
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Biochemistry and Molecular 
Biology Faculty Papers 

Department of Biochemistry and Molecular 
Biology 

4-26-2016 

A PARP1-ERK2 synergism is required for the induction of LTP. A PARP1-ERK2 synergism is required for the induction of LTP. 

L Visochek 
Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University 

G Grigoryan 
Department of Neurobiology, Weizmann Institute of Science; Division of Cellular Neurobiology, Zoological 
Institute, Technische Universität Braunschweig 

A Kalal 
Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University; Department of 
Physiology and Pharmacology, Tel-Aviv University 

H Milshtein-Parush 
Department of Physiology and Pharmacology, Tel-Aviv University; Sagol School of Neuroscience, Tel-Aviv 
University 

N Gazit 
Department of Physiology and Pharmacology, Tel-Aviv University; Sagol School of Neuroscience, Tel-Aviv 
University 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/bmpfp 

 Part of the Medical Biochemistry Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Visochek, L; Grigoryan, G; Kalal, A; Milshtein-Parush, H; Gazit, N; Slutsky, I; Yeheskel, A; Shainberg, A; 
Castiel, A; Seger, R; Langelier, Marie-France; Dantzer, F; Jabbour, Pascal MD; Segal, M; and Cohen-Armon, 
M, "A PARP1-ERK2 synergism is required for the induction of LTP." (2016). Department of Biochemistry 
and Molecular Biology Faculty Papers. Paper 102. 
https://jdc.jefferson.edu/bmpfp/102 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized 
administrator of the Jefferson Digital Commons. For more information, please contact: 
JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/bmpfp
https://jdc.jefferson.edu/bmpfp
https://jdc.jefferson.edu/bmp
https://jdc.jefferson.edu/bmp
https://jdc.jefferson.edu/bmpfp?utm_source=jdc.jefferson.edu%2Fbmpfp%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/666?utm_source=jdc.jefferson.edu%2Fbmpfp%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
L Visochek, G Grigoryan, A Kalal, H Milshtein-Parush, N Gazit, I Slutsky, A Yeheskel, A Shainberg, A Castiel, 
R Seger, Marie-France Langelier, F Dantzer, Pascal Jabbour MD, M Segal, and M Cohen-Armon 

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/bmpfp/102 

https://jdc.jefferson.edu/bmpfp/102


1Scientific Reports | 6:24950 | DOI: 10.1038/srep24950

www.nature.com/scientificreports

A PARP1-ERK2 synergism is 
required for the induction of LTP
L. Visochek1, G. Grigoryan2,†, A. Kalal1,3, H. Milshtein-Parush3,4, N. Gazit3,4, I. Slutsky3,4, 
A. Yeheskel5, A. Shainberg6, A. Castiel7, R. Seger8, M. F. Langelier9, F. Dantzer10, J. M. Pascal9, 
M. Segal2 & M. Cohen-Armon1,3,4

Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response 
to single-strand DNA damage, was also required for long-term memory acquisition in a variety of 
learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, 
which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 
in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription 
factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated 
Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. 
PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG 
promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a 
predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed 
IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent 
mechanism required for LTP generation, which may be implicated in long-term memory acquisition and 
in its deterioration in senescence.

PolyADP-ribose polymerases (PARPs) catalyze an abundant post-translational modification of nuclear proteins 
by polyADP-ribosylation. In this modification, NAD (Nicotinamide adenine dinucleotide) derived ADP-ribosyl 
moieties form ADP-ribose polymers on glutamate, lysine and aspartate residues of PARPs and their substrates1,2. 
Binding of the most abundant nuclear polyADP-ribose polymerase PARP1 to DNA single-strand breaks activates 
the protein and thereby triggers DNA base-excision repair1,2.

Recent findings implicated PARP1 in additional processes in the chromatin, including gene expression reg-
ulated by chromatin remodeling, DNA methylation or recruitment of transcription factors2–6. Moreover, alter-
native mechanisms of PARP1 activation in the absence of DNA damage were identified in a variety of cell types 
and cell-free systems. They include PARP1 activation by a variety of signal transduction mechanisms inducing 
intracellular Ca2+ release and activation of phosphorylation cascades2,7–9.

