clusters

(A) PCA for baseline tumors (n = 64 tumors) onMSigDB c8 LC gene set enrichment scores (n = 31 gene sets), colored bymolecular cluster. Arrows present scaled

loadings for gene sets along PC1 and PC2.

(B) CIBERSORTx LM22 cell types enriched in amolecular cluster (Wilcoxon test vs. all other samples, uncorrected p < 0.01; C1, n = 13 tumors; C2, n = 15; C3, n =

15; C4, n = 21). M2 Mphage, M2 macrophage.

(C and D) LC gene sets (C) and MSigDB Hallmark gene sets (D) (n = 50 gene sets) enriched in each cluster (facet; FDR-adjusted p < 0.05, Wilcoxon test vs. all other

samples).Rowsdisplay theZ scoreof themediansingle-sampleGeneSetEnrichmentAnalysis (ssGSEA)enrichment scorebycluster (column;samenumbersas inB).

(E) Immune checkpoint expression by molecular cluster (same numbers as in B).

(B and E) Boxplots: center line, median; box limits, first and third quartiles; whiskers, values % 1.5 times the interquartile range from box limits; points, outliers.
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to the inflammatory response, angiogenesis, and signaling path-

ways, and despite their differences in survival, C2 had the next-

highest level. Interestingly, C2 was depleted in cell-cycle-related

gene sets relative to all other samples. Gene set enrichment

analysis therefore confirmed two axes of tumor-intrinsic and

microenvironment features that distinguish the molecular

clusters.

Expression of immune checkpoints has been extensively

investigated as a predictive biomarker of immunotherapy

response. Hence, we profiled the RNA expression of the three

immune checkpoints that are targets of treatments used in this

cohort (Figure 4E). PDCD1 and CD274 were differentially ex-

pressed across the clusters (Kruskal-Wallis test, p < 0.05) but

CTLA4 was not. In particular, PDCD1 (i.e., PD-1, which may be

associated with T cell exhaustion) had relatively lower expres-

sion in C1 than in other clusters, even when normalized

by CD3 (Figure S4H). However, no significant differences in

CD8 or PD-1 were observed by immunohistochemistry (Fig-

ure S4I; data not shown). Thus, although C1 had high OS,

numerous lines of evidence suggested that it has less substantial

or similar immune infiltration as C2, indicating additional under-

lying mechanisms corresponding to the high OS in C1.

Genomic alterations driving molecular clusters
To determine whether specific genomic alterations drove the

observed transcriptomic states of the molecular clusters, we

analyzed somatic variants identified by WES. As in transcrip-

tome assessment, artifacts associated with the formalin fixation

process also present a challenge for somatic variant calling. To

determine whether FFPE samples could be used for exome anal-

ysis, we compared non-silent somatic variants called for the 54

FFPE/frozen pairs, treating the frozen sample as truth. The num-

ber of variants was much higher in the frozen samples than in

FFPE samples (median 481.5 vs. 7.5 per sample), which was

partially explained by low coverage in FFPE samples (median

percent target region with >203 coverage, FFPE 91%, non-

FFPE 99%; Figure S5A). In addition, the FFPE samples had

poor precision (median 0.18, 9 missing) and extremely low recall

(median 0.002; Figure S5B). For this reason, we used matched

frozen samples where possible for the exome analysis, using

the cluster and risk group assigned to the sample used in

RNA-seq analysis (Figures S5C and S5D; STAR Methods).

Tumor mutation burden (TMB), particularly those contributing

to neoantigens, has been shown to be predictive of immu-

notherapy response.22–24 In this cohort, the total number of

somatic mutations per baseline tumor ranged from 0–3,027

(median 1,718), with a median proportion of non-silent muta-

tions of 0.28. The transition/transversion (Ti/Tv) ratio and pro-

portion of single-nucleotide polymorphisms (SNPs) with each

base change was relatively consistent for non-FFPE samples,

and FFPE samples exhibited a similar pattern with greater vari-

ation and a higher proportion of T>C variants (Figures S5E and

S5F). The TMB (non-silent mutations per megabase of coding

area, 35.7 Mb) was not significantly different across baseline

clusters (Kruskal-Wallis test, p = 0.40), even when considering

only non-FFPE samples (Kruskal-Wallis test, p = 0.21; Fig-

ure S5G). Therefore, TMB did not drive differences between

molecular clusters in this cohort.

The landmark TCGA papers for PLC (LIHC and CHOL) identi-

fied several driver genes.19,25 To determine whether this cohort

aligned with those results, we first profiled mutations in genes

previously identified as drivers in HCC and BTC (Figure 5A).

The rate of TP53 mutations in this cohort (36% for non-FFPE

samples) was similar to TCGA LIHC19 (31%). However, TP53

mutation status was not significantly linked to OS in HCC (Fig-

ure S5H). Thus, differences in OSbetween themolecular clusters

were not likely to be driven by TP53 mutation status. We next

sought to determine whether any known driver genes were en-

riched in molecular clusters. Only CTNNB1 was differentially

mutated, and it was enriched in C1 (Fisher’s exact test, uncor-

rected p < 0.01; Figure 5B). However, it appeared that the muta-

tion rate of TP53, IDH1, and KRASwas qualitatively higher in C4.

Among the known driver genes, allCTNNB1 and IDH1mutations

occurred within hotspots (FDR, p = 4.4e�8);KRAS, PIK3CA, and

RP1L1mutationswere also enriched (FDR, p <0.005; Figure S5I).

The median variant allele frequency (VAF) of CTNNB1 and IDH1

mutations was also less than 50%, suggesting that they were

true somatic mutations (Figure S5J). The majority of CTNNB1

and IDH1 mutations have been identified previously and

are pathogenic or likely pathogenic (CLIN_SIG; CTNNB1:

rs121913403, rs121913407, rs121913409; IDH1: rs121913499,

rs121913500; Figures 5C and 5D). Therefore, driver mutations

may have amoderate effect on cluster-specificmolecular states,

particularly for C1 and C4.

Because mutation signatures can reflect tumor etiology and

lead to enrichment of particular driver mutations, we next deter-

mined their relationship with the identified molecular clusters.

We identified de novomutation signatures from all non-FFPE pri-

mary liver tumors and performed decomposition to known Cata-

logue of Somatic Mutations in Cancer (COSMIC) signatures

(Figures S6A and S6B). The two main signatures in this cohort

were SBS5, a clock-like signature increased in some cancers

because of smoking and known to be relatively high in HCC,

and SBS1, a clock-like signature that correlates with mitosis.

The COSMIC signatures were relatively uniform across baseline

tumors, except for LCP0074, which also included SBS15, repre-

senting defective DNA mismatch repair/microsatellite instability.

This patient had the highest average TMB among non-FFPE

samples. Therefore, mutation signatures were not significantly

linked to molecular clusters.

