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ABSTRACT 

In 2017, the United States Food and Drug Administration (FDA) approved the first two novel 

cellular immunotherapies using synthetic, engineered receptors known as chimeric antigen 

receptors (CAR), tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta), expressed by 

patient-derived T cells for the treatment of hematological malignancies expressing the B-cell 

surface antigen CD19 in both pediatric and adult patients. This approval marked a major 

milestone in the use of antigen-directed ‘living drugs’ for the treatment of relapsed or refractory 

blood cancers, and with these two approvals, there is increased impetus to expand not only the 

target antigens but also the tumor types that can be targeted. This state-of-the-art review will 

focus on the challenges, advances, and novel approaches being utilized to implement CAR-T cell 

immunotherapy for the treatment of solid tumors. 

 

  



INTRODUCTION 

The human T-cell pool can be broadly separated into two populations with distinct functional 

roles based on the surface antigens CD4 and CD8. The CD4⁺ T cells, also known as helper T cells, 

coordinate and regulate immune responses, whereas the CD8⁺ T cells, or cytolytic T cells, kill cells 

expressing a defined target antigen. Both CD4⁺ and CD8⁺ T-cell function is dependent on the 

binding of a highly variable T-cell receptor (TCR) to its cognate antigenic peptide presented by 

major histocompatibility complex (MHC) molecules which are highly polymorphic within 

patients. For TCRs in CD8⁺ T cells, the corresponding MHC class I molecule is expressed by all cells 

in the body, including tumor cells. It is this CD8⁺ T-cell response that is critical in cancer 

immunotherapy. Indeed, patients with various solid tumors have an improved prognosis when 

endogenous, cytolytic CD8⁺ T cells are present within the tumor (1).  

These tumor-resident T cells, or tumor infiltrating lymphocytes (TILs), can be obtained from the 

patient, selected for tumor specificity and expanded ex vivo, and reinfused into the patient as a 

highly personalized treatment for multiple solid tumor types (2,3). Moreover, known tumor 

antigen-specific TCRs have been cloned and genetically engineered into T cells for adoptive 

transfer; however, the efficacy of these engineered TCRs is restricted by the highly variable 

human leukocyte antigen (HLA) haplotypes, which encode the MHC molecule, limiting broad 

applicability across the patient population. 

Infusing naturally-occurring or TCR-engineered tumor-specific T cells into patients has been 

therapeutically successful; however, there are several limitations to this approach. In a cohort of 

nine patients with tumors expressing the melanoma-associated antigen A3 (MAGE-A3), clinical 

responses, as defined by RECIST criteria, were observed in 5 patients [partial responses (PR) =4; 



complete responses (CR)=1] (4). Severe neurological toxicity was observed in three patients, 

although it is unclear if the toxicity was due to concomitant cytokine administration or off-target 

effects or, more likely, a combination of specific and indirect inflammatory events. While the 

engineered TCR was selected because of its recognition of MAGE-A3, it was discovered by the 

authors that this TCR also recognizes MAGE-A12, MAGE-A2, and MAGE-A6. Biochemical analyses 

revealed expression of several members of the MAGE-A gene family, including A3, A6, and A12, 

in the brain tissue of patients with observed neurological toxicity and recognition of MAGE-A12 

was identified as the most likely cause of toxicity. In a separate case, an affinity-enhanced MAGE-

A3 TCR was developed, and therapeutic use resulted in lethal cardiotoxicity, later attributed to 

TCR cross-reactivity with an epitope in the cardiac protein, titin (5,6). 

In a single case study of a patient with metastatic colorectal cancer, tumor-specific CD8⁺ T cells 

recognizing mutant KRAS G12D were expanded ex vivo and reinfused into the patient who 

harbored seven lesions in the lung. Initially, all seven lesions responded to treatment at six weeks; 

however, one lesion eventually progressed, and it was discovered after resection that this lesion 

lost expression of the MHC molecule presenting the KRAS G12D epitope, evading the infused, 

tumor-specific T cells (7). In a letter to the editor regarding that study, it was noted that the 

probabilistic occurrence of a patient having both a KRAS G12D mutation and the appropriate HLA 

haplotype to express the mutant peptide epitope is exceedingly rare (8). In a survey of the Cancer 

Genome Atlas the authors found in their sample size of 6125 patients that 151 were positive for 

the KRAS G12D mutation and of that population, only 4 had the corresponding HLA allele. While 

TCR-based immunotherapy is efficacious, its highly-personalized nature limits its feasibility as a 

future standard-of-care therapy, especially with the prospect of MHC loss by the tumor and off-



target toxicity risks due to a nearly unknowable immuno-peptidome. In contrast, CAR-T cells can 

bridge this gap and provide a therapy that offers robust, targeted antitumor efficacy that can be 

more broadly applied to the patient population. 