Numerous findings implicated the phosphorylation of extracellular signal regulated kinase-2 (Erk2) in synap-
tic plasticity and long-term memory10–12. Interestingly, recent in vivo experiments also revealed a pivotal role of 
PARP1 activation in long-term memory acquisition during learning13–18, but the explicit molecular mechanism 
underlying this un-expected role of PARP1 has not been identified.

Here, we disclose a molecular mechanism in the chromatin of cerebral neurons, which is activated by 
stimulation-induced Erk-PARP1 binding and synergistic activity required for immediate early genes (IEG) expression 
implicated in long-term memory. Furthermore, identified intra-molecular re-arrangements in DNA-bound PARP1 
preventing its binding to phosphorylated Erk2, interfered with stimulation-induced IEG expression and LTP gener-
ation in the presence of DNA single-strand breaks, usually accumulated in aged irreplaceable cerebral neurons19,20.
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Results
PARP1-dependent long-term potentiation in the hippocampal CA3-CA1 connections.  Long-
term potentiation (LTP) in the hippocampal CA3-CA1 connections is currently used as a model for long-term 
memory21–23. In our experiments, field excitatory postsynaptic potentials (fEPSPs) were recorded from hip-
pocampal slices of mice. Long-term potentiation in the hippocampal CA3-CA1 connections was induced by a 
brief high frequency stimulation of the Schaffer collaterals using two sets of bipolar electrodes placed on both 
sides and equidistant from the recording pipette, such that two independent stimulation channels were used for 
each slice (Methods).

To examine a possible effect of PARP1 on LTP, hippocampal slices were prepared from WT and PARP1 KO 
mice (Methods). LTP was generated in response to high frequency (100 Hz, 1 sec) tetanic stimulation in hip-
pocampal slices of WT mice. However, there was a striking attenuation of the potential in the potentiated pathway 
in hippocampal slices of PARP1 KO mice. LTP was not generated in the hippocampal CA3-CA1 connections of 
PARP1-KO mice (Fig. 1a–c).

To examine a possible effect of PARP1 activity on LTP generation, PARP1 activity was blocked by the potent 
PARP inhibitors PJ-34 and ABT-888 (Fig. 1e,f, n =  7 and n =  5 slices, respectively). PJ-34 and ABT-888 were 
added at concentrations that inhibited polyADP-ribosylation of PARP1 in the cortex and hippocampus of rats15. 
PJ-34 and ABT-888 were added to the recording medium 5 min after tetanic stimulation to one pathway, and 
30 minutes before similarly stimulating the second pathway (Methods; Fig. 1a,e,f). The tetanic stimulations pro-
duced a pathway-selective LTP before the application of PARP inhibitors (Methods). The first tetanic stimulation 
caused LTP, maintained for 70 minutes at 1.48 ±  0.004 and 1.54 ±  0.01 above baseline (average values calculated 
before application of PJ-34 and ABT-888, respectively). LTP induced in the first pathway was maintained sta-
ble even after application of PARP inhibitors. In contrast, tetanic stimulation delivered to the second pathway 
after 30 min perfusion of each PARP1 inhibitor failed to produce LTP (average values measured at the end of 

Figure 1.  PARP1 is required for LTP generation in hippocampal slices. (a) A schematic diagram of the 
hippocampal slice with the two independent pathway stimulation and recording. (b) Input/output relations 
in response to stimulation of the Schaffer collateral system in CA1 region of the mouse hippocampal slice 
(Methods). No difference between slices of wild-type and PARP1 KO mice. (c) Normal LTP was measured 
in the hippocampus of WT mice (6 hippocampal slices prepared from 2 WT mice) in response to a high 
frequency (tetanic) stimulation (100 Hz, 1 sec) (⦁ ). In 6 hippocampal slices prepared from 2 PARP1 KO mice 
LTP was not generated by the same stimulation (⚬ ). (d) Sample illustration of individual records sampled at 
the indicated time intervals in (c,e,f). (e,f) PARP inhibitors prevented LTP generation in rat hippocampal slices 
(representative results obtained in 6 hippocampal slices prepared from 2 WT mice). Tetanic stimulation before 
application of PARP1 inhibitors PJ-34 and ABT-888 produced a sustained LTP. PJ-34 (e) and ABT-888 (f) did 
not affect the baseline activity, or the already potentiated responses, but completely prevented the generation of 
LTP in the pathway tested 30 min after their application. Arrowheads indicate applied stimulation.
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experiments with PJ-34 and ABT-888, 1.04 ±  0.01 and 1.07 ±  0.01 above baseline, respectively). Thus, each of the 
PARP inhibitors applied 30 min before stimulation completely prevented LTP development without affecting the 
already developed LTP or baseline responses. These results implicated PARP1 in the generation of LTP by tetanic 
stimulation of the Schaffer collaterals. The PARP1 inhibitors did not block nor attenuated excitatory postsynaptic 
NMDA current, which evokes LTP in the hippocampal CA3-CA1 connections23 (Fig. S1).

