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Molecular Basis and Consequences of the Cytochrome c-tRNA
Interaction*
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The intrinsic apoptosis pathway occurs through the release of
mitochondrial cytochrome c to the cytosol, where it promotes
activation of the caspase family of proteases. The observation
that tRNA binds to cytochrome c revealed a previously unex-
pected mode of apoptotic regulation. However, the molecular
characteristics of this interaction, and its impact on each inter-
action partner, are not well understood. Using a novel fluores-
cence assay, we show here that cytochrome c binds to tRNA with
an affinity comparable with other tRNA-protein binding inter-
actions and with a molecular ratio of �3:1. Cytochrome c recog-
nizes the tertiary structural features of tRNA, particularly in the
core region. This binding is independent of the charging state of
tRNA but is regulated by the redox state of cytochrome c. Com-
pared with reduced cytochrome c, oxidized cytochrome c binds
to tRNA with a weaker affinity, which correlates with its stron-
ger pro-apoptotic activity. tRNA binding both facilitates cyto-
chrome c reduction and inhibits the peroxidase activity of cyto-
chrome c, which is involved in its release from mitochondria.
Together, these findings provide new insights into the cyto-
chrome c-tRNA interaction and apoptotic regulation.

Cytochrome c is a heme-containing protein that normally
resides in the mitochondrial inter-membrane space. It carries
electrons from cytochrome c reductase (the cytochrome b-c1
complex) to cytochrome c oxidase as part of the electron trans-
port chain that builds an electrochemical gradient driving the
synthesis of ATP. This function of cytochrome c may be con-
served over 1.5-billion years of eukaryotic evolution (1). In ver-
tebrate cells, cytochrome c has taken on an additional role as a
critical inducer of apoptosis or programmed cell death, which
eliminates unwanted or harmful cells (1, 2). Apoptosis can
occur through either of two major apoptotic pathways. The
intrinsic apoptotic pathway is activated by intracellular stimuli

such as DNA damage, oncogene activation, and developmental
information. The extrinsic apoptotic pathway responds to
extracellular stimuli via cell surface death receptors. The intrin-
sic pathway is evolutionarily more conserved than the extrinsic
pathway, and it can be activated by the extrinsic pathway to
amplify the apoptotic response. The defining event in the
intrinsic pathway is the release of cytochrome c from mito-
chondria into the cytosol, where it binds to Apaf-1 (apoptotic
protease activating factor-1) in the presence of ATP or dATP,
facilitating the assembly of the oligomeric apoptosome (3–5).
The apoptosome recruits and activates the initiator caspase,
caspase-9 (6). Caspase-9 subsequently activates executioner
caspases, leading to the cleavage of a large number of cellular
proteins and eventually cellular death (7–9).

The activation of caspases by cytochrome c is intricately reg-
ulated. Release of cytochrome c is facilitated by the oxidation of
cardiolipins, which anchor cytochrome c on the inner mito-
chondrial membrane, and by mitochondrial outer membrane
permeabilization, a process that is regulated by members of the
B-cell lymphoma protein-2 (Bcl2) family (1). In the cytoplasm,
the ability of cytochrome c to activate caspases is modulated by
its redox state, with the oxidized form showing a much more
potent activity compared with the reduced form (10). Effective
assembly of the apoptosome requires, in addition to cyto-
chrome c and (d)ATP, the proteins HSP70, cellular apoptosis
susceptibility protein, and the PHAPI tumor suppressor (11,
12). Apoptosome formation is inhibited by the oncoprotein
prothymosin-� (11). Nucleic acid, specifically transfer RNA
(tRNA), is also implicated in the regulation of cytochrome
c-mediated caspase activation (13).

tRNA is responsible for the interpretation of nucleic acid
sequences as amino acid sequences during protein synthesis in
all known forms of life (14, 15). Mature tRNAs are 73–93 ribo-
nucleotides in length and fold into a cloverleaf secondary and
L-shaped tertiary structure. tRNA is “charged” by conjugation
with an amino acid at the conserved 3�-CCA sequence, which
resides at one end of the L-shaped structure. Opposite this end,
a three-nucleotide anticodon sequence pairs with a specific
mRNA codon and enables the translation of the codon into a
specific amino acid. tRNA interacts with a number of proteins
and other RNAs during its maturation, transport, aminoacyla-
tion (“charging”), and movement in and out of the ribosome. It
also has a high degree of functional versatility in addition to
protein synthesis. Non-canonical functions of tRNA include
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priming reverse transcription of specific viral genomes (16) and
stimulating gene expression in response to amino acid depriva-
tion (17).

We previously showed that tRNA binds directly to cyto-
chrome c. The cytochrome c-tRNA binding prevents cyto-
chrome c from interacting with Apaf-1 and activating apoptosis
(13). This finding indicates that cytochrome c, in addition to
supporting ATP production and to promoting apoptosis, is a
tRNA-binding protein. However, although all cytosolic and
mitochondrial tRNAs appear to participate in the interaction,
the molecular basis remains unknown. Also mysterious is the
effect of tRNA association on the redox state and peroxidase
activity of cytochrome c, which have been implicated in the
release of cytochrome c and the activation of the caspase cas-
cade. Here, we further characterize the dynamics of the inter-
action between tRNA and cytochrome c, the influence of novel
factors, and its consequences for each interaction partner. This
study elucidates the basic tenets of an ancient molecular inter-
action that has important consequences for apoptosis.