Developed in the late 1980s by Zelig Eshhar of the Weismann Institute in Israel, chimeric antigen 

receptors (CARs) are synthetic receptors that pair the epitope binding domains of an antibody 

with the intracellular signaling domains of a T-cell receptor (9). By targeting epitopes in their 

native form, CARs can function independently from peptide-MHC presentation, executing the 

same cytotoxic effector function as endogenous CD8⁺ T cells (Fig. 1). Since their inception, CARs 

have evolved through three generations of development. The first generation consisted of the 

antigen-binding domain of antibodies, known as a single chain variable fragment (scFv), which is 

a fusion of the heavy and light chain variable regions with a flexible peptide linker, and the 

intracellular domains of the signaling protein CD3ζ of the TCR complex. These CARs could not 

persist in vivo, and it was discovered that inclusion of signaling domains from co-stimulatory 

molecules, such as CD28, could enhance survival of CAR-T cells expressing these second-

generation CARs (10). Third-generation CARs include domains from two co-stimulatory 

molecules, such as CD28 and 4-1BB (CD137). The two FDA-approved CAR-T cell therapies are 

based on second-generation designs, with Kymriah using 4-1BB as the co-stimulatory domain, 

and Yescarta using CD28. Both designs are effective in the treatment of hematological 

malignancies; however, there is evidence to suggest that strategic deployment of both designs 

may be required for therapeutic efficacy in solid tumors.    

 

OVERCOMING THE SOLID TUMOR BARRIER 



The excitement surrounding CAR-T cell immunotherapy stems from the successful treatment of 

numerous relapsed and refractory hematological malignancies expressing the surface antigen 

CD19, including acute (11,12) and chronic (13,14) lymphocytic leukemia (ALL and CLL), lymphoma 

(15), and diffuse large B-cell lymphoma (16,17). To date, the successful implementation of CAR-

T cells in the treatment of hematological malignancies has not extended to solid tumors (Fig. 2).  

The greatest challenge to implementing successful CAR-T cell therapy for solid tumors is finding 

the appropriate target antigen. While CD19-directed CAR-T cells do exhibit on-target, off-tumor 

toxicity, the resulting B-cell aplasia, while lasting for at least six months (18), can be successfully 

managed with intravenous pooled immunoglobulin (IVIG). Many antigens that are present in 

solid tumors are often also present in the normal tissue of origin. Whereas B-cell aplasia can be 

managed clinically, destruction of vital organs is treatment-limiting and potentially fatal. While 

robust human data regarding the safety of CAR-T cells is not currently available for solid 

malignancies, it should be noted that engineered TCRs and CAR-T cells directed towards the same 

antigen may have vastly different safety profiles due to spatial differences in native antigen 

expression versus MHC class I presentation to T cells and differences in antigen cross-reactivity 

profiles.  

Although trafficking of CAR-T cells to tumors is an important concern regarding efficacy (19), solid 

tumor treatment may benefit from local infusion at the site of metastases, rather than systemic 

administration (20). More important, once the cells arrive at the tumor, will be the ability of these 

cells to overcome the immunosuppressive tumor microenvironment (TME). We know from the 

clinical success of checkpoint inhibitor antibody therapy that the TME can be manipulated, 

allowing for both dormant and nascent T-cell responses to execute antitumor effects following 



intervention (21), although not all solid tumors respond to checkpoint inhibition. Currently, the 

standard-of-care for use of CAR-T cell therapy is as a last line of defense; however, partnering 

CAR-T cells with other immunotherapeutics may be necessary to achieve efficacy in solid tumors. 

The remainder of this review will focus on the myriad strategies being investigated to enhance 

CAR-T cell efficacy in solid tumors. 

 

ENHANCING RESPONSES 

Productive T-cell responses require the convergence of three discrete signaling events. The first 

event is the signaling that takes place directly through TCR binding to its cognate peptide-MHC. 