In view of a similar effect of MEK inhibitors on LTP generation in the hippocampal CA3-CA1 connections24 
(Fig. S2), and accumulating findings implicating Erk-induced IEG expression in LTP and long-term memory 
aquisition25–28, we examined possible role of PARP1 in Erk-induced IEG expression.

A PARP1-dependent immediate early gene expression in response to high frequency stimu-
lation.  Stimulation inducing LTP is restricted to a small subset of afferents in the hippocampus21,23. It was 
impossible to isolate the stimulated neurons for examining biochemical signals associated with LTP. To over-
come this difficulty, we used a model system of cultured cerebral neurons stimulated by electrical stimulation 
(Methods). High frequency (tetanic) stimulation (3 repeats of a 100 Hz, 1 sec duration pulse, followed by a 10 sec 
pause) applied to cultured cerebral neurons caused synaptic potentiation, indicated by pre-synaptic vesicles recy-
cling (Fig. S3), which induces post-synaptic excitatory currents and synaptic long-term potentiation29,30.

Stimulation-induced expression of the immediate early genes c-fos, zif268 and arc that are implicated in LTP 
and long-term memory acquisition25–28, was measured by RT-PCR in stimulated cultured cerebral neurons,  
8–10 days after plating (Fig. 2).

We found that only high frequency stimulation (3 repeats of a 100 Hz, 1 sec duration pulse, followed by a 10 sec 
pause) induced expression of c-fos, zif268 and arc in the cultured cerebral neurons within minutes after stimula-
tion (Fig. 2a). The expression of arc lagged after zif268 expression, probably due to Zif268 (Egr1) acting as one of 
arc transcription factors28. Notably, the high frequency stimulation did not induce a non-specific Erk-dependent 
gene expression (eg., cJun31 was not expressed; Fig. S4).

The expression of c-fos, zif268 and arc in response to the high frequency stimulation was suppressed in cer-
ebral neurons treated with each of the PARP inhibitors PJ-34 (10 μ M) and Tiq-A (50 μ M). In addition, their 
expression was similarly suppressed after PARP1 silencing (by siRNA, 150 nM, 72 hours; Fig. 2a,b), or PARP1 
genetic deletion in cerebral neurons of PARP1-KO mice (Fig. 2c). These results supported a possible implication 
of PARP1 in the stimulation-induced expression of c-fos, zif268 and arc in the cerebral neurons. So, PARP inhi-
bition, PARP1 silencing or its genetic deletion similarly interfered with stimulation-induced IEG expression in 
cerebral neurons and LTP induction in hippocampal CA3-CA1 connections (Figs 1 and 2).

A possible role of PARP1 activation in the recruitment of RNA-polII or transcription factors to the IEG pro-
moters32 seemed unlikely in-view of recent evidence for RNA-polII poised in the promoter of arc33, and IEG 
transcription factors bound to CBP (CREB binding protein), with its HAT (histone acetyl-transferase) activity 
induced by their phosphorylation34. Instead, we examined a possible role of PARP1 in the phosphorylation of 
poised transcription factors, initiating the expression of c-fos, zif268 and arc in response to stimulation.