Experimental Procedures

Reagents—A 78-nucleotide DNA encoding the sequence of
human initiator tRNAMet was synthesized by Integrated DNA
Technologies (IDT; Coralville, IA). Cy3 was purchased from
AAT Bioquest (Sunnyvale, CA), Cy5 from Lumiprobe (Han-
nover, Germany), and 2-aminopurine (2AP)4 triphosphate
from TriLink Biotech (San Diego). The following reagents were
purchased from Sigma: bovine heart and yeast cytochrome c;
total tRNA from bakers’ yeast, ribosomal RNA, polyadenylic
acid, NADH, NADPH, FAD, NaBH4, proflavine, ascorbic acid,
and potassium ferricyanide. Onconase was provided by the
Alfacell Corp. (Somerset, NJ).

Fluorophore-labeled tRNAs—A fluorescent tRNA based on
the tRNACys sequence in Escherichia coli was prepared by in
vitro reconstitution. E. coli tRNACys (etRNACys, Fig. 1A) has
been well characterized (18, 19), and its crystal structure was
determined (20). A 5�-fragment encoding nucleotides G1 to
C16 was chemically synthesized by IDT with the Cy3 fluoro-
phore (Fig. 1B) attached to the 5�-end (position 1) through a
phosphodiester linkage. A 3�-fragment encoding G18 to A76
was synthesized by in vitro transcription, using T7 RNA poly-
merase, and was gel-purified. The two fragments were joined by
T4 RNA ligase I in a 3:1 molar ratio of the short versus long
fragment with a 70% yield (Fig. 1C). The ligated full-length
tRNA (Cy3-etRNACys) was separated from individual frag-
ments by a denaturing gel, heated at 85 °C, and re-annealed at
37 °C in the presence of Mg2�. Similar procedures were used to
prepare a human elongator tRNAMet (htRNAMet) and a human
tRNAPhe (htRNAPhe) (Fig. 1A) that were labeled with Cy3 and
Cy5, respectively, at the 5�-end (Cy3-htRNAMet and Cy5-
htRNAPhe) (Fig. 1B). To generate the 2AP-labeled E. coli
tRNAVal (2AP-etRNAVal) (Fig. 1B), an E. coli tRNAVal tran-

script that terminated at nucleotide position 75 was generated.
2AP was added to nucleotide position 76 using the CCA-adding
enzyme from E. coli and the triphosphate form of 2AP. The
labeled tRNA was separated from unlabeled species on a dena-
turing PAGE, 7 M urea gel. The full-length tRNA was excited
from gels, recovered by ethanol precipitation, and resuspended
in the TE buffer. The proflavine-labeled E. coli tRNACys (Prf-
etRNACys) was prepared by inserting proflavine (Fig. 1B) to the
D-loop as described (Fig. 1D) (21, 22). Briefly, the transcript of
E. coli tRNACys was modified by an insertion of U17, which was
subsequently converted to dihydrouridine 17 (D17) by Dus1p
and reduced to the ureidopropanal group by NaBH4. The urei-
dopropanal group was then reacted with proflavine to form
adduct with the fluorophore (Fig. 1D).

Binding Affinity of Cytochrome c with Fluorescent tRNAs—
Each fluorescent tRNA was titrated with bovine or yeast cyto-
chrome c from 0.1 to 24.4 �M in the binding buffer (20 mM

HEPES, pH 7.5, 35 mM KCl, 2.5 mM MgCl2, 0.5 mM EDTA, and
1 mM DTT) at room temperature, and the fluorescence emis-
sion was monitored. The peak intensity at 563 nm for Cy3 was
corrected for the inner filter effect for each cytochrome c con-
centration, and the corrected data as a function of cytochrome
c concentration were fit to a hyperbola equation to derive the Kd
value.

Stoichiometry of Cytochrome c-tRNA Interaction—The stoi-
chiometry of cytochrome c binding to tRNA was determined by
monitoring the fluorescence quenching of Cy3-etRNACys and
Cy5-htRNAPhe on a Photon Technology International instru-
ment model QM-4 as described (23). The binding was per-
formed at room temperature in a buffer containing 20 �M

labeled tRNA, 200 mM HEPES, pH 7.5, 50 mM NaCl, 5% sucrose,
and 5 mM DTT. The bovine cytochrome c was titrated from 0 to
454 �M, with the cytochrome c/tRNA molar ratio ranging from
0 to 22.7. The Cy3-etRNACys was excited at 550 nm, and the
emission was monitored from 558 to 650 nm at room temper-
ature. The Cy5-htRNAPhe was excited at 640 nm, and the emis-
sion was monitored from 655 to 720 nm. The emission peaks at
565 nm for Cy3-tRNA and at 662 nm for Cy5-tRNA were
recorded and corrected for the inner filter effect, according to
the formula, Fcorr � Fobs � anti-log((Aexcitation � Aemission)/2),
where Fcorr is the corrected fluorescent signal at the peak wave-
length, and Fobs is the observed fluorescent signal at the peak
wavelength.