The second event is the binding of costimulatory molecules, such as CD28, to their respective 

ligands on the opposing cell. The third event is signaling through cytokines, secreted factors that 

affect the fate of the cell, producing both stimulatory and inhibitory effects. As CARs already 

contain elements of the first and second signaling events, investigators have been manipulating 

stimulatory cytokines to enhance CAR-T cell efficacy. 

To mitigate graft rejection, the current clinical protocol for T-cell based therapies is to use 

autologous T-cells. White blood cells are collected through leukapheresis, the whole T-cell 

population, including both CD4⁺ and CD8⁺ T cells, is then selected out, and the T cells are then 

cultured ex vivo (Fig. 3). During this time, exogenous cytokine supplementation is critical for T-

cell proliferation, survival, and differentiation, and while there is some overlap with regards to 

cytokine function, the specific cytokines used can greatly impact the fate and function of CAR-T 

cells. 



T cells differentiate into roughly four subsets: naïve, central memory, effector memory, and 

CD45RA+ effector memory T cells. Interestingly, while the overall proliferation rate and 

differentiation of T cells are comparable when the cytokines IL-2, IL-7, or IL-15 are used, there is 

a noticeable difference in in vivo cytolytic function. T cells that were cultured with IL-2 exhibited 

poor antitumor efficacy compared to IL-7 and IL-15 (22). In that study, the authors utilized a CAR 

design that incorporated a CD27 costimulatory domain. There is an inverse relationship between 

IL-2 receptor signaling and CD27 expression (23), but it is unclear if this lack of in vivo efficacy is 

specific to this CAR design. This is reflective of the CAR field more broadly, where all aspects of 

the CAR design impact CAR and T-cell function and these characteristics must be determined 

through empirical optimization. Indeed, the proximity of the epitope in relation to the cell 

membrane surface (24), the source (IgG, CD8α, or CD28) of the hinge that links the scFv with the 

transmembrane domain, and the origin (CD8α or CD28) of the transmembrane domain itself, all 

affect the performance and antitumor efficacy of the CAR (25,26). 

Although IL-2 was not as effective in the CAR utilizing a CD27 costimulatory domain, many 

investigators utilize IL-2 in their culture methods and demonstrate effective in vivo cytotoxicity. 

In fact, the MAGE-A3-specific engineered T cells described above were dosed concomitantly with 

IL-2 (4). Unfortunately, IL-2 is so ubiquitous in the function of both transferred and endogenous 

inflammatory and suppressive T cells that toxicity is a major limitation to its use. A creative 

approach to avoid unwanted IL-2 toxicity employs an engineered IL-2 receptor that recognizes 

an IL-2 ortholog. Sockolosky et al. developed a receptor-ligand pair that functions similarly to 

natural IL-2Rβ and IL-2, respectively, but does not bind endogenous IL-2. This modified receptor 



can be transduced into T cells, and the IL-2 ortholog can be administered to promote specific T-

cell proliferation and antitumor efficacy comparable to wild-type IL-2 signaling (27).  

An alternative approach to supplementing with exogenous cytokines is to encode cytokines 

directly into the CAR construct. Adachi et al. generated CARs targeting human CD20 or fluorescein 

isothiocyanate (FITC), a fluorescent molecular label, providing a more generalizable comparator. 

The CAR constructs were designed to induce the engineered T cells to express IL-7 and CCL19, 

two molecules critical for the maintenance of the T-cell zone in lymph nodes. Moreover, these 

signaling molecules are important for recruiting antigen-presenting dendritic cells (DCs), so 

encoding these molecules into CAR-T cells allows for tumor-infiltrating CAR-T cells to establish 

lymphoid-like structures within the tumor, enhancing the endogenous immune response (28). 

The complete regression of tumor in their in vivo model when treated with CAR-T cells expressing 

IL-7 and CCL19 versus conventional CAR-T cells suggests that CAR-T cell-mediated tumor cell 

death can induce subsequent release of tumor antigens, antigen acquisition and presentation by 

the recruited DCs, and induction of endogenous T-cell responses that can enhance the antitumor 

effect, a mechanism known as epitope spreading. Induction of epitope spreading may become 

an important aspect of CAR-T cell therapy because it can sustain antitumor efficacy regardless of 

CAR-targeted antigen loss or poor persistence of CAR-T cells. 