PARP1 binding to phosphorylated Erk2 and its activation in response to high frequency stim-
ulation.  Transcription factors of c-fos, zif268 and arc are activated by Erk-induced phosphorylation34–38. 
We therefore examined the effect of high frequency electrical stimulation on Erk phosphorylation. Rat brain 
cerebral neurons in primary cultures were stimulated by a variety of electrical stimulations (8–10 days after 
plating; Methods). Erk was phosphorylated in nuclei of cerebral neurons stimulated by a high frequency 
stimulation (3 repeats of a 100 Hz, 1 sec duration pulse, followed by a 10 sec pause), and phosphorylated Erk2 
co-immunoprecipitated with PARP1 in nuclear protein extracts of the stimulated cerebral neurons (Fig. 3a). In 
addition, PARP1 and its prominent substrate linker histone H1, were highly polyADP-ribosylated (Fig. 3b). This 
finding was consistent with PARP1 activation in response to the high frequency electrical stimulation. PARP1 
activation was identified by its immunolabeled ADP-ribose residues, and it was quantified by the shift in the isoe-
lectric point (pI) of PARP1 and its substrate H1 towards lower pH concomitantly with its polyADP-ribosylation 
(Fig. 3b and S5; Methods). In un-stimulated neurons and in neurons stimulated by low frequency stimulations, 
Erk1/2 were hardly phosphorylated in the nuclear protein extracts, Erk2 did not co-immunoprecipitate with 
PARP1, and PARP1 and H1 were not polyADP-ribosylated (Fig. 3a,b). Furthermore, PARP1 activation by 
high-frequency stimulation was prevented in cerebral neurons treated with the specific MEK inhibitor U0126 
(10 μ M; Fig. 3b), similarly to PARP1 inhibition by its inhibitor PJ-34 (10 μ M). These results support a linkage 
between PARP1 binding to phosphorylated Erk2 in the nuclear extracts and PARP1 activation in response to the 
high-frequency stimulation (further examined by bioinformatics methods), reminiscent of recombinant PARP1 
activation by recombinant phosphorylated Erk2 in a cell-free system9.

Next, we examined possible effects of Erk-PARP1 binding on IEG expression in the stimulated cerebral 
neurons.

Phosphorylated Erk2 bound to activated PARP1 was recruited to promoters of immediate early 
genes c-fos and zif268 in response to high frequency stimulation.  We used the ChIP assay to iden-
tify recruited proteins to promoters of the immediate early genes cfos and zif268 in response to stimulation. 
Chromatin cross-linking following stimulation (3 repeats of a 100 Hz, 1 sec pulse, followed by a 10 sec pause) 
revealed phosphorylated Erk2 and acetylated histone H4 co-immunoprecipitated with DNA segments in the pro-
moters of c-fos and zif268 in cerebral neurons of WT mice (Fig. 4a). In addition, PARP1 was bound to phospho-
rylated Erk2 in the chromatin segments, and PARP1 inhibition did not impair their binding (Fig. 4b). However, 
phosphorylated Erk2 and acetylated H4 hardly co-immunoprecipitated with the promoters of cfos and zif268 
after PARP1 inhibition, or PARP1 genetic deletion in stimulated cerebral neurons of PARP1-KO mice (Fig. 4a), 