Molecular changes following ICI treatment
Molecular changes after immunotherapy, including tumor-

intrinsic transcriptional programs, increased immune infiltration,

and changes to the surrounding stroma, may be important cor-

relates of response to treatment. In addition to our baseline an-

alyses, we utilized our extensive cohort to profile changes after

ICI initiation. The cohort included 35 tumors obtained after treat-

ment initiation, including 25 pairs of baseline and after-treatment

tumors, with pairs collected at a relatively uniform interval (me-

dian 44 days; Figure S7A). Overall, there was little change in

the tumor transcriptome following treatment, with most tumors

retaining the samemolecular cluster and risk group assignments

as observed at baseline (Figures 6A and S7B). This was sup-

ported by the lack of variation because of sample time point

across all primary liver samples (Figure S1A). However, in six
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patients, tumors that were assessed following treatment showed

a change in molecular cluster, five of which also changed risk

group, and these showed greater transcriptome changes (Wil-

coxon test, p = 1.1e�5; Figure 6B). This change may represent

variation in tumor sampling and tumor heterogeneity rather

than a response to treatment because the samples that transi-

tioned from poor- to good-survival clusters did not have

improved OS relative to patients with the same histological diag-

nosis that transitioned in the opposite direction. Therefore, tran-

scriptomic changes induced by ICI treatment generally did not

overwhelm signatures because of patient of origin or baseline

molecular state.

Next, to identify any consistent time point-related transcrip-

tomic changes across clusters with greater resolution, we per-

formed differential expression analysis between baseline tumors

(n = 64) and those following treatment (n = 35). The chemokine

CXCL9 was the only significant DEG following treatment (FDR-

adjustedp<0.05; FigureS7C, left panel) andhasbeen implicated

previously in Tcell attractionand immunecheckpoint response.26

At a less stringent threshold (uncorrected p < 0.01; Table S6),

genes upregulated following treatmentwere enriched inHallmark

and liver cell gene sets related to inflammation and immune

A

B C

D

Figure 5. Baseline tumor clusters exhibit

genomic differences

(A) Oncoplot of known driver genes in baseline

tumor samples (n = 64 tumors). Only genes with

non-silent mutations in at least 3 samples are

shown. Samples are ordered by the cluster as-

signed to the baseline tumor. The top bar plot

presents the tumor mutation burden (TMB) per

sample, defined as the number of non-synony-

mous mutations per megabase of coding region.

The right bar plot presents the number and per-

centage of samples in which the gene is mutated.

(B) Mutated genes enriched in baseline tumor

clusters (Fisher’s exact test, p < 0.01, cluster vs. all

other samples, only genes with non-silent muta-

tions in at least 3 samples). Bars are colored by the

cluster in which the mutated gene is enriched (top;

bottom/gray, all other samples), and fractions

indicate the number of mutated samples over the

total number of samples per cluster.

(C) Lollipop plot of non-silent CTNNB1 mutations

in baseline tumors assigned to C1 (n = 4 patients, 5

mutations). Green circles represent missense

mutations. Peach rectangles represent armadillo

(ARM) domains. Transcript: NM_001098210.

(D) Lollipop plot of non-silent IDH1 mutations in

baseline tumors (n = 3 patients/mutations). Green

circles represent missense mutations. A peach

rectangle represents PTZ00435 domains; a beige

rectangle represents the PTS-1 signal domain.

Transcript: NM_005896.

signaling, including NK/NK T cells and

endothelial cell types (Figure S7D).

Interleukin-6 (IL-6) JAK STAT3 signaling

also increased after treatment initiation

(paired Wilcoxon test, uncorrected

p < 0.01; Figure 6C), as did CD8 T cells

and M1 macrophages (Figures 6D and S7C, right panel). Several

of the most highly upregulated DEGs are expressed by immune

cells (Human Protein Atlas; proteinatlas.org) and have known

roles in T cell chemotaxis and activation (RefSeq summary;

https://www.ncbi.nlm.nih.gov/refseq/), including CXCL10,

CXCL11, and CXCR6. Among these, the chemokines were also

members of the Hallmark IL-6 JAK STAT3 signaling, interferon

gamma response, and inflammatory response gene sets. These

results confirmed that ICI treatment induced an immune

response, including increased CD8 T cell activity.

Because the baseline tumor states were linked to OS, we

investigated whether they may influence molecular response

immediately after treatment. To do so, we first explored DEGs

whose change in expression following ICI treatment was

different between baseline survival risk groups (Table S6).

Although significant DEGs were not identified, low-risk tumors

had an observed increase in follicular helper T cells following

treatment with a concomitant decrease in high-risk tumors (un-

corrected Wilcoxon p < 0.05 on delta, high vs. low risk; Fig-

ure S7E, left panel), with an opposite pattern observed for the

adipogenesis pathway, related to immune imbalance and inflam-

mation27 (Figure S7E, right panel). In high-risk tumors, there was
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C D E
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Figure 6. Immunotherapy treatment induces an overall increase in CD8 T cells andminor differences in immune infiltration between clusters

(A) PCA on paired baseline and after-treatment tumors (n = 25 pairs) with genes used in consensus clustering as features. Baseline clusters were assigned using

consensus clustering; after-treatment clusters were assigned using a k-nearest neighbors model (STAR Methods). Lines link paired tumors.

(B) Pearson correlation between baseline and after-treatment tumor pairs (on median absolute deviation [MAD] > 2 genes), split by whether the cluster changes

after treatment initiation and colored by baseline cluster (see A; no, n = 19; yes, n = 6). Boxplots: center line, median; box limits, first and third quartiles; whiskers,

values % 1.5 times the interquartile range from box limits; points, outliers.

(C) Enrichment score over time in paired tumors for the MSigDB Hallmark IL-6 JAK STAT signaling gene set.

(D) Absolute abundance over time in paired tumors for the CIBERSORTx cell type CD8 T cell.

(E) Normalized gene expression over time in paired tumors for CXCL1.

(legend continued on next page)
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a relative decrease in EpCAM+ bile duct cell gene set expression

relative to low-risk tumors (DEGs with uncorrected p < 0.01, en-

riched pathways; Figure S7F). A top upregulated gene in the

high-risk group was VWCE, with known expression in hepato-

cytes and a potential regulator of the b-catenin signaling

pathway,28 which is related to immune exclusion and resistance

to ICI treatment.29,30 VWCE showed increased expression in

high-risk samples following treatment with an opposite pattern

observed in low-risk samples (Figure S7G). The top upregulated

genes in the low-risk group included two genes from the survival

signature, CXCL1 and CXCL8, which aremembers of several im-

mune-related gene sets and whose expression increased

strongly in low-risk samples following treatment (Figure 6E).

Together, these results suggested that low- and high-risk tumors

responded somewhat differently to ICI treatment, including a

relatively higher immune response in low-risk tumors.