In the context of that work, the potential priming of new immune responses through epitope 

spreading suggests that this strategy may work synergistically with CTLA-4-directed checkpoint 

inhibitor therapy, while PD-1 antagonism may help to prolong the lifespan of the CAR-T cells. The 

natural life cycle of T cells involves activation, clonal expansion, execution of effector function, 

and then exhaustion and contraction. This cycle is dependent on the intensity of the stimulus, 



and CAR-T cells that are strongly activated in the presence of antigen can undergo activation-

induced cell death (AICD). Gargett et al. demonstrate in a model targeting the neuroblastoma 

antigen GD2, that interaction with antigen from the tumor or antibody-mediated cross-linking of 

CARs resulted in increased expression of PD-1 and engagement with its ligand, PD-L1, resulting 

in AICD. Intervention with anti-PD-1 antibody to block this signal abrogated AICD (29). In fact, this 

finding allowed them to amend an ongoing clinical trial (NCT01822652) to include concomitant 

administration of pembrolizumab (Keytruda, Merck) with their GD2-directed CAR-T cells. Rafiq et 

al. went one step further and designed CAR-T cells that also secrete a PD-1-blocking scFv, allowing 

for combinatorial therapies to be administered in a single drug (30). Other attempts to prevent 

CAR-T cell death have been accomplished by blocking pro-apoptotic signaling pathways 

commonly utilized by T cells, including Fas-FasL-mediated signaling, death receptor 5 (DR5), and 

tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In murine studies, CAR-T cell 

persistence in vivo is attenuated by the upregulation of these pro-apoptotic pathways and 

blockade of these pathways promotes survival. More importantly, using a defined TCR 

demonstrated that this pro-death phenotype is enhanced by signaling through the TCR as well as 

the CAR, indicating that over-stimulation of the T cell is detrimental to long-term survival and 

antitumor efficacy (31). 

While staving off cell death to promote persistence is a critical component to effective CAR-T cell 

therapy, first and foremost, the cells need to be exemplary killers. There have been two 

molecular approaches utilized by multiple investigators to make cells resistant to tumor-

mediated immunosuppression: IL-12-secreting and IL-18-secreting CAR-T cells. The reason why 

these two cytokines, in particular, are chosen, stems from their ability to stimulate the 



production of interferon-γ (IFNγ), a critical signaling molecule for T cells (32).  Due to its potency 

at stimulating both T and NK cells, it was originally thought that dosing with IL-12 as a single agent 

could be efficacious in the treatment of solid tumors; however, its lethal toxicity in a Phase II trial 

terminated its therapeutic use. It is thought that local production of IL-12 by CAR-T cells, rather 

than systemic administration, may produce less toxicity. These IL-12-producing CAR-T cells, 

nicknamed “armored CAR T-cells," can alter the TME by depleting the highly suppressive tumor-

associated macrophages through Fas-FasL interactions. Moreover, IL-12-secreting CAR-T cells are 

not inhibited by the PD-1-PD-L1 signaling axis (33). While impressive, it is unclear if these 

suppression-resistant armored CAR-T cells pose additional toxicity risk due to their persistence. 

It should be noted that in a clinical trial (NCT02498912) targeting MUC16 on ovarian tumors with 

IL-12-secreting CAR-T cells, the investigators have also encoded a truncated epidermal growth 

factor receptor (EGFRt) that lacks both ligand-binding and enzymatic activity but allows for these 

cells to be eliminated with cetuximab.  

The alternative approach to IL-12 is to armor CAR-T cells by encoding the other IFNγ-inducing 

cytokine, IL-18. As such, many of the antitumor results are similar, although there are some 

important distinctions that should be noted. IL-18-secreting CAR-T cells were also capable of 

remodeling the TME, albeit by increasing the number of effector cells, rather than depleting the 

number of suppressive cells. In one murine study using the thymoma cell line EL4 engineered to 

express human CD19, IL-18-secreting CAR-T cells trafficked to the bone marrow, where these 

tumor cells engraft after intravenous administration, whereas conventional CD19-directed CAR-

T cells did not. These armored CAR-T cells promoted the expansion of NK cells, NKT cells, DCs, 

and endogenous CD8⁺ T cells. There was also more pro-inflammatory M1 macrophages present 



(34). IL-18 functions in tandem with TCR signaling, so it was important to determine if IL-18-

mediated antitumor efficacy was the result of non-specific, endogenous TCR activation of the 

CAR-T cells or if the CAR was sufficient to produce the observed IL-18 response. Hu et al. used 

TCR knock-out CAR-T cells to demonstrate that the IL-18-mediated effects were maintained by 

the signaling through the CAR (35). To improve safety, they placed IL-18 under the control of the 

nuclear factor of activated T-cells (NFAT) promoter, which becomes transcriptionally active after 

TCR, or in this instance, CAR signaling. Therefore, IL-18 is actively produced only after CAR 

signaling commences upon binding of its target antigen. Mechanistically, it was discovered that 

these inducible IL-18 CAR-T cells promoted a more cytolytic CD8⁺ T-cell response by inducing a T-

bethigh FoxO1low phenotype, whereas the opposite transcription factor signature promotes 

memory CD8⁺ T-cells (36).  