www.nature.com/scientificreports/

4Scientific Reports | 6:24950 | DOI: 10.1038/srep24950

Figure 2.  PARP1 mediated expression of immediate early genes cfos, zif268 and arc in response to 
stimulation. (a) The relative expression rate of immediate early genes c-fos, zif268 and arc was measured by 
RT-PCR at the indicated time intervals after stimulation of cultured rat cerebral neurons (3 repeats of 100 Hz, 
10 Hz or 1 Hz stimulation, 1 sec duration, each followed by 10 sec pause). An enhanced expression rate of c-fos, 
zif268 and arc was measured in response to the high frequency stimulation (100 Hz; black line), also causing 
pre-synaptic vesicle recycling, characterizing synaptic potentiation (Fig. S3). The stimulation-induced gene 
expression was suppressed in cerebral neurons treated with either of the PARP inhibitors PJ-34 (10 μ M) and 
Tiq-A (50 μ M) (grey lines). Each value represents the mean value with calculated variation coefficient (Standard 
deviation divided by the average value) of 4 separate reactions in each of 4 experiments. (b) The relative 
expression of c-fos, zif268 and arc measured by RT-PCR, 35 and 55 min after stimulation (100 Hz, 3 repeats, 1 sec 
each, 10 sec pause) was suppressed after PARP1 silencing by siRNA (72 hours, 150 nM). Each value represents 
the mean value (with calculated variation coefficient) of 4 separate reactions in each of 3 experiments. (c) The 
genes c-fos, zif268 and arc were scarcely expressed within 50 min after stimulation (3 repeats 100 Hz, 1 sec, 10 sec 
pause) in cultured cerebral neurons of PARP1 KO mice (black lines and full squares). The relative expression 
rate of the genes in similarly stimulated cerebral neurons of WT mice is presented for comparison (grey line 
and full squares). Each value represents the average value of 4 separate reactions (with calculated variation 
coefficient) performed in each of 3 different experiments.
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indicating that binding of phosphorylated Erk2 to PARP1 was required for phosphorylated Erk2 access to the 
promoters of cfos and zif268 in the stimulated cerebral neurons.

These results suggest that PARP1 binding to phosphorylated Erk2 inducing PARP1 activation9 (Fig. 3, and 
the effect of PARP1-Erk2 binding on PARP1 activation further examined by bioinformatics methods) and 
polyADP-ribosylation of the PARP1 substrate linker histone H1, may facilitate H1 release from the DNA2, ren-
dering IEG promoters accessible to PARP1-bound phosphorylated Erk2 (Fig. 4b,c). In support, PARP1-bound 
to phosphorylated Erk2 did not co-immunoprecipitate with its substrate H1, unless polyADP-ribosylation was 
inhibited (Fig. 4b).

This outlines a possible synergism between Erk-induced PARP1 activation and polyADP-ribosylation of linker 
histone H1 facilitating recruitment of phosphorylated Erk2 to transcription factors of cfos and zif268 (Fig. 4a). 
A PARP1-mediated phosphorylation of their transcription factors, inducing the HAT activity of CBP, and their 
binding to specific elements in the IEG promoters34,35 complies with co-immunoprecipitation of PARP-bound 
phosphorylated Erk2 and acetylated histone with DNA segments in the IEG promoters and with transcription 
factors Elk1 and CERB34–38 (Fig. 4a,b). Co-immunoprecipitation of phosphorylated Erk2 or acetylated H4 with 
DNA segments in the IEG promoters was prevented by PARP1 inhibition or its genetic deletion in cerebral neu-
rons of PARP1-KO mice (Fig. 4a). In accordance, stimulation-induced expression of cfos and zif268 was pre-
vented by PARP1 inhibition or its genetic deletion (Fig. 2).

Notably, phosphorylated Erk co-immunoprecipitated with its cytoplasmic/nuclear substrate, Rsk (ribo-
somal S6 kinase)36 in the chromatin of both WT and PARP1 KO mice (Fig. 4b), suggesting a possible 
PARP1-independent Erk-induced gene expression via Rsk phosphorylation36 in PARP1 KO mice.

Identified docking sites of phosphorylated Erk in PARP1.  We searched PARP1 domains for binding 
sites of Erk. Dot-blot analysis and co-immunoprecipitation of recombinant domains of PARP1 with recombi-
nant phosphorylated Erk2 disclosed an exclusive binding of recombinant phosphorylated Erk2 to the F-domain 
of PARP1 (aa556-1014), which contains its WGR, helical (HD), and catalytic (CAT) ADP-ribosyl transferase 
domains39 (Figs 5a,b and 6a). Recombinant phosphorylated Erk2 did not bind to PARP1 domains contain-
ing its DNA binding sites (Zn1-Zn2), nor to the auto-modification domain of PARP1 (aa1-494) (Fig. 5a,b). 
Phosphorylated Erk2 did not bind to [32P]ADP-ribose polymers, and polyADP-ribosylation did not prevent the 
binding of recombinant PARP1 to recombinant phosphorylated Erk2 (Fig. 5a).

A non-specific binding of Erk2 to recombinant PARP1 and its recombinant domains was excluded, as well as 
a possible binding of PARP1 and its F-domain to GST (glutathione S-transferase) attached as a fusion protein to 
recombinant phosphorylated Erk2 (Fig. 5a).