Surface Plasmon Resonance (SPR) Assay—The association of
various nucleic acids with cytochrome c was assessed by surface
plasmon resonance using a BIAcore 3000 system (GE Health-
care). Cytochrome c from bovine heart was immobilized on a
CM5 sensor chip (BIAcore) by amine coupling. Each nucleic
acid was individually injected onto the immobilized cyto-
chrome c. Binding interaction was performed in a low salt
buffer (20 mM HEPES, 20 mM KCl, 2.5 mM MgCl2, 0.5 mM

EDTA) or in a buffer with physiologic ionic strength (by adding
KCl to 135 mM and NaCl to 10 mM to the low salt buffer). After
each binding experiment, the chips were washed with a 0.5 M

NaCl regeneration solution.
CCA Addition and tRNA Charging Reactions—The tran-

script of E. coli tRNAVal was synthesized up to C75 and was
internally labeled in the transcription reaction containing a

4 The abbreviations used are: 2AP, 2-aminopurine; aaRS, aminoacyl-tRNA syn-
thetase; Cy3-etRNACys, etRNACys labeled with Cy3 at the 5�; CysRS, cystei-
nyl-tRNA synthetase; etRNACys, E. coli tRNACys; etRNAVal, E. coli tRNAVal;
htRNAPhe, human tRNAPhe; htRNAMet, human elongator tRNAMet; nt, nucle-
otide; Prf, proflavine; Prf-etRNACys, etRNACys labeled with proflavine at the
D-loop.
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trace amount of [�-32P]ATP. The addition of A76 to the gel-
purified labeled tRNAVal (0.1 �M) was catalyzed by human CCA
adding enzyme (2 �M), in the presence or absence of oxidized
bovine cytochrome c (15 �M). The assay was performed at 37 °C
for 0 –1 s on a KinTek RQF-3 instrument in the reaction buffer
previously described (24 –26).

tRNA charging assay was performed using etRNACys as the
substrate and E. coli cysteinyl-tRNA synthetase (CysRS) as the
enzyme, as described previously (27–29). The efficiency of
charging was monitored using [35S]cysteine. After the reaction,
tRNA was acid-precipitated on filter pads, and the radioactivity
of [35S]cysteine attached to each tRNA was quantified by scin-
tillation counting (30).

Cytochrome c Peroxidase Activity—The peroxidase activity
was determined by incubation of cytochrome c with enhanced
chemiluminescence solution and measuring light emission
using an illuminometer.

Cytochrome c Oxidation and Reduction—To generate the
reduced protein, bulk cytochrome c was incubated with excess
ascorbic acid and was then purified using a Sepharose column
(GE Healthcare). To generate the oxidized protein, bulk cyto-
chrome c was incubated with potassium ferricyanide and puri-
fied similarly. The oxidation and reduction were confirmed by
measuring absorbance at 550 and 560 nm as well as by colori-
metric inspection of the purified protein. In cytochrome c oxi-
dation and reduction assays, the redox state was monitored by
continuous measurement of absorption at 550 nm.

Results

Fluorescence-based Assay for the Cytochrome c-tRNA In-
teraction—We previously analyzed the cytochrome c-tRNA
interaction using electrophoretic mobility shift assays (13). To
provide an independent and quantitative evaluation of this
interaction, we developed a fluorescence-based assay. Cyto-
chrome c does not appear to strongly discriminate among var-
ious cytosolic and mitochondrial tRNA species (13), suggesting
that prokaryotic tRNA may be just as capable of interacting
with cytochrome c as eukaryotic tRNA. We used E. coli
tRNACys (etRNACys) and tRNAVal (etRNAVal) and human elon-
gator tRNAMet (htRNAMet) and tRNAPhe (htRNAPhe) as models
(Fig. 1A). These tRNAs were labeled at the 5�-end with either
Cy3 (for etRNACys and tRNAMet) or Cy5 (for htRNAPhe), at the
3�-end with 2AP (for etRNAVal), or in the D-loop with profla-
vine (Prf) (for etRNACys) (Fig. 1B).

To obtain Cy3-etRNACys, a chemically synthesized 5�-Cy3-
attached fragment, encoding nucleotides G1 to C16, was joined
with an in vitro-transcribed 3�-fragment, encoding nucleotides
G18 to A76 (Fig. 1C) (26). Cy3-htRNAMet and Cy5-htRNAPhe

were generated similarly. 2AP-etRNAVal was prepared by the
addition of 2AP to 3�-end of an etRNAVal transcript contain-
ing nucleotides G1 to C75 (21). To produce Prf-etRNACys,
etRNACys was modified by the insertion of a uridine at position
17, which was then converted to dihydrouridine and labeled
with proflavine (Fig. 1D) (22).

FIGURE 1. Generation of fluorescence-labeled tRNAs. A, sequence and cloverleaf structure of tRNAs used in this study. Species are E. coli tRNACys (etRNACys)
and tRNAVal (etRNAVal) and human elongator tRNAMet (htRNAMet) and tRNAPhe (htRNAPhe). Arrows indicate the positions of joining between a synthetic Cy3- or
Cy5-labeled 5�-fragment and an in vitro-transcribed 3�-fragment (for etRNACys, htRNAMet, and htRNAPhe), or the 3�-position labeled with 2AP (for etRNAVal). B,
schematic representation of tRNAs labeled with Cy3 (maximal emission wavelength or �em � 570 nm) or Cy5 (�em � 670 nm) at the 5�-end, 2-AP (�em � 320
nm) at the 3�-end, and Prf (�em � 515 nm) in the D-loop. C, construction of tRNA labeled with Cy3 at the 5�-end. The 5�-Cy3 fragment and the 3�-tRNA transcript
fragment were joined together using T4 RNA ligase in the presence of ATP. D, generation of tRNA labeled with proflavine attached to a ureidopropanal group
at the D-loop.
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To assess whether the attachment of the fluorophores at the
5�-end affects the function of tRNA, we used etRNACys as an
example and compared charging to the 3�-end of unlabeled and
the 5�-end Cy3-labeled etRNACys. Using [35S]cysteine as the
substrate and E. coli CysRS as the enzyme, we analyzed the
attachment of [35S]cysteine to each tRNA over time. As shown
in Fig. 2A, Cy3-etRNACys was charged to �85% of the unlabeled
etRNACys. This indicates that the labeling at the 5�-end does
not interfere with charging.