The cytokine milieu plays a critical role in shaping the immune response, and while IL-12 and IL-

18 promote proliferation, survival, and effector functions of CAR-T cells, there are many tumor-

secreted cytokines that have the opposite effect. Most notable is transforming growth factor β 

(TGFβ), a critical cytokine in the differentiation of suppressive regulatory T cells (Tregs) and 

maintenance of T-cell homeostasis (37). Rather than allowing the TGFβ-enriched TME to exert 

immunosuppressive pressure on CAR-T cells, investigators are developing ways to block the 

signal by creating a dominant-negative receptor or exploiting this signal by coupling the 

extracellular domain of the TGFβ receptor to a stimulatory intracellular domain. In the latter 

example, Sukumaran et al. created a system that required unique signaling events to trigger the 

three discrete signals required to produce a productive T-cell response. Signal 1, the TCR signal, 

was generated using a first-generation CAR containing the CD3ζ endodomain fused to a scFv 



recognizing the prostate stem cell antigen (PSCA). The second signal, the costimulatory signal, 

was created by fusing the extracellular TGFβRII domain to the 4-1BB signaling domain. The third 

signal, the cytokine signal, was generated by fusing the extracellular receptor domain for the 

suppressive cytokine IL-4, which is also generated by some tumors, to the intracellular IL-7Rα 

domain (38). Although there are technical limitations to this approach due to the requirement 

for multiple constructs encoding the three elements, this proof-of-concept for a logic-gated 

system to promote specificity and safety of split domain CARs requiring independent stimuli 

appears to be a viable option. It is, however, unclear if the signal 3 component is redundant. The 

IL-4/IL-7 switch receptor might enhance stimulatory signals, although it is unclear if endogenous 

cytokines would be sufficient if the T cells expressed only the PSCA CAR and TGFβRII-4-1BB 

receptors. An alternative approach is to abrogate TGFβ signaling by incorporating a dominant 

negative receptor. Using a CAR targeting the prostate-specific membrane antigen (PSMA), Kloss 

et al. created a T cell that expresses both the CAR and the dominant negative TGFβ receptor. 

Insensitivity to TGFβ promoted a significant increase in proliferative capacity relative to 

conventional CAR-T cells (39), suggesting that the lack of persistence observed in CAR-T cell-

treated solid tumors stems from TME-mediated immune suppression and that the potential to 

achieve the persistence observed in CD19-directed CAR-T cells is possible with appropriate 

immune cell modulation.    

               

GENE EDITING APPROACHES 

The ability to enhance CAR-T cell efficacy is incumbent on how the T cells are transformed into 

CAR-T cells. To date, the method of gene delivery has used lentiviral or γ-retroviral vectors. The 



two FDA approved CD19 CAR-T cell therapies, Kymriah and Yescarta, use lentiviral or retroviral 

delivery, respectively. While these methods for gene delivery into T cells are effective, genome 

integration is uncontrolled. Lentiviral vectors adopt their transcriptional machinery from the 

human immunodeficiency virus (HIV), and while the exact location of integration cannot be 

controlled, leading to potentially deleterious effects, HIV is known to integrate at 

transcriptionally active sites (40). In a remarkable case study of a seventy-eight-year-old patient 

with CLL treated with CTL019, the therapy that would become Kymriah, it was found that a single 

CAR-T cell clone was responsible for mediating the bulk of the antitumor response (41). In this 

instance, the lentiviral vector integrated into intron 9 of the methylcytosine dioxygenase TET2 

gene of a single T-cell clone, disrupting its function. The patient’s second TET2 allele possessed a 

hypomorphic mutation resulting in complete loss of TET2 function in the clone. Interestingly, the 

TET2-disrupted clone was able to expand significantly upon repeated antigen stimulation 

compared to CAR T-cells with intact TET2. These CAR T-cells also had increased expression of the 

cytolytic effector molecules perforin and granzyme B, consistent with the increased cytotoxic 

effector function observed in these cells. This data suggests that strategic genomic insertion of 

the CAR can have a broad phenotypic impact on the T cell and dramatically alter therapeutic 

efficacy. 