Figure 3.  PARP1 binding to phosphorylated Erk2 and its activation in nuclei of cerebral neurons 
stimulated by high frequency stimulation. (a) Activated PARP1 co-immunoprecipitated with phosphorylated 
Erk2 by antibody directed against the c-terminal of Erk2 in nuclear protein extracts of electrically stimulated 
rat cerebral neurons (3 repeats of 1 sec pulse, 100 Hz frequency, each followed by 10 sec pause). PARP1 
polyADP-ribosylation was detected by anti-PAR antibody (directed against polyADP-ribosyl moieties; Alexis). 
Phosphorylated Erk2 was immunolabeled by antibody directed against phosphorylated Erk1/Erk2 and by 
antibody directed against the c-terminal of Erk2 (Methods). Mounting control: α -tubulin. Representative 
results of 3 experiments are displayed. (b) PARP1 activation measured by its shifted isoelectric point (pI; pH 
shifted from 10.5 to 7.5) and by the shifted pI of its substrate histone H1 (from pH >  11 to 6.5) due to polyADP-
ribosylation (Fig. S5; Methods) in nuclear extracts of stimulated cultured cerebral neurons (3 repeats of 1 sec 
pulse, 100 Hz, 10 sec pause). PARP1 and H1 were not similarly polyADP-ribosylated in unstimulated neurons, 
neurons stimulated by low frequency stimulation (1 Hz and 10 Hz), or neurons treated with either MEK or 
PARP inhibitors (10 μ M U0126 or 10 μ M PJ-34, respectively). Representative results of 4 experiments are 
displayed.
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Figure 4.  A PARP1-dependent recruitment of phosphorylated Erk2 to promoters of c-fos and zif268.  
(a) Recruited phosphorylated Erk2 and acetylated H4 (AcH4) to promoters of c-fos and zif268 in the chromatin 
of stimulated cerebral neurons (chromatin was crosslinked after stimulation; ChIP assay). Cerebral neurons 
of WT and PARP1-KO mice were stimulated by 3 repeats of 1 sec 100 Hz stimulation followed by 10 sec pause. 
Left: DNA segments in the promoters of c-fos and zif268 were amplified by RT-PCR after DNA isolation from 
crosslinked chromatin segments co-immunoprecipitated with phosphorylated Erk2 by antibody directed 
against the c-terminal of Erk2. Right: DNA segments in the promoters of c-fos and zif268 were amplified by 
RT-PCR after DNA isolation from crosslinked chromatin segments co-immunoprecipitated with antibody 
directed against acetylated histone H4 (AcH4; Methods). Each value represents the mean abundance of 
co-immunoprecipitated promoter fragments measured by 4 different reactions (with calculated variation 
coefficient) in 4 different experiments. (b) Proteins recovered from the crosslinked chromatin segments of 
stimulated cerebral neurons (3 repeats of 1 sec 100 Hz stimulation, 10 sec pause) of WT and PARP1 KO mice 
co-immunoprecipitated with PARP1 or Erk2 antibodies. The displayed results indicate: PARP1 binding to 
phosphorylated Erk2 in the stimulated cerebral neurons of WT mice. PARP inhibition improved their binding 
to histone H1, but impaired their binding to Elk1and CREB. Phosphorylated Erk2 scarcely bound to Elk1 
and CREB in the chromatin of stimulated PARP1-KO cerebral neurons. Representative results of 4 different 
experiments.(c) A schematic presentation of PARP1 dependent expression of immediate early gene, based on 
the results in panels (a,b) Binding of phosphorylated Erk2 to PARP1 induces its polyADP-ribosylation and 
release of its polyADP-ribosylated substrate, linker histone H1. This facilitates Erk-induced phosphorylation of 
transcription factor Elk1, hisone acetylation and gene expression.
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As expected, XRCC1 (X-ray repair cross complementing protein-1) was bound to recombinant PARP1, 
polyADP-ribosylated PARP1 and ADP-ribose polymers1 (Fig. 5a).