We also sought to identify transcriptomic changes because of

ICI treatment that differ between molecular clusters by identi-

fying DEGs with an interaction with the baseline cluster

(Table S6). There were 39 genes differentially expressed

following treatment initiation in C3 vs. C1 (adjusted p < 0.05),

although there were relatively few C3 samples. Interestingly,

the top 5 downregulated DEGs by log fold change (logFC) (un-

corrected p < 0.01) for C2 vs. C1 were immunoglobulin genes

(Figure S7H), and expression of the major histocompatibility

complex (MHC) class II+ B cell gene set increased after treatment

initiation in C1 relative to the other clusters (uncorrected Kruskal-

Wallis test p < 0.05 on delta across clusters; Figure 6F). The

reverse pattern was seen for the peroxisome gene set (Fig-

ure 6G), which has been linked to the immune response via

T cell exhaustion and tumor metabolism.31,32 C2 tumors also

showed increased expression of cell-cycle-related gene sets

following treatment, from the previously noted relatively lower

levels observed in this cluster compared with other clusters at

baseline (DEGs with uncorrected p < 0.01, enriched pathways;

Figure S7I). In two C1 patients with baseline CTNNB1mutations,

the same mutation was present in the tumor assessed following

treatment but increased in allele frequency (Figure 6H). Thus,

although C1 and C2 both exhibited high OS, they responded

differently to ICI treatment.

Even in patients with strong immunotherapy responses, can-

cer relapse and recurrence can occur over time. We extended

our profiling of response-related molecular features to longitudi-

nal treatment time courses for four HCC patients. All patients

were predicted to be low risk at baseline, and the majority main-

tained that classification over time; however, LCP0099 switched

to C4 poor survival in the final time points (Figure S7B). As noted

above, CD8 T cells increased following treatment; however, a

gradual decrease was observed at time points more than 1

year after treatment initiation (Figure 6I). A similar pattern was

observed for other immune cell types, including plasma cells

and M2-polarized macrophages, and for inflammation-related

Hallmark gene sets, including IL-6 JAK STAT3 signaling (Fig-

ure 6J). As expected, the switch from C2 to C4 in LCP0099

was accompanied by a decrease in hepatocyte-related gene

sets relative to bile duct cell gene sets (data not shown). In

another case, although both were low risk, the switch from C1

to C2 in LCP0042 was also accompanied by an increase in im-

mune and endothelial cell gene sets as well as related Hallmark

gene sets such as transforming growth factor b (TGF-b) signaling

and angiogenesis (data not shown). Therefore, despite immedi-

ate responses to treatment, the effects gradually wore off over

time, with some patients eventually changing molecular states,

which might contribute to ICI resistance.

DISCUSSION

In this study, we established an FFPE-based workflow to

perform comprehensive transcriptome and whole-exome

profiling of PLC to identify molecular features associated with

ICI response and outcome. Among this sizable cohort of ICI-

treated liver cancer patients, baseline tumors naturally segre-

gated into four molecular clusters, all of which contained HCC

and BTC, exhibited differences in outcome, and were distin-

guished by tumor-intrinsic and immune differences. Observed

differences in the molecular status of each cluster to ICI treat-

ment were intrinsic to the baseline tumor. There was no signifi-

cant relationship of TMB with molecular clusters or treatment

response.

While most genomic studies assess molecular alterations in

frozen tissue specimens, most tissues collected in clinical

studies are stored as FFPE. Here, we showed the feasibility of

utilizing FFPE tissue to perform global genomic assessment at

the transcriptomic and exomic levels. We investigated the

impact of storage method on tumor transcriptome profiling,

along with technical replicates at multiple levels of the pipeline.

The results showed that FFPE can be used successfully for tran-

scriptome analyses, provided that sufficient input RNA is avail-

able. In fact, the storage method had a relatively minor impact

on the transcriptome relative to biological sources of variation.

In contrast, concordance between frozen and FFPE pairs was

poor for WES, indicating that archival tissue may necessitate a

more targeted approach, such as gene panel profiling. Tissue

specimen collection at various study sites had a minimal batch

effect and did not significantly influence any of the results.

Hence, we showed the feasibility of using FFPE tissue, rather

than frozen tissue, to comprehensively profile the molecular sta-

tus of liver cancer patients and relate these findings to clinical

(F and G) Enrichment score over time in paired tumors for the MSigDB c8 C34 MHC class II positive (Pos) B cell gene set (F) or for the MSigDB Hallmark

peroxisome gene set (G).

(C–G) Lines are colored by the predicted risk group or molecular cluster of the baseline tumor. Dashed lines represent BTC; solid lines represent HCC. n = 25

sample pairs.

(H) Tumor allele frequency (TAF) over time for non-silent CTNNB1 mutations in two patients assigned to C1 at baseline (LCP0091, rs121913407; LCP0105,

rs121913403; both known pathogenic mutations).

(I and J) For four HCC patients with longitudinal after-treatment tumor sampling, (I) absolute abundance over time of the CIBERSORTx T cell CD8 cell type and

(J) enrichment score over time of the Hallmark IL-6 JAK STAT3 signaling gene set. Samples are colored by the assigned molecular cluster.
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parameters, including outcome and treatment response. This

established workflow could be implemented in future clinical

studies/trials.

The evaluation of genomic data showed that tumor-intrinsic

molecular pathways related to aggressive disease were differen-

tially associated with the outcome-related molecular clusters

identified in this study. While hepatocyte and liver function

gene sets related to a more differentiated status were found in

good-survival clusters, molecular signaling associated with

aggressive disease, such as EpCAM signaling, was linked to

the poor outcome cluster C4. EpCAM is associated with

increased vascularization, cancer stemness, and poor sur-

vival.33,34 The WNT/b-catenin pathway was also elevated in

C4. WNT/b-catenin pathway activity is deregulated in liver can-

cer and associated with enhanced proliferation and epithelial-

to-mesenchymal transition, playing a critical role in cancer cell

progression.35 However, WNT/b-catenin-activating mutations,

which have been linked to immune exclusion and ICI resistance

in HCC,30 were more prevalent in good-survival C1. Further-

more, the impact of b-catenin signaling on T cell exclusion and

resistance to ICIs has been noted in other cancer types, such

as melanoma.36 Therefore, the observed molecular pathways

are consistent with those identified previously and highlight

important underlying biological associations among these het-

erogeneous tumors.

Aside from tumor aberrations, alterations of immune cell pop-

ulations were also observed among the molecular clusters iden-

tified in this study and varied among clusters with differences in

ICI response. In line with previous findings, we observed an in-

crease in immune cell populations, such as CD8+ T cells and

M1macrophages, after ICI treatment.37,38 Interestingly, although

we identified twomolecular clusters (C1 and C2) associated with

good survival, they exhibited differences in immune infiltration at

baseline and following ICI treatment. C2 had the greatest infiltra-

tion of CD8 T cells and plasma cells at baseline, while C1 showed

increased enrichment of B cell gene sets after ICI initiation, rep-

resenting a potential influx of B cells. Therefore, while various

immune cells subsets and constituents are altered upon ICI

treatment, it seems that multiple baseline states may be predic-

tive of good survival. Further studies are warranted to explore

these immune infiltrates to the tumor and to more specifically

characterize the role of the surrounding microenvironment to

determine the contribution of specific sets/subsets of immune

cells on treatment response.