Gene editing techniques need not be as stochastic as viral vectors. Numerous approaches allow 

for site-specific integration by creating double-strand breaks that can be repaired with the 

insertion of a transgene. Most notable among these techniques is CRISPR/Cas9. Considering that 

the CAR is a surrogate for the TCR, the most obvious location to target is the TCR locus. Eyquem 

et al. created a CRISPR system to insert the CAR construct within the T-cell receptor α chain 



constant (TRAC) locus, resulting in superior antitumor efficacy (42). To elucidate the functional 

differences between conventional and TRAC-CAR-T cells, lower and lower doses of cells were 

administered, with TRAC-CAR-T cells maintaining therapeutic efficacy, whereas conventional 

retrovirus-transduced CAR-T cells were no better than controls. Site-specific insertion of the CAR 

into the TRAC locus prevents the acquisition of an exhausted phenotype, which is abrogated by 

the inclusion of a constitutive EF1α promoter, suggesting that transcriptional regulation in a site-

dependent manner is important to maintain CAR-T cell potency. 

Although there are benefits to using CRISPR/Cas9 gene editing, including the simplicity of design 

and ability to target multiple genes in a single cell, there is a high likelihood for off-target effects 

(43). Derived from xanthamonus bacteria, transcription activator-like effector nucleases 

(TALENs) allow for highly accurate and efficient gene editing. To instigate a double-strand break, 

a left and right TALE must be designed with the assistance of software that allows for any region 

of DNA to be targeted. A FokI nuclease domain is then added to both the left and right TALE 

domains, such that the two nucleases meet at the same location on the DNA and instigate 

cleavage (44). By creating two double-strand breaks within the same chromosome, the cell can 

utilize homology-directed repair, allowing for the precise insertion of specific genes of interest. 

TALENs have been used to create site-specific alterations to the TCRα and β loci. Insertion of a 

flu-specific TCR into primary human T cells resulted in a five-fold increase in IFNγ and an 18-fold 

increase in IL-2 production compared to conventionally transduced cells (45). This corroborates 

the improved effector function seen in the CRISPR-edited TRAC-CARs. In CAR-T cells, TALENs have 

been used to selectively knock out specific loci. To treat two infants with relapsed and refractory 

B-ALL, the difficulty in manufacturing autologous cellular products required an alternative 



strategy. HLA-mismatched donor cells were transduced with CD19 CAR-encoding lentivirus 

followed by the use of TALENs to delete both the TRAC locus and CD52, the antigen targeted by 

the transplantation drug alemtuzumab (46). Both infants responded to treatment with these cells 

and were in remission, although there was graft-versus-host disease noted in both cases, most 

likely caused by residual TCR+ CAR-T cells. Nonetheless, this suggests that as a proof-of-concept, 

universal CAR-T cells can be implemented using modern gene-targeting approaches with 

clinically-manageable toxicity risks.     

     

CONCLUSIONS 

Given the difficulty in treating solid tumors with CAR-T cells, the success witnessed in CD19-

directed CAR-T cell therapy may appear serendipitous. There is potentially some truth to this, as 

CAR-T cell therapy to treat T-cell acute lymphoblastic leukemia (T-ALL) has not been developed 

concurrently with B-ALL CAR-T cell therapy, given the risk for fratricide when targeting T-cell 

antigens expressed in not only T-ALL cells but also in the CAR-T cells themselves. Experience with 

CD19-directed CAR-T cell therapy has encouraged the CAR-T cell community to confront the 

problems associated with expanding this therapy to other tumor types. In fact, in the case of T-

ALL, Cooper et al. have created a CAR that targets the T-cell antigen CD7 and, to avoid CAR-T cell 

fratricide, have used CRISPR/Cas9 to delete CD7 in the CAR-T cells (47). The necessary strategies 

to create more effective CAR-T cell therapies are being developed and this review has outlined 

some of the approaches investigators are taking to enhance the efficacy of these cells both within 