Notably, recombinant PARP1 did not co-immunoprecipitate with recombinant phosphorylated Erk2 in the 
presence of DNA damaged by single strand breaks (ssDNA; Methods) (Fig. 5c,d). However, their binding was 
restored after applying the recombinant DNA-binding domain of PARP1 (recombinant A-B domain containing 
its zinc fingers Zn1, Zn2; aa1-201) (Fig. 5d), possibly due to PARP1 displacement from its binding sites in nicked 
DNA40 (Fig. 5d). Furthermore, the recombinant F-domain of PARP1 interfered with the binding of recombinant 
PARP1 to recombinant phosphorylated Erk2 even in the absence of ssDNA, possibly due to their competition for 
common binding sites in phosphorylated Erk2 (Fig. 5a,b,d).

Next, residues in the F-domain of PARP1 (aa556-1014) were searched for known MAP kinases docking 
motifs41–43. Four sites on PARP1 partially match the known docking sites of MAP kinases in various proteins: 
633KYPKK637, 683KK684, 747KKPPLL752 and 1007FNF1009 (Fig. 6a). In the helical domain of PARP1, 683 KK 684 

Figure 5.  Identified Erk-binding domains in PARP1. (a) Erk-binding domains in recombinant PARP1 
(r-PARP1) were identified by dot-blot analysis (Methods). Recombinant phosphorylated Erk2 (r-p-Erk2) 
bound to r-PARP1, to recombinant polyADP-ribosylated PARP1 and to the recombinant F-domain of PARP1 
(aa656-1014) containing its catalytic site. r-p-Erk2 did not bind to the DNA-binding domain (A-B; aa1-201) 
of PARP1, nor to its (A–D) auto-modification domain (aa1-524) or ADP-ribose polymers. r-PARP1 did not 
bind to BSA (excluding non-specific binding of r-PARP1 to proteins), nor to GST (attached as a fusion protein 
to r-p-Erk2). The binding of XRCC1 to r-PARP1, polyADP-ribosylated r-PARP1 and ADP-ribose polymers 
served as a positive control. Representative results of 3 different experiments are displayed. (b) Testing the 
exclusive binding of the F-domain of PARP1 with r-p-Erk2. Left: Co-immunoprecipitation of r-p-Erk2 (200 ng) 
with the F-domain of PARP1 (200 ng) using antibody directed against the c-terminal of Erk2. Recombinant 
F-domain was detected with PARP1 antibody (Serotec, MCA1522). Middle: Co-immunoprecipitation of r-p-
Erk2 (200 ng) with the F-domain (200 ng) immunoprecipitated by antibody directed against PARP1 (Alexis, 
ALX210-302). Right: The recombinant domain of PARP1 (aa1-494) was not co-immunoprecipitated with r-p-
Erk2. Representative results of 3 different experiments are displayed. (c) Single strand DNA breaks detected in 
sheared DNA (ssDNA, Sigma; Methods). (d) Single-strand DNA breaks interfered with the binding of r-PARP1 
to r-p-Erk2. Left: r-PARP1 (200 ng) did not co-immunoprecipitate with r-p-Erk2 (200 ng) in the presence 
of ssDNA (1 μ g). Application of the recombinant DNA binding domain of PARP1 (A-B domain, 200 ng; 
immunolabeled by PARP1 antibody ALX210-302) restored PARP1-Erk2 binding. Right: The F-domain of 
PARP1 (200 ng) interfered with the co-immunoprecipitation of r-PARP1 with r-p-Erk2, even in the absence of 
ssDNA. Representative results of 4 different experiments are displayed.
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partially matches docking motif for Erk41, 747 KKPPLL 752 matches docking motif DEJL for Erk42. In the cata-
lytic domain of PARP1, 1007 FNF 1009 partially matches DEF docking motif (FXFP) for Erk43, and 633 KYPKK 
637 in the WGR domain of PARP1 matches docking motif DEJL for Erk42. The domains in positively charged 
patches in the F-domain of PARP1 (aa633-637 and aa747-752; Fig. 6a) may bind to Erk via its negatively charged 
protein binding domain (CRS/CD region)41,44 (Fig. 6a). Indeed, mutations in the CRS/CD region of recombinant 
phosphorylated Erk2 interfered with the activation of recombinant PARP1 by recombinant phosphorylated Erk2 
in a cell-free system9.