An important feature of this study is the availability of tissue

specimens collected before and following ICI initiation. Our find-

ings indicate that molecular features associated with outcome

and response are largely intrinsic to the tumor status prior to

ICI treatment. While immune infiltrates were apparent following

ICI treatment, the changes were short lived, with reversion to

the original baseline state after longitudinal assessment. Hence,

the ability to interrogate tumors prior to ICI treatment may be

helpful to stratify patients who are more likely benefit from

ICI treatment and useful to define underlying molecular and im-

mune conditions that are predictive of subsequent treatment

response. These data support obtaining and incorporating base-

line tumors in future clinical studies and clinical management of

liver cancer, which is a common practice for many other cancer

types. These findings also indicate the importance of exploring

additional strategies to induce sustained immune changes in

future studies.

While molecular assessment of tissues provides important in-

formation regarding the status of tumors, additional featuresmay

also influence response to immunotherapy. Other patient char-

acteristics and readouts from alternative biospecimens, such

as tumor scans and blood- or urine-based metabolites,39,40 are

more accessible than liver biopsies and could be considered

predictors of response. For instance, the gut microbiome is

known to affect drug metabolism and the immune system,

modulating responses to ICIs.41 In addition, immune-related

adverse events are associated with response and can be further

explored.39,40,42 Future studies should include these additional

features as well as extensive patient clinical data to predict

response with greater accuracy. In fact, the prospective arm of

NCI-CLARITY, currently underway, attempts to do just that, as-

sessing and integrating multiple levels of ‘‘omics’’ from various

biospecimen types along with clinical features to identify indica-

tors of immunotherapy response among PLC patients.

Limitations of the study
There were limitations to the study. Because all patients were ICI

treated, a comparison with a control non-ICI group could not be

directly performed. Also, exploration of each ICI treatment cate-

gory was not assessed because of limited sample size but can

be evaluated in larger studies. Specimens were collected at

various sites with various ICI-related treatment regimens, repre-

senting a highly variable cohort. Althoughmajor molecular differ-

ences were not observed among study sites, homogeneous clin-

ical cohorts may produce more treatment-specific molecular

targets. In addition, there should be amore comprehensive com-

parison between these data and others as they become avail-

able. While molecular features were related to ICI response,

additional studies are needed to determine whether they serve

as predictive biomarkers or signatures of response. Because

specimens were analyzed retrospectively, clinical parameters

could not be consistently assessed across all sites because

some were not available or collected. Molecular assessment

was performed on bulk tissue, whereas single-cell assessment

could provide a more detailed portrait of tumor and immune sta-

tus before and following treatment.43,44 Because of cancer het-

erogeneity, some molecular features could be masked by the

lack of multi-region or longitudinal specimens, which may pro-

vide more in-depth readouts on tumor status and treatment

response.
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52. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and

Tamayo, P. (2015). TheMolecular Signatures Database (MSigDB) hallmark

gene set collection. Cell Syst. 1, 417–425. https://doi.org/10.1016/j.cels.

2015.12.004.

53. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A.,

Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D.,

et al. (2019). Determining cell type abundance and expression from bulk

tissues with digital cytometry. Nat. Biotechnol. 37, 773–782. https://doi.

org/10.1038/s41587-019-0114-2.

54. Roessler, S., Jia, H.-L., Budhu, A., Forgues, M., Ye, Q.-H., Lee, J.-S., Thor-

geirsson, S.S., Sun, Z., Tang, Z.-Y., Qin, L.-X., and Wang, X.W. (2010). A

unique metastasis gene signature enables prediction of tumor relapse in

early-stage hepatocellular carcinoma patients. Cancer Res. 70, 10202–

10212. https://doi.org/10.1158/0008-5472.CAN-10-2607.

55. Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). Circlize Imple-

ments and enhances circular visualization in R. Bioinformatics 30, 2811–

2812. https://doi.org/10.1093/bioinformatics/btu393.

56. Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal pat-

terns and correlations in multidimensional genomic data. Bioinformatics

32, 2847–2849. https://doi.org/10.1093/bioinformatics/btw313.

57. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang,

W., Zhan, L., et al. (2021). clusterProfiler 4.0: a universal enrichment tool for

interpreting omics data. Innovation 2, 100141. https://doi.org/10.1016/j.

xinn.2021.100141.

Cell Reports Medicine 4, 101052, June 20, 2023 15

Article
ll

OPEN ACCESS

https://doi.org/10.2147/HMER.S193996
https://doi.org/10.1016/j.jhep.2019.08.016
https://doi.org/10.1016/j.jhep.2019.08.016
https://doi.org/10.2147/JHC.S311496
https://doi.org/10.2147/JHC.S311496
https://doi.org/10.1016/j.jhep.2021.06.028
https://doi.org/10.1038/s41467-022-35291-5
https://doi.org/10.1038/s41467-022-35291-5
https://doi.org/10.1038/s41467-020-18186-1
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref45
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref45
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1093/bioinformatics/bts356
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref48
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref48
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref48
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref49
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref49
http://refhub.elsevier.com/S2666-3791(23)00166-0/sref49
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xin Wei

Wang (xw3u@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d De-identified total RNA-seq and whole exome sequencing data is available at dbGaP: phs003074.v1.p1. Authorized access is

required for individual level data as determined by the informed consent under which the data and samples were collected.

These data can be requested through dbGaP.

d All original code is available at Figshare: https://doi.org/10.6084/m9.figshare.22595983.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

RNeasy Mini Kit QIAGEN Cat# 74104

NEBNext Ultra II Directional RNA Library Prep

Kit for Illumina

New England Biolabs Cat# E7765

SureSelect XT Reagent Kit (Human All Exon V7) Agilent Cat# 232859

Deposited data

Raw total RNA-seq and whole exome

sequencing data

This paper; dbGaP dbGaP: phs003074.v1.p1

Processed data This paper; dbGap dbGaP: phs003074.v1.p1

Code for analysis of raw and processed data This paper; Figshare Figshare: https://doi.org/10.6084/m9.figshare.

22595983

TCGA HTSeq – Counts files Genomic Data Commons Data Portal RRID: SCR_014514

TCGA survival data cBioPortal RRID: SCR_014555

MSigDB Hallmark v7.4 and C8 v7.2 modules Molecular Signatures Database RRID: SCR_016863
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studies

Candia et al., 202045 Supplementary Data 7; https://doi.org/10.

1038/s41467-020-18186-1
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survriskpred R package v0.2 BRBArrayTools RRID: SCR_010938

ConsensusClusterPlus v1.56.0 Bioconductor RRID: SCR_016954

ssGSEA2.0 Broad Institute RRID: SCR_016863

CIBERSORTx Stanford University RRID: SCR_016955

Limma v3.48.3 Bioconductor RRID: SCR_010943

Maftools v2.8.5 Bioconductor RRID: SCR_006442

Other

NCI-CLARITY study website This paper https://ccr.cancer.gov/liver-cancer-program/

nci-clarity-study
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
The NCI-CLARITY Retrospective cohort consisted of HCC and BTC patients undergoing clinical care at the NIH Clinical Research

Center, Georgetown University, Thomas Jefferson University, UC San Francisco, and Massachusetts General Hospital. 93 patients

contributed biospecimens included in thismanuscript (NIH: 49, Georgetown: 22, Thomas Jefferson: 2, UCSF: 9,MGH: 11). A descrip-

tive table of clinical features is provided in Table 1 for patients who received immunotherapy, including gender and age. The study

was approved by institutional review boards at each site. All participants provided written informed consent.