CD19-targeted therapy and beyond. Although a one-size-fits-all approach is ideal, and 

investigators are seeking a cytokine signaling pathway that is a panacea for the limitations of 



treating solid tumors and unleashing the full potential of CAR-T cells, the reality is that each 

cancer is unique and will ultimately require unique approaches to effectively eradicate disease 

using CAR-T cells. 
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FIGURES 

 
Figure 1. Comparison of T-Cell Receptors and Chimeric Antigen Receptors 
A) Virtually all cells express the Major Histocompatibility Complex (MHC) class I molecules, 
including cancer cells. Antigens produced by the cancer cell go through a processing mechanism 
in the proteasome producing short (8-15 amino acid) peptide fragments that are loaded onto 
MHC class I molecules and presented on the surface of the cell. This peptide-MHC complex is 
recognized by the T-cell receptor (TCR), which is composed of an α and β subunit that forms the 
binding domain, surrounded by the CD3 molecules δ, ϵ, γ, and ζ. CD8⁺ T cells recognize class I 
MHC and the CD8 co-receptor binds to the MHC class I molecule, stabilizing the interaction. This 
is considered Signal 1 of a productive T-cell response. Signal 1 by itself leads to anergy, a state of 
functional inactivation. An additional signal, through the co-stimulatory receptor CD28, known 
as Signal 2, is required to fully activate the T cell. B) Tumor antigens that are trafficked to the cell 
surface after post-translational modifications can be recognized by a chimeric antigen receptor 
(CAR). The antigen binding domains of the heavy and light chains from an antibody are fused with 
a short, flexible peptide linker, creating a scFv. This portion of the molecule allows the CAR to 
recognize a tumor antigen independent of presentation by MHC molecules. The Signal 1 and 
Signal 2 components of the TCR complex are then located intracellularly and are attached to the 
scFv through hinge and transmembrane domains. Originally, CARs contained only a CD3ζ 
intracellular signaling domain, and this lack of Signal 2 resulted in anergic-like T cells. The addition 
of CD28 or 4-1BB costimulatory domains provided the Signal 2 required for productive T-cell 
responses. Whether signaling through an endogenous TCR or a CAR, the result is the same T cell-
mediated killing of the target cell.     



 
Figure 2. Immunotherapeutic Barriers to Treating Solid Tumors 
The success of CAR-T cell therapy for the treatment of hematological malignancies has resulted 
in FDA approval of two, novel immunotherapeutics; however, solid tumors pose additional 
barriers that have yet to be overcome in the successful implementation of CAR-T cell therapy.  A) 
The first barrier is identifying appropriate target antigens that demonstrate differential 
expression between normal tissue and tumor. Indeed, the CD19-directed CAR T-cell therapies 
target healthy B-cells; however, this autoimmunity can be successfully treated through IVIG 
administration.  CAR-T cell-induced autoimmunity in solid organs can lead to life threatening 
morbidities and even death from T-cell mediated destruction of the organ.  Thus, finding 
appropriate antigens is a critical first step in identifying a successful therapy. The second 
limitation is trafficking of the CAR-T cells to the tumor.  B) Abnormal homing molecule (adhesion 
molecules and chemokines) expression and tumor vasculature can create conditions that make 
it difficult for T cells to extravasate into tumor tissue and execute their effector function. C) The 
final barrier, once CAR-T cells reach the tumor, is to overcome the tumor’s immunosuppressive 
microenvironment.  Solid tumors secrete immunosuppressive cytokines, such as 
TGFβ.  Moreover, IFNγ secreted by activated T-cells, including CAR-T cells, can induce expression 
of PD-L1 in the tumor, which is one of the critical inhibitory immune checkpoints.  Blocking these 
inhibitory pathways might be important for successful CAR-T cell responses in solid tumors.  



 

Figure 3. Clinical Life Cycle of a CAR-T Cell 
Patients who are relapsed or refractory are considered candidates for CAR-T cell therapy. To 
avoid graft rejection, the patient's T cells are used to create the product. White blood cells are 
isolated from the blood by leukapheresis. T cells are then isolated from the population and the 
cells are activated by stimulation with antibodies against CD3 and CD28. This begins the 
proliferation phase of the ex vivo culture process and the cells are next transduced using either 
a lentivirus or a γ-retrovirus. The virus integrates into the host-cell genome and the CAR is 
produced by the cell and trafficked to the surface. The cells are then expanded to have suitable 
numbers for infusion and quality control measures are taken to ensure that the product is safe 
and free from contaminants. The CAR-T cells are ready for infusion back into the patient to 
eliminate their cancer. 
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