Interaction of these tRNAs with cytochrome c was measured
by fluorescence quenching of the labeled tRNAs following cyto-
chrome c addition (Fig. 2B). Quenching data were fit to a hyper-
bolic equation to obtain the Kd value of the interaction, assum-
ing a two-state (bound or unbound) model following correction
for the inner filter effect and nonspecific binding.

Cytochrome c Binds to tRNA with an Affinity Comparable
with Other tRNA-binding Proteins and Recognizes the Tertiary
Structure of tRNA—We determined the affinity of bovine
heart cytochrome c to Cy3-etRNACys and observed a Kd in
the range of 1–3.5 �M (Fig. 2, C and D, and Table 1). Impor-
tantly, this affinity was comparable with those of known

tRNA-binding proteins, including aminoacyl-tRNA synthe-
tase (aaRS) (1–3 �M) (27, 31, 32) and CCA-adding enzyme
(tRNA-nucleotidyltransferase) (0.8 –3.3 �M) (25, 26). To
corroborate this finding, we also analyzed cytochrome c
binding to Cy3-htRNAMet and 2AP-etRNAVal. Cytochrome c
bound to these two tRNAs with affinities similar to Cy3-
etRNACys (Kd � 4.8 � 0.7 and 5.1 � 0.9 �M, respectively;
Table 1). Therefore, analysis of three unrelated tRNA species
labeled with distinct fluorophores at different ends showed
that cytochrome c bound to tRNA species with an affinity
akin to those of other tRNA-binding proteins.

Compared with Cy3-etRNACys, cytochrome c bound to the
D-loop-labeled Prf-etRNACys with a substantially reduced
affinity (Kd of 9.6 � 2.8 �M, Table 1). This might be due to
proflavine in the D-loop interfering with cytochrome c bind-
ing directly or with folding of the tertiary structure of tRNA,
both scenarios suggesting that the tRNA tertiary structure
is required for high affinity interaction with cytochrome c.
We also used a Cy3-labeled fragment of etRNACys encoding
nucleotides 1–16 (Cy3-oligonucleotide), which resembled a
microRNA or a tRNA-derived fragment and lacked the tertiary

FIGURE 2. Binding of cytochrome c to fluorophore-labeled tRNA in vitro. A, aminoacylation of unlabeled (in blue) and Cy3-labeled (in red) etRNACys (1 �M)
with cysteine (25 �M) by E. coli CysRS (1 �M) over a time course. The Cy3-etRNACys is aminoacylated to 85% capacity relative to the unlabeled etRNACys. B,
quenching of the fluorescence of Cy3-etRNACys (1 �M) upon binding with different concentrations of cytochrome c (0.1, 0.2, 0.4, 1.0, 1.5, 2.0, 2.5, 7.5, 12.5, 18,
and 24.4 �M). The fluorescence peak intensity at 563 nm for Cy3 was monitored at room temperature and was corrected for the inner filter effect for each
cytochrome c concentration. C, fitting the data of fluorescence change of Cy3-etRNACys as a function of cytochrome c concentration. The fluorescence intensity
at 563 nm, corrected for the inner filter effect, was monitored as a function of the cytochrome c concentration and fit to a hyperbolic equation to derive the Kd
value. The cytochrome c-tRNA interaction has a Kd of 1–3.5 �M (also see D). D, left, sequence and cloverleaf structure of the etRNACys mutant bearing a deletion
of nucleotides 20 –22 and a substitution of G48 with C. Right, fluorescence titration of the mutant and wild-type etRNACys as a function of cytochrome c
concentration. Each data point was the average of three independent measurements. Error bars indicate standard deviation (S.D.).
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core structure (33). This fragment had greatly reduced affinity
for cytochrome c (Kd �30 �M, Table 1).

To extend these analyses, we generated a mutant of etRNACys, in
which three nucleotides in the D loop (U20, U21, and A22) were
deleted, and the G48 nucleotide in the V-loop was changed to C
(Fig. 2D, left). We have previously shown that the nucleotides in
the D-loop and G48, which forms base pair with G15, are crit-
ical for the integrity of the core (18, 19, 34, 35). Thus, the result-
ant etRNACys mutant likely has an incomplete tertiary struc-
ture. Indeed, this mutant bound to cytochrome c with a Kd of
5.5 � 1.7 �M, which was a 5-fold increase relative to the Kd of
1.0 � 0.3 �M of the wild-type tRNA determined in the same
experiment (Fig. 2D). Together, these results support the
notion that cytochrome c recognizes the tertiary structural fea-
tures of tRNA, particularly in the core region.