METHOD DETAILS

Nucleic acid extraction
Tumor samples were stored as FFPE slides or blocks, frozen, in RNALater, or as OCT blocks. FFPE blocks were cut into slides. FFPE

slideswere created using RNase precautionswith no heat treatment. Available H&E (hematoxylin and eosin) slides were annotated by

a pathologist at the Molecular Histology Laboratory at NCI, and the % tumor content was estimated. FFPE slides were macro-

dissected into tumor and non-tumor sections if both were present. Nucleic acid was extracted at the at the Molecular Histology Lab-

oratory. DNA was extracted using the phenol method. RNA was extracted using the Qiagen RNeasy Mini Kit and DNase-treated.

A total of 282 samples had nucleic acid extracted. 274 had both RNA and DNA extracted, while four samples each had only RNA or

DNA (non-tumor samples from the same patient, different timepoints).

Total RNA sequencing
Libraries were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina, using the 100ng or 5ng protocols

based on RNA availability at the CCR Sequencing Facility. Samples with <5ng RNA (‘‘low concentration’’) were prepared using

the 5ng protocol.

Sequencing data was generated by the CCR Sequencing Facility. 99 samples were sequenced on a NovaSeq S2 flowcell

(2x151bp); 72 with good yield were then sequenced in greater depth on a NovaSeq S4 flowcell (2x151bp), and reads were combined.

An additional 181 samples were sequenced on a NovaSeq S4 flowcell (2x101bp). Two RNA-seq libraries were sequenced in both

rounds, for a total of 280 samples. Each sample produced 39 to 2,074 million pass-filter reads (median: 133 million).

Separately, 16 pilot liver transplant samples were sequenced on a NextSeq (2x76bp). Each sample produced 42–59 million pass-

filter reads (median 53 million).

Pipeliner RNA-seqQuality Control Analysis (https://ccbr.github.io/pipeliner-docs/) was run on all RNA-seq fastq files (hg38). Reads

were trimmed using Cutadapt46 (v1.18) to remove adapters and low-quality reads before mapping to hg38 using STAR47 (v. 2.5.2b)

2-pass alignment. Reads were assigned to a single read-group and duplicates flagged using Picard tools (v.2.17.11). The stranded-

ness of the library was inferred using RSeQC48 (v. 2.6.4). Gene expression was quantified using RSEM49 (v. 1.3.0) with the inferred

strandedness informing the forward probability.

RNA-seq samples passed QC if the percent of mapped bases in coding regions was at least 12.5% (240 of 280 non-pilot samples,

all pilot samples). For non-pilot samples that passed QC, the number of de-duplicated reads per sample was 0.08–759 million (me-

dian: 39 million).

Whole exome sequencing
Libraries were prepared at the Genomics Core at NCI using the Agilent SureSelect XT (Human All Exon V7) kit.

A total of 278 samples were sequenced. 54 samples were sequenced on a NovaSeq S2 (2x151bp), 45 were sequenced on

a NovaSeq S4 (2x151bp), and 179 samples were sequenced on a NovaSeq S4 (2x101bp). Each sample produced 0.09 to 475 million

pass-filter reads per sample (median: 249 million).

Sequencing data was generated by the CCR Sequencing Facility. Reads were mapped and variants called using the DRAGEN

pipeline in tumor-only mode with artifact flag enabled for all samples. The number of de-duplicated reads per sample ranged

from 0.04 to 296 million reads (median: 151 million).

Variants were hard-filtered (FILTER: PASS only). Somatic variants were obtained by restricting to variants with a tumor read depth

of >20, a variant read depth of >4, a tumor allele frequency of 5%, and a population frequency <0.1% in the gnomAD combined pop-

ulation, 1000 Genomes, and ExAC, and by removing variants within blacklist genes50 (perl/5.18.4).

Clinical and sample data
Clinical data was collected from each site using a standardized data dictionary and template divided into 13 forms. Data from the

templates was stored in LabMatrix.

Clinical data was downloaded from LabMatrix on October 20, 2021 (v1.8). BMI was calculated using the formula 703*(weight (lb)/

height (in)̂ 2). Immunotherapy treatment names were standardized, and treatment categories were assigned based on immuno-

therapy agent(s) and any concurrent treatment(s). Prior treatment categories were assigned based on agent names. Treatment cat-

egories were not significantly different between HCC and BTC (Chi-squared test with simulated p value, p = 0.11), although only HCC
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patients received single agent ICI with VEGF inhibitors. Patients with entries in the Prior Treatment, Prior Surgery, or Radiation Treat-

ment supplements were assigned ‘‘Yes’’ for the corresponding field in the Enrollment andDisease Status and Treatment forms. Over-

all survival censoring status was obtained from ‘‘Live/Dead Status’’, and progression-free survival censoring status was obtained

from ‘‘Disease Progression Status’’ obtained per investigator.

Image data, including % tumor estimates and pathologist comments, were exported from HALO on June 28, 2021. Tumor purity

categories were assigned to each FFPE tumor and separate non-tumor sample based on estimated tumor purity and whether

the slide was macrodissected (e.g., non-tumor sample was extracted from the same slide): Low (0–20% purity, ‘‘normal’’), Mid

(30–70% purity), High (80–100% purity or macrodissected), and Unevaluable (‘‘na’’,’’?’’).

The date of C1D1 and sample collection was available for NIH patients only. Time from C1D1 was calculated for all NIH samples.

Driver genes were identified from the TCGA-LIHC publication19 Figure 1 and the TCGA-CHOL publication25 Figure 1, for a total of

59 known driver genes.

Cancer Gene Census data was exported fromCOSMIC (https://cancer.sanger.ac.uk/census; August 17, 2021). Only genes known

to be active in liver or biliary tract cancer were considered (somatic or germline; ‘‘hepat|cholang|biliary’’).

Cohort sample structure
Primary liver tumors

Analysis was restricted to primary liver tumors and adjacent non-tumor from patients who received immunotherapy (230 samples

from 86 patients, 199 of which pass RNA-seq QC). Excluded samples include 15 metastasis samples and 37 primary liver samples

from patients who did not receive immunotherapy. However, 20 samples from the non-immunotherapy patients were included in the

Georgetown storage test. BTC included CCA (19 intrahepatic, 2 extrahepatic, and 7 not otherwise specified patients), ampulla of

vater cancer (2 patients), and gall bladder cancer (1 patient).

Replicates
Samples include replicates at multiple levels, including: 2 resequenced libraries (RNA-seq only); multiple sections from the same

sample (9 tumor sections plus 6 associated non-tumor samples from 6 samples); and multiple nodules from the same timepoint

(2 lesions sampled from the left lobe and right hepatic lobe, plus 2 associated non-tumor samples).

Tumorswere also stored usingmultiplemethods. 54 tumors fromNIHwere stored as both FFPE and frozen (45 pairs pass RNA-seq

QC). An additional patient (LCP0074) had two samples stored in FFPE, RNALater, and OCT block, for a total of 9 samples (8 pass

RNA-seq QC). This patient was included in both the main analysis and the Georgetown storage test.

Tumor selection
For most analyses, a single tumor per timepoint was selected for each patient. 74 patients had a baseline tumor, 37 had an after-

treatment tumor, and 27 had both. In addition, four patients had after-treatment tumor time courses (8 additional tumors). One patient

had a single tumor with an unknown timepoint, and one patient had only non-tumor samples sequenced.

For RNA-seq analysis, priority was given to FFPE samples when tumors were stored in multiple media and to replicates/nodules

with a higher gene count (number of genes with any read). 64 patients had a baseline tumor that passed RNA-seq QC, 35 had a after-

treatment tumor, and 25 had both. The 8 timecourse tumors passed QC. Baseline FFPE samples were evenly distributed between

HCC and BTC (Chi-squared test with Yates’ continuity correction p value = 0.57).

For exome analyses, frozen samples were given priority over FFPE samples. 24 of the baseline FFPE tumors used in RNA-seq an-

alyses were replaced with a matched frozen (n = 23) or RNALater (n = 1) sample. Additionally, 27 after-treatment FFPE samples were

replaced with matched frozen samples.

Non-tumor samples
Samples include 43 adjacent non-tumor samples from FFPE slides, 34 of which passed RNA-seq QC. There were 35 tumor and adja-

cent non-tumor pairs (7 were WES- or RNA-only; including the replicates detailed above), including 24 that pass RNA-seq QC. For 2

tumors, separate non-tumor tissue was provided, and in one case, both separate and adjacent non-tumor was sequenced.

Input RNA pilot test
Libraries were prepared from four liver transplant samples using 5ng or 100ng of RNA, two replicates each, for a total of 16 libraries.

All RNA-seq results pass QC. Expected gene counts were calculated using RSEM. Counts were loaded into a DGElist, filtered to

remove lowly expressed genes (filterByExpr by input RNA amount and sample, library sizes recalculated), and voom transformed

with quantile normalization. Genes were filtered to the top 4000 most variable genes by median absolute deviation (MAD).

Georgetown storage test
Six samples from four CCA patients were stored in three different storage media (FFPE, RNALater x 2, OCT x 2), for a total of 29 sam-

ples (27 pass RNA-seq QC). One patient (LCP0074) received immunotherapy and was also included in the main analysis.

Expected counts were loaded into a DGEList, filtered to remove lowly expressed genes (by patient), and voom transformed with

quantile normalization. Genes were filtered to those with MAD >2 (n = 3,896).
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Principal component analysis (PCA) was performed using prcomp() with centered and scaled matrices. Sample rotations, variable

loadings, and the percent variance explained by each component were extracted from prcomp() output.

Primary liver transcriptome analysis
Expected counts per genewere calculated using RSEM. Countswere loaded into aDGElist, filtered to remove lowly expressed genes

(n = 23,586 genes, filterByExpr by diagnosis and malignancy, library sizes recalculated), TMM normalized, and voom transformed

with quantile normalization.

The MAD across all primary samples was calculated for each gene. Variance partitioning was performed on genes above MAD >2

(n = 4,002 genes) using the variancePartition package (R/4.0.3; edgeR, limma packages). 74% (n = 2,977) and 72% (n = 2,876) of the

genes also have a MAD >2 within only HCC or BTC, respectively. Pathways enriched in genes with >20% of variance explained by

study site (42 genes), amount of input RNA (12 genes), storage method (201 genes), or read depth (344 genes) were identified using

the clusterProfiler enricher function on the MSigDB gene sets, with a minimum gene set size of 10. The only enriched pathway was

HALLMARK_TNFA_SIGNALING_VIA_NFKB in the study site genes (q-value = 0.009).

FFPE vs. frozen storage test
Differentially expressed genes (DEGs) between pairs (n = 45) were identified using limma (lmFit/eBayes on normalized gene

counts, blocked by biopsy). Pathways enriched in DEGs (each direction, adjusted p value <0.05) were identified using the

clusterProfiler enricher function on the MSigDB gene sets, with a minimum gene set size of 10. Only pathways with an FDR-adjusted

p value <0.05 were considered.

Survival analysis
Kaplan-Meier curves and log rank tests were generated using the survival and survminer packages (survfit(), survdiff(), pairwise_surv-

diff(), ggsurvplot(), and ggsurvplot_facet() functions). The proportional hazards assumption was tested using the coxph() and

cox.zph() functions. Log rank p values were also calculated using pchisq on the results of survdiff() (lower tail = FALSE, df = n-1).

BRB-arrayTools survRiskPred
A model for overall survival was developed for unique baseline tumors (n = 64) using the survriskpred package (R implementation of

BRB-ArrayTools function). Genes with a univariate Cox proportional hazards model p value <0.001 (n = 129) were used as variables

in a principal component analysis. A multivariate Cox proportional hazards model was fit using the first several PCs as variables (1 to

1–3 PCs) to obtain a regression coefficient for each PC. A prognostic index was calculated for each sample using the average of each

PC weighted by its regression coefficient. Samples were divided into two risk groups at the median prognostic index.

To evaluate the predictive value of themethod, 10-fold cross-validation (CV) was performed from univariate gene selection to prog-

nostic index assignment. A risk group was predicted for each sample using the iteration in which the sample was not selected (pre-

dictRiskTrainingModeE matrix). The CV process was repeated 100 times with randomly shuffled sample labels to generate a permu-

tation p value for the log rank statistic between risk groups. The iteration with the lowest permutation p value was selected (PC1-2;

permutation p value = 0.08, log rank p value = 0.016; coefficients PC1: 6.86, PC2: �0.725).

The risk group was predicted for all primary liver samples using the selected model, with intercept and prognostic index threshold

obtained from the html output. The risk groups predicted using 10-fold CV and the final model were the same for 56/64 of the training

samples. The proportion of tumors assigned to each risk group was not significantly different between the baseline tumors used to

develop the signature and all tumor samples (Chi-squared test p = 0.76). Risk groupswere not differently distributed by tumor storage

method, sample timepoint, site, or de-duplicated read depth (Chi-squared test with simulated p value, p > 0.05). However, 91%of the

non-tumor samples were assigned to the low-risk group.

Univariate hazard ratios and p values were calculated for each gene using Cox proportional hazards models (coxph() function).

Gene loadings and weights were extracted from the loadingMatrixModE and genesInClassifierModE matrices. Genes with negative

weight were considered protective because the coefficient for PC1, which had the largest weight, was positive. Pathways enriched

among protective and non-protective genes in each signature were identified using enricher (minimum gene set size 10, FDR-

adjusted p value <0.05).

SurvRiskPred was also performed on only HCC baseline tumors, clustering on genes with a univariate p value <0.001 across all

baseline tumors, 1 to 1–3 PCs. The coefficients for the PC1-2 iteration were PC1: 6.195, PC2: 0.638.

TCGA survival analysis
A manifest was downloaded from GDC containing all HTSeq – Counts files with ‘‘liver and intrahepatic bile ducts’’, ‘‘other and un-

specified parts of biliary tract’’, or ‘‘gallbladder’’ as the primary site (416 cases, 486 files; June 23, 2021). Files were downloaded using

gdc-client. Metadata for TCGA-LIHC and TCGA-CHOL files was downloaded using gdc-client (407 cases, 469 files; June 23, 2021).