Surface Plasmon Resonance Analysis—To further indepen-
dently assess the cytochrome c-tRNA interaction, we per-
formed a surface plasmon resonance analysis using a BIAcore
3000 system. Bovine heart cytochrome c was immobilized on a
CM5 sensor chip by amine coupling and tested for binding with
total tRNA, ribosomal RNA (rRNA), a mixture of poly(A)
RNAs, and a 78-nucleotide DNA oligonucleotide correspond-
ing to a human initiator tRNAMet. In a low salt buffer, only
tRNA had distinct association and dissociation phases (Fig. 3,
A–C). In a buffer with physiologic ionic strength, only tRNA
binding was detectable above the baseline (Fig. 3D). These
results again indicate that cytochrome c is a specific tRNA-
binding protein.

Cytochrome c Associates with tRNA with a Stoichiometric
Ratio of Three Cytochrome c Molecules for Each tRNA Mol-
ecule—We next interrogated the binding stoichiometry
between tRNA and cytochrome c. We titrated a fixed amount of
Cy3-etRNACys with increasing amounts of cytochrome c to
shift the binding equilibrium in the direction of the bound com-
plex. The titration produced a biphasic quenching of the Cy3-
etRNACys fluorescence, with an initial steep phase followed by a
second and much flatter phase (Fig. 3E). The two phases inter-
cepted at a molar ratio of cytochrome c to tRNA at �3.0, indi-
cating that three cytochrome c molecules bind to one tRNA
molecule. Further fluorescence quenching was also observed at
higher protein stoichiometries, likely indicating nonspecific
formation of higher order complexes.

To confirm this binding stoichiometry, we tested Cy5-
htRNAPhe. Despite the use of a different fluorophore and a
different tRNA, the titration maintained the same two

phases that intersected at the cytochrome c/tRNA molar
ratio of �3.0 (Fig. 3F). The stoichiometry observed in these
experiments is in agreement with the result of a recent study
(36), and it further underscores the specificity of the cyto-
chrome c-tRNA interaction.

Influence of the CCA-end of tRNA on Cytochrome c Binding—
We next investigated whether some of the key features of tRNA
and cytochrome c regulate their interaction. The addition of the
CCA sequence is an essential step in the maturation of tRNA
(14, 15). To determine whether the CCA sequence is required
for cytochrome c binding, we used tRNA species with and with-
out this sequence. An analysis of the interaction between Cy3-
htRNAMet and either bovine or yeast cytochrome c showed no
major difference regardless of the presence or absence of the
CCA sequence (Table 2). Thus, the CCA sequence does not
appear to affect cytochrome c binding.

Conversely, we assessed whether cytochrome c influences
the CCA addition reaction. Using the human CCA-adding
enzyme and under single-turnover conditions, we monitored
the A76 addition to the transcript of E. coli tRNAVal that termi-
nated with C75. Analysis of the time course of the reaction
showed that the rate constant of the addition in the presence
and absence of cytochrome c was virtually identical (14 versus
15 s	1) (Fig. 4A). Thus, the action of the CCA-adding enzyme is
not perturbed by cytochrome c.

We also tested whether CCA-adding enzyme and cyto-
chrome c compete for binding to tRNA. We pre-assembled
an etRNACys-CCA-adding enzyme complex and performed
the binding assay with a range of cytochrome c concentra-
tions. The etRNA in the etRNACys-CCA-adding enzyme
complex was able to bind cytochrome c with a Kd of 0.9 � 0.3
�M, essentially the same as the binding of free tRNA with
cytochrome c (Kd of 1.0 � 0.3 �M), determined under the
same condition (Fig. 4B). In the crystal structure of a tRNA-
CCA-adding enzyme complex, the CCA-adding enzyme
binds to the top half of the tRNA L-shaped tertiary structure
near the 3�-end (Fig. 4C) (37). Thus, our data indicate that
the CCA-adding enzyme does not block the access of cyto-
chrome c to the tRNA structure.

Influence of the Charging State of tRNA on Cytochrome c
Binding—tRNA charging by cognate aaRS is fundamental to the
translation of mRNA into protein. The state of tRNA charging
is also an indicator of the nutritional state, and amino acid
deprivation leads to rapid accumulation of uncharged tRNAs
(14, 15). The experiments described above were performed
with uncharged tRNA. To assess the influence of the charg-
ing state of tRNA, we compared uncharged and charged Cy3-
etRNACys for binding to cytochrome c. Bovine cytochrome c
bound to these two forms of tRNA with similar affinities (Kd
� 3.6 � 0.8 and 3.3 � 0.7 �M, respectively) (Fig. 4D). Thus,
cytochrome c recognizes tRNA independent of its charging
state.

To evaluate whether cytochrome c competes with aaRS for
binding to tRNA, we compared the binding to cytochrome c of
free etRNACys and etRNACys associated with CysRS. The
etRNA molecules in these two states bound to cytochrome c
with virtually the same affinities (Kd of 1.0 � 0.3 and 1.2 � 0.3
�M, respectively) (Fig. 4E). In the crystal structure of the

TABLE 1
Dissociation constant of bovine heart cytochrome c to different RNA
Measurement of the Kd (tRNA) for cytochrome c by fluorescence titration is shown.
E. coli tRNACys and human tRNAMet labeled with Cy3 at the 5�-end, E. coli tRNAVal

labeled with 2-AP on the 3�-end, or E. coli tRNACys labeled with Prf in the D-loop
were used in the binding assay. The Cy3-oligonucleotide refers to the oligonucleo-
tides corresponding to the sequence from positions 1 to 16 in E. coli tRNACys,
carrying Cy3 at the 5�-end. Data shown are mean � S.D.