Overall survival from diagnosis was obtained from the TCGA PanCancer Atlas datasets on cBioPortal (KM Plot: Overall Survival

https://www.cbioportal.org/study/summary?id=lihc_tcga_pan_can_atlas_2018 and https://www.cbioportal.org/study/summary?

id=chol_tcga_pan_can_atlas_2018, November 11, 2021; n = 408 patients) and merged on case ID (cases.0.submitter_id)/Patient ID.
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Samples were filtered to primary tumors. Gene counts were loaded into a DGEList, filtered to remove lowly expressed genes (filter-

ByExpr, by project, library sizes recalculated), TMM normalized, and voom transformed with quantile normalization.

A risk groupwas predicted for each sample using the SurvRiskPredmodel, using only genes that were present in both the signature

and the TCGA gene expression matrix. Genes were matched using Ensembl IDs with the suffixes removed (includes 97% of genes

from this study and 94% of TCGA genes). Six patients missing survival data were excluded.

Consensus clustering
Consensus clustering was performed on unique baseline tumors (n = 64) using Consensus Cluster Plus51 andmedian-centered gene

expression restricted to genes with MAD >2 across all primary samples (n = 4,002 genes). Samples were clustered using k-means

clustering (k = 2–10). 1000 resamplings were performed, and at each, 80%of samples and genes were sampled. The final consensus

matrix was clustered using agglomerative hierarchical clustering on Euclidean distance with complete linkage. Cluster and item

consensus results were calculated. A k = 4 solution was identified based on the delta area under the curve for the consensus score

cumulative density function (elbow point) and cleanliness of clustering (proportion of non-ambiguous assignments).

Consensus clustering was also performed with the same parameters as above with: unique baseline tumors excluding extrahe-

patic CCA, genes with MAD >2 across remaining samples; HCC baseline tumors, genes with MAD >2 across all primary samples;

BTC baseline tumors, genes with MAD >2 across all primary samples; and baseline tumors, genes with MAD >2 within baseline tu-

mors. For the latter, 83% of the MAD >2 genes across all samples were shared with this gene set (n = 3,303). Consensus clustering

using geneswithMAD>2within baseline samples recapitulated the clustering results usingMAD>2 across all primary samples, iden-

tifying an optimal 4-cluster solution with only two samples assigned to different clusters.

K-nearest neighbors classifier
All primary liver samples were assigned to a molecular cluster using a K-nearest neighbors (KNN) model. The consensus clustering

input genes (MAD >2) were pre-processed via centering and scaling across baseline tumors, which was then applied to the same

genes across all primary tumor samples (pre-Process() and predict() functions). A KNNmodel was trained on the baseline input genes

and cluster assignments and used to predict cluster assignments for all other samples. k = 7 neighbors were considered, with a seed

of 9. The model was 91% accurate on input samples.

94%of non-tumor samples were assigned to cluster 2 (n = 32). Among tumor samples, the proportion of samples assigned to each

cluster was not different than those generated using consensus clustering (Chi-squared test p = 0.10). The distribution of tumor sam-

ples by storage method, timepoint, and study site was not different across clusters (Chi-squared test with simulated p value,

p > 0.05), but there was a difference by de-duplicated read depth (Kruskal-Wallis test p value = 1.2e-5), as for baseline tumors.

63% of FFPE/frozen storage pairs were assigned to the same molecular cluster using a k-nearest neighbors model, while 84%

were assigned to the same risk group (Figures S5C and S5D; see STAR Methods). In contrast, sections from the same FFPE block

were concordant 67% and 100% of the time, respectively. 85% of the samples used for baseline exome analysis had the same pre-

dicted molecular cluster as the corresponding sample used for RNA-seq analysis (51/60, 4 with no prediction due to poor quality

RNA-seq sample), and 95% had the same predicted risk group (57/60). The proportion of FFPE samples was not different across

molecular clusters (Chi-squared test p > 0.05).

Differentially expressed genes
Differentially expressed genes (DEGs) were identified between all pairs of molecular clusters using limma (lmFit/eBayes) on normal-

ized expression values, with pairwise contrasts. Cluster-specific DEGs were those with an adjusted p value <0.05 and the same di-

rection of change between each cluster and the other three clusters.

Diagnosis-specific DEGs were identified between HCC and BTC baseline tumors using limma (adjusted p value <0.05, 4,186

genes).

RECIST response
RECIST v1.1. was retrospectively assessed per investigator. Patients with unknown RECIST response or whose tumors were non-

evaluable due to rapid decline were excluded from analyses.

DEGs were identified at baseline between responders and non-responders using limma (lmFit/eBayes). Pathways enriched in

DEGs (each direction, uncorrected p value <0.01, n = 411 genes) were identified using the clusterProfiler enricher function on the

MSigDB gene sets, with a minimum gene set size of 10. Only pathways with an FDR-adjusted p value <0.05 were considered.

Clinical/sample data enrichment in clusters
Select clinical data was tested for enrichment in baseline tumor clusters (all, just HCC, and just BTC; Table S3). Only baseline time-

points were considered for all tested data except Follow-up Treatment. Missing values were excluded, including ‘‘Unknown’’ entries

and ‘‘Non-evaluable’’ entries for RECIST response. Text/list variables with multiple levels and data for multiple clusters were tested

using a Chi-squared test (simulated p values). Numeric variables with data for at least one cluster were tested using a Kruskal-Wallis

test. p-values were FDR-adjusted within each sample set.
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Each prior treatment therapy category was also tested for association with baseline tumor clusters (Table S4). Patients whose prior

treatment status was unknown were excluded (n = 6). Each therapy category with any variation was tested (i.e., patient received any

prior treatment in the category vs. not; Chi-squared test with simulated p values). p-values were FDR-adjusted within each sample

set. Association between clusters and the number of prior treatments was also tested (Kruskal-Wallis test p value = 0.40).

Clusters were also tested for association with sample variables using Chi-squared tests with simulated p values and Kruskal-

Wallis tests. The clusters were not associated with storage method, sequencing batch, or RIN or with estimated tumor purity

(FFPE only, n = 44). The associations with read depth (Figure S3I) and amount of input RNA (Chi-squared test p value = 0.04,

4 missing entries) were significant.

ssGSEA gene set analysis
The ssGSEA2.0 repo was cloned (https://github.com/broadinstitute/ssGSEA2.0). GMT files for the Hallmark (v7.4) and C8 (v7.2)

modules were downloaded from MSigDB52 (as Gene Symbols; http://www.gsea-msigdb.org/gsea/downloads.jsp). The C8 gene

sets were restricted to single cell-derived liver cell type signatures from Aizarani et al.21(n = 31). The TPM gene expression matrix

output by RSEM was converted to GCT format. ssGSEA was performed using ssgsea-cli.R to generate gene set enrichment scores

for each sample. The FDR-corrected p value was <0.05 for all gene sets and samples. The median score for each cluster and a Z

score across medians was calculated for each cluster.

Cluster-specific gene sets were identified using one-vs-all Wilcox tests for each cluster on ssGSEA enrichment scores. p-values

were FDR-adjusted. The logFC was calculated as the log2 ratio of the mean score for that cluster vs. the mean score for all other

samples.

CIBERSORTx
CIBERSORTxwas performed to estimate the proportion of immune cells in a bulk sample. The TPMgene expressionmatrix output by

RSEM was reformatted to include only gene symbol. Immune infiltration was profiled using CIBERSORTx53 with the LM22 signature

matrix in absolute mode with batch correction. The relative abundance of each cell type was calculated as a proportion of the ab-

solute score. All but one primary liver sample had a p value <0.05 (n = 200).

Cluster-specific cell types were identified using one-vs-all Wilcox tests for each cluster on absolute abundances. p-values were

FDR-adjusted. The logFC was calculated as the log2 ratio of the mean abundance for that cluster vs. the mean abundance for all

other samples.

Nearest template prediction
HCC samples were assigned to molecular subclasses identified in earlier studies18–20,54 using Nearest Template Prediction. Char-

acteristic genes for each subclass were downloaded from Candia et al.,45 Supplementary Data 7. The GenePattern module

NearestTemplatePrediction (v4) was used to predict subclasses (default parameters, not weighted; September 8, 2021). The

RSEM TPM expression matrix in GCT format (uniqued gene names) was used as input. All predictions had significant p values

(p < 0.05, Bonferroni or BH FDR-corrected).

After-treatment analysis
The time interval between the baseline and first after-treatment tumors was calculated for all NIH Clinical Center samples (23 pairs).

Cluster assignments for paired baseline tumors were not significantly different than for all baseline tumors (Chi-squared test with

simulated p value, p value = 0.32). The correlation between paired baseline and after-treatment tumors was not significantly different

by baseline molecular cluster (Kruskal-Wallis test p value = 0.18) or risk group (Wilcox test p value = 0.47). Tumor pairs with the same

storage method were not more similar than those with different methods (Wilcox test p value = 0.27); nor was the sample correlation

correlated with after-treatment read depth (Pearson correlation p value = 0.08) or the interval between biopsies (p value = 0.53); nor

was it different between HCC and BTC (Wilcox test p value = 0.77) or by best RECIST response (Kruskal-Wallis p value = 0.24). The

sample correlation was also not related to overall survival (log rank test p value = 0.23).

DEGs were identified between baseline (n = 64) and after-treatment tumors (n = 35) using limma lmFit/eBayes with blocking by

patient. Additionally, DEGs with interactions with baseline risk group or molecular cluster were identified, using only after-treatment

tumors with a matched baseline tumor (n = 25).

Pathways enriched in DEGs (each direction, uncorrected p value <0.01) were identified using the clusterProfiler enricher function

on the MSigDB gene sets, with a minimum gene set size of 10. Only pathways with an FDR-adjusted p value <0.05 were considered.

Gene sets and CIBERSORT cell types with significant changes after treatment were identified using paired Wilcox tests on

matched baseline and after-treatment pairs (n = 25). Interactions with baseline risk group or molecular cluster were identified using

Wilcox or Kruskal-Wallis tests on the delta between baseline and after-treatment samples.

Gene expression locations were obtained from the Human Protein Atlas (https://www.proteinatlas.org/).

Exome analysis
Maftools was used to plot and analyze somatic variants. Non-silent variants followed the default classification by maftools

(Variant_Classification).
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The titv() maftools function was used to calculate the proportion of SNPs belonging to each base substitution, including synony-

mous mutations.

Differentially mutated genes between clusters were identified using the clinicalEnrichment() function, including the 63 baseline

samples with any variant and genes with at least 3 mutated samples (n = 1,484). Mutated genes were considered cluster-specific

with an uncorrected p value of <0.01 between the cluster and all other samples. The function plotEnrichmentResults() was used

to plot cluster-specific mutated genes.

The oncodrive() maftools function was used to identify drivers and cluster-specific genes with an enrichment of non-silent muta-

tions in hotspots. Pre-defined values were used for the background model. The lollipopPlot() maftools function was used to produce

lollipop plots for mutations of interest. The function plotVaf() was used to plot the variant allele frequency of genes of interest.

SigProfiler
SigProfilerMatrixGeneratorFunc was used to generate mutation matrices from somatic variants for all non-FFPE primary liver sam-

ples, including technical replicates (n = 92; GRCh38, exome = TRUE, filtered to exome target bed file). Signatures were extracted

from the SBS96matrix using SigProfilerExtractor (GRCh38, exome = TRUE, 1–10 signatures, 100 iterations). The suggested solution

(2 signatures) was decomposed into COSMIC signatures. Etiologies for each COSMIC signature were obtained from the COSMIC

website (https://cancer.sanger.ac.uk/signatures/sbs/).

Immunohistochemistry
30 cases with available FFPE 5um tissue sections were stained for CD8 or PD-1. Immunohistochemistry for CD8 was performed on

a Ventana Benchmark instrument using an anti-CD8 AB (SP57, which is a rabbit monoclonal antibody (dilution RTU (ready to use).

The PD-1 immunohistochemistry was performed on a Dako Autostainer, with antigen retrieval with a pH6 Citrate buffer with an auto-

clave for 20 min, antibody hybridized for 30 min at room temperature with a dilution of 1:100, and detected with Dako Envision +

(Mouse) with DAB applied for 5 min. The PD-1 antibody is Cell Signaling PD1 (EH33), a mouse monoclonal. Appropriate negative

and positive controls were performed for both markers. Cases were scored blindly using a scoring matrix of the following categories:

none (0), rare (1), scattered/individual (2), groups (3) or aggregates (4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Details for each statistical analysis are provided undermethod details, in the results, and in the figure legends. Rationales for samples

included in each analysis are described under ‘‘cohort sample structure’’. Significance was defined as p value <0.05 except where

explicitly noted. Kaplan-Meier curves were tested for the proportional hazards assumption (see ‘‘survival analysis’’).

All Wilcox test p values are two-sided.

Software versions
Python libraries used included numpy, pandas, and bcftools. R packages used include: ggplot2 (v3.3.5), gridExtra (v2.3), openxlsx

(v4.2.4), plyr (v1.8.6), RColorBrewer (v1.1.2), reshape2 (v1.4.4), limma (v3.48.3), edgeR (v3.34.1), ggrepel (v0.9.1), circlize55 (v0.4.13),

variancePartition (v1.22.0), ComplexHeatmap56 (v2.8.0), ConsensusClusterPlus (v1.56.0), survival (v3.2.13), VennDiagram (v1.7.0), ti-

dyr (v1.1.4), clusterProfiler57 (v4.0.5), preprocessCore (v1.54.0), survminer (v0.4.9), NMF (v0.23.0), caret (v6.0.90), class (v7.3.19), tidy-

text (v0.3.2), maftools (v2.8.5), scales (v1.1.1), and survriskpred (v0.2). Analysis and visualization were performed using custom scripts

in R (v. 4.1.1).

ADDITIONAL RESOURCES

NCI-CLARITY study website: https://ccr.cancer.gov/liver-cancer-program/nci-clarity-study.
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