RNA Kd

�M

Cy3-etRNACys 1–3.5
Cy3-htRNAMet 4.8 � 0.7
2AP-etRNAVal 5.1 � 0.9
Prf-etRNACys 9.6 � 2.8
Cy3-oligonucleotide �30

Molecular Interaction of Cytochrome c and tRNA

10430 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 19 • MAY 6, 2016

 at T
hom

as Jefferson U
niversity on M

ay 20, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


etRNACys-CysRS complex, the CysRS enzyme binds to the
inside of the tRNA L-shape (Fig. 4C) (38). The lack of competi-
tion between CysRS and cytochrome c is consistent with a
model in which cytochrome c binds to the outside corner of the
tRNA L-shape and hence is not in conflict with the binding by
CysRS (Fig. 4C). It also suggests that labeling of tRNA at the 5�-
or 3�-end unlikely interferes with its interaction with cyto-
chrome c.

Binding of Oxidized and Reduced Cytochrome c to tRNA—
Cytochrome c exists in either a reduced or an oxidized form,
based on the oxidation state of the iron atom contained within

the heme group. The oxidized form is much more potent than
the reduced form in the activation of caspases (10). All experi-
ments reported thus far employed oxidized cytochrome c. To
test the influence of the redox state of cytochrome c, we com-
pared binding of oxidized and reduced cytochrome c to tRNA
directly. Oxidized bovine cytochrome c bound to Cy3-htRNAMet

with a 2-fold weaker affinity compared with the reduced form
(Kd � 4.8 � 0.7 versus 2.5 � 1.4 �M) (Fig. 5A, left). Interestingly,
removal of the CCA sequence exacerbated the difference in
binding between the two states (�4-fold; Kd � 3.7 � 0.4 versus
0.9 � 0.2 �M) (Fig. 5A, right). We also tested cytochrome c from
yeast, which, unlike its vertebrate counterpart, cannot induce
caspase activation (39). Oxidized yeast cytochrome c displayed
a weaker affinity to Cy3-htRNAMet relative to the reduced form,
although this difference was less pronounced than for bovine
cytochrome c regardless of the presence or absence of the CCA
sequence (Kd � 4.8 � 0.9 versus 3.4 � 0.4 �M in the presence of
CCA and Kd � 7.0 � 2.0 versus 3.7 � 0.7 �M in the absence
of CCA) (Fig. 5B). The weaker binding of the oxidized form of
mammalian cytochrome c to tRNA correlates with its stronger
ability to activate apoptosis.

FIGURE 3. Surface plasmon resonance analysis and stoichiometry of cytochrome c-tRNA binding. A–D, cytochrome c-RNA binding was determined by
surface plasmon resonance (BIAcore) by titration of tRNA (A and D), a 78-nucleotide DNA oligonucleotide encoding the sequence of human initiator tRNAMet

(B and D), polyadenylic acid matched to tRNA molecular weight (C and D), and rRNA (D). Each nucleic acid was injected at 100, 50, 25, 12.5, 6.25, and 0 �M (A–C)
or at 100 �M (D) in low (A–C) or physiological salt (D) conditions. Real time graphs of response units (arbitrary units) over time are shown. E and F, stoichiometry
of cytochrome c binding to tRNA was determined by monitoring the fluorescence quenching of 20 �M Cy3-etRNACys (E) or Cy5-htRNAPhe (F) by increasing
amounts of bovine cytochrome c (0 – 454 �M).

TABLE 2
Binding constant of CCA� and CCA� tRNAs to cytochrome c
Human tRNAMet with (CCA�) or without (CCA	) the CCA sequence, and labeled
with Cy3 at the 5�-end, were tested for the binding with bovine and yeast cyto-
chrome c (cyt c). Data shown are mean � S.D.

tRNA CCA end Label

Kd (�M)
Bovine

cyt c
Yeast
cyt c

htRNAMet CCA� 5�-Cy3 4.8 � 0.7 4.8 � 0.9
htRNAMet CCA	 5�-Cy3 3.7 � 0.4 7.0 � 2.0
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Effect of tRNA Binding on the Activity of Cytochrome c—Cyto-
chrome c possesses peroxidase activity, which promotes the
oxidization of cardiolipins early in apoptosis, facilitating the
detachment of cytochrome c from cardiolipins and its subsequent
release into the cytosol (40). To further investigate how the cyto-
chrome c-tRNA interaction may affect cytochrome c function, we
tested whether tRNA binding modulates the peroxidase activity of
cytochrome c. In a luminescence assay, tRNA inhibited the perox-
idase activity of cytochrome c in a dose-dependent manner (Fig.
6A). This finding raises the possibility that tRNA, if present in the
inter-membrane space upon mitochondrial outer membrane per-
meabilization, might impede the oxidation of cardiolipins and reg-
ulate apoptosis at the level of cytochrome c release.

tRNA Binding Facilitates Cytochrome c Reduction—RNA is
extensively oxidized during apoptosis (41). To test whether
cytochrome c is capable of directly oxidizing tRNA, we incu-
bated cytochrome c with tRNA and observed the changes in
absorbance at 550 nm, which monitors the reduced state. In the
absence of tRNA, oxidized cytochrome c was stable for days.
However, upon incubation with tRNA, the oxidized state was
gradually converted to the reduced state, as indicated by the
increase in the absorption at 550 nm (Fig. 6B). This increase was
dependent on the concentration of tRNA (Fig. 6B). Impor-
tantly, pre-digestion of tRNA by addition of the nuclease Onco-
nase (ranpirnase) prevented cytochrome c reduction (Fig. 6C).
These results suggest that tRNA, but not free NMPs, may serve
as a substrate for oxidation by cytochrome c.

FIGURE 4. Effects of CCA addition and charging on the interaction of tRNA with cytochrome c. A, kinetics of A76 addition to etRNAVal (1 �M) catalyzed by
human CCA enzyme (2 �M) at 37 °C in the presence or absence of cytochrome c (15 �M). B, ability of free etRNACys and etRNACys in complex with CCA-adding
enzyme to bind cytochrome c. Analysis of fluorescence quenching as a function of cytochrome c concentration in the fluorescence-based assay. Error bars
indicate S.D. C, model of tRNA in complex with CCA-adding enzyme of Archaeoglobus fulgidus (green, Protein Data Bank code 1sz1) and CysRS of E. coli (gray,
Protein Data Bank code 1u0b), showing the capacity to accommodate three molecules of cytochrome c (brown, purple, and pink, Protein Data Bank code 3ZCF)
on the outside corner of the L-structure. D, dissociation constant (Kd) of cytochrome c with uncharged and charged Cy3-etRNACys. Error bars indicate S.D. E,
ability of free etRNACys or tRNACys in complex with CysRS to bind cytochrome c. Analysis of fluorescence quenching as a function of cytochrome c concentration
in the fluorescence-based assay. Error bars indicate S.D.

FIGURE 5. Effects of the redox state of cytochrome c on its interaction with
tRNA. A, Kd value of the oxidized and reduced form of bovine cytochrome
(cyt) c with Cy3-etRNACys with or without the 3�-CCA. B, Kd value of the oxi-
dized and reduced form of yeast cytochrome c with Cy3-etRNACys with or
without the 3�-CCA.
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Discussion

Discovered by Keilin and co-workers (42, 43) in the 1920s as
one of the color proteins involved in the respiratory chain, cyto-
chrome c has an essential and evolutionarily conserved role in
supporting aerobic eukaryotic life. More than 70 years later, a
completely unanticipated role of cytochrome c in vertebrate
cell death came to light, when Wang and co-workers (2) inves-
tigated the mechanism of caspase activation. The dichotomy of

the dual roles of cytochrome c mechanistically links cell life and
death and is fundamental to the evolutionary covenant required
for multicellular life. Thus, virtually all vertebrate cells, by
depending on cytochrome c for survival, carry this suicide pill
for use when and where needed.

tRNA is even more evolutionarily ancient and fundamental
to life (14, 15). Its function as the adaptor molecule in protein
synthesis is based on the L-shaped tertiary structure that

FIGURE 6. tRNA inhibits the peroxidase activity of cytochrome c and promotes the reduction of cytochrome c. A, tRNA inhibits cytochrome(cyt) c-per-
oxidase activity. Left, luminescence emission in an enhanced chemiluminescence assay, representing peroxidase activity, was linear with the amount of
cytochrome c. Right, cytochrome c peroxidase activity, monitored by luminescence using Lumigen TMA-6 and hydrogen peroxide, in the presence or absence
of tRNA. Concentrations of cytochrome c and tRNA (in �M) are shown. B, tRNA reduces oxidized cytochrome c. Left, oxidation of cytochrome c by peroxide as
monitored by A550 nm. Right, incubation of tRNA in a buffer with physiologic ionic strength (150 mM) with oxidized cytochrome c at molar ratios of 1:2, 1:1, or 2:1
led to increases in A550 nm, indicating the reduction of cytochrome c over time. C, tRNA must be intact to reduce oxidized cytochrome c. tRNA-dependent
reduction of cytochrome c is inhibited upon the degradation of tRNA by Onconase (ranpirnase). Error bars indicate S.D.

Molecular Interaction of Cytochrome c and tRNA

MAY 6, 2016 • VOLUME 291 • NUMBER 19 JOURNAL OF BIOLOGICAL CHEMISTRY 10433

 at T
hom

as Jefferson U
niversity on M

ay 20, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


simultaneously recognizes a genetic codon and an amino
acid. This tertiary structure allows for tRNA to interact with
both general enzymes, such as the CCA-adding enzyme for
3�-end maturation, and specific enzymes, such as aaRS for
charging. The L-shaped tertiary structure also affords tRNA
non-conventional roles in cells, including priming reverse
transcription (16) and, for uncharged tRNA, sensing nutri-
ent deprivation (17).

The identification of the association between cytochrome c
and tRNA revealed a previously unrecognized connection
between two fundamental molecules in life and signified novel
biochemical properties of each (13). The findings presented
here show that cytochrome c binds to tRNA with an affinity
comparable with other tRNA-binding proteins (Fig. 2 and
Table 1). Interestingly, cytochrome c binds tRNA without
sequence specificity, a property unlike aaRS and more simi-
lar to CCA-adding enzyme. Cytochrome c likely recognizes
features of the tertiary structure of tRNA, particularly in the
core region. The binding stoichiometry of three cytochrome
c molecules to a single tRNA molecule (Fig. 3) additionally
suggests that multiple cytochrome c molecules are coordi-
nated to recognize a single tRNA. Interestingly, cytochrome
c does not compete with either aaRS or CCA-adding enzyme.
This could be accounted for in a model in which three cyto-
chrome c molecules bind to the outside corner of the tRNA
L-shape in a way that does not interfere with the binding of
aaRS to the inside of the L-structure or with the binding of
CCA-adding enzyme to the outside of the L-structure near
the 3�-end (Fig. 4C).

In cells, tRNAs are extensively modified. These modifica-
tions can modulate the structure, function, and stability of
tRNAs (15). The tRNAs used in this study lack the post-tran-
scriptional modifications. Nevertheless, our data suggest that
cytochrome c binds to the outside corner of the tRNA tertiary
core, which is not extensively modified relative to the anticodon
loop region. Post-transcriptional modifications to the outside
corner of the tRNA tertiary core primarily consist of dihydrou-
ridine residues, which have also been used extensively to intro-
duce fluorophores to monitor tRNA dynamics on the ribosome
(21, 22). This indicates that these residues themselves are not
critical for the intra-molecular folding of the tRNA tertiary
core. Therefore, we suggest that the use of unmodified tRNAs
does not affect the binding with cytochrome c.

Apoptosis is tightly regulated at many levels (44, 45). The
inhibition of the cytochrome c-Apaf-1 binding by tRNA may
present an important cytosolic regulatory mechanism. Thus,
tRNAs can bind to cytochrome c that is released into the cyto-
plasm, providing an inhibitory mechanism for apoptosis and
linking cellular sensitivity to apoptotic stimuli with the state of
protein synthesis (46 – 48). This study provides additional
insights into the mechanism by which the apoptotic activity of
cytochrome c is regulated. Oxidation of cytochrome c stimu-
lates its apoptotic activity, whereas reduction of cytochrome c
inhibits it (10). In apoptotic cells, cytochrome c released into
the cytosol is likely maintained in the oxidized form by mito-
chondrial cytochrome c oxidase, which can act on the released
cytochrome c due to the permeability of the mitochondrial
outer membrane (10). By contrast, in cases where the release of

cytochrome c fails to induce apoptosis, cytochrome c may be
held in the reduced form by reduced glutathione (49). Our
observation that tRNA binds to oxidized cytochrome c with a
weaker affinity than to reduced cytochrome c (Fig. 5) provides a
possible explanation for the different apoptotic activity of these
two forms of cytochrome c.

tRNA can also convert cytochrome c from the oxidized to the
reduced form (Fig. 5). The most likely explanation is that tRNA
ribonucleotides contact with the heme group of cytochrome c
and donate an electron to the ferric ion (Fe3�). This likely con-
tributes to the reduction of the apoptotic activity of cytochrome
c. The same redox reaction can also blunt the measured perox-
idase activity of cytochrome c (Fig. 6). Because the peroxidase
activity of cytochrome c is involved in the oxidation of cardio-
lipids and subsequent release of cytochrome c from the crista
space (the space created by the invaginations of the inner mem-
brane) to the cytosol (40), tRNA might also inhibit this function
of cytochrome c if it has access to cardiolipid-bound cyto-
chrome c. This scenario seems possible because of the perme-
ability of mitochondrial outer membrane and the remodeling of
the crista space during apoptosis. Thus, the redox reaction
between cytochrome c and tRNA suggests a broad function by
which tRNA impairs the pro-apoptotic activity of cytochrome
c, beyond the disruption of the cytochrome c-Apaf-1 interac-
tion. In contrast, cytochrome c-mediated oxidation could cause
damage to tRNA and thus may impair translation, further pro-
moting cell death.

In addition to representing new modes of regulation and
function of cytochrome c in apoptosis, the discovery of the
cytochrome c-tRNA interaction revealed a previously com-
pletely unanticipated role of tRNA. Although it had been appre-
ciated that the three-dimensional structure of tRNA endows it
with functions beyond gene expression, a direct function in cell
fate decision is especially notable. The inhibitory role of tRNA
in apoptosis may raise the threshold of apoptosis in cells that
are highly active in protein synthesis, a sensible mechanism
given the likely utility of these cells to the organism.

A recent study showed that tRNA halves, which are gener-
ated by endonucleolytic cleavage in the anticodon loop in
response to oxidative and other stresses (50), bind to cyto-
chrome c and confer resistance to apoptosis (51). We have
shown that a pair of tRNA halves, separated by a nick in the
anticodon loop, can nonetheless retain the L-shaped struc-
ture (26), which may account for their ability to bind to
tRNA. Such tRNA halves represent an intriguing example
whereby tRNA-mediated apoptotic inhibition is regulated
physiologically. This mechanism may also be usurped under
pathological conditions, including cancer. Mammalian cyto-
plasmic tRNAs are transcribed by RNA polymerase III,
which is inhibited by the tumor suppressors p53 and the
retinoblastoma protein (Rb) and activated by the oncopro-
teins, including c-Myc and Ras (52). Mutations in these
tumor suppressors/oncogenes cause tRNA levels to rise in
tumor cells, and high tRNA levels are required for prolifer-
ation and tumorigenesis (52). A better understanding of the
molecular interaction between cytochrome c and tRNA and
the regulation of this interaction should reveal evolution-
arily conserved mechanisms that govern apoptosis, metabo-
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lism, and translation and the consequences of their deregu-
lation in human diseases.
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