Notably, the recently disclosed PARP1 structural re-arrangements accompanying its binding to DNA39 
occlude the indicated consensus docking sites of phosphorylated Erk in the F-domain of DNA-bound PARP1 
(Fig. 6a). This may explain the failure of DNA-bound PARP1 to bind phosphorylated Erk2 (Fig. 5d), while its 
binding to histone H1 and other PARP1 substrates is not affected39,45 (Fig. 6c).

Intra-molecular dynamics in PARP1 bound to phosphorylated Erk2 can induce its activa-
tion.  Intra-molecular dynamics in PARP1-bound to phosphorylated Erk2 homodimer was compared to 
intra-molecular dynamics in DNA-bound PARP1 by using the anisotropic network model (ANM)46 (http://ignmtest. 
ccbb.pitt.edu/cgi-bin/anm/anm1.cgi). This analysis was based on the potential Erk docking sites in the helical, 
catalytic and WGR domains of PARP1 (Fig. 6a), and on its predicted binding to homodimers of phosphorylated 
Erk in the nucleus9,47.

The resulting computed intra-molecular directions of motion in the combined complex of PARP1 bound to 
phosphorylated Erk2 expose the NAD binding site in the catalytic domain of PARP1 (Fig. 6b and S6). Exposure of 
its NAD binding site complies with the identified activation of Erk-bound PARP1 in stimulated cerebral neurons 
and in cell-free systems9 (Figs 3 and 6c, respectively).

The computed intra-molecular dynamics of PARP1 bound to phosphorylated Erk, exposing its NAD binding 
site anticipate polyADP-ribosylation of Erk-bound PARP1 (Fig. S6). This prediction is in consistence with the 
higher Erk-induced [32P]polyADP-ribosylation of recombinant PARP1 as compared to its DNA-induced [32P]
polyADP-ribosylation at low [32P]NAD concentrations9 (Fig. 6c).

Thus, high frequency stimulation of cerebral neurons, inducing Erk phosphorylation and translocation to the 
nucleus47 may also induce PARP1 activation and PARP1-mediated IEG expression (Figs 2–4), unless the DNA is 
damaged by single strand breaks (Fig. 6). This notion was examined in stimulated cerebral neurons.

PARP1 binding to single-strand DNA breaks interfered with IEG expression.  The expression of 
cfos and zif268 was measured by RT-PCR in cerebral neurons of PARP1- KO mice that were stimulated (100 Hz, 
1 sec, 3 repeats, 10 sec pause) 72 hours after transfection with GFP-fusion vectors with constructs encoding full 
length PARP1 or PARP1 lacking its DNA binding domain (aa1-221; Methods). Expression of c-fos and zif268 was 
measured in the re-plated GFP-labeled transfected cerebral neurons (Methods). Cerebral neurons of PARP1-KO 
mice hardly expressed c-fos and zif268 (Fig. 7a). However, these genes were expressed in stimulated cerebral neu-
rons of PARP1-KO mice transfected with either full length PARP1 or PARP1 lacking its DNA binding domain, 
evidence that Erk binding domains in PARP1 (but not its DNA binding domain) were necessary for stimulation 
induced cfos and zif268 expression (Fig. 7a).

Some of the transfected PARP1-KO cerebral neurons were treated before stimulation with H2O2 (1 mM, 
10 min) causing single strand DNA breaks (Figs 7c and 8b). As a consequence, the expression of cfos and zif268 
was very low in response to stimulation in PARP1-KO neurons transfected with full length PARP1, but was not 
impaired in PARP1-KO neurons transfected with PARP1 lacking its DNA binding domain (Fig. 7a). Thus, PARP1 
binding to nicked DNA was required for preventing cfos and zif268 expression in the presence of single-strand 
DNA breaks.

In compliance, a brief pre-incubation of cultured rat cerebral neurons with H2O2 (1 mM; 10 min), or their 
exposure (60 min) to hypoxia causing DNA single-strand breaks (Fig. 7c,e) down-regulated cfos and zif268 
expression and the synthesis of proteins/ transcription factors c-Fos, Zif268 and Arc following high-frequency 
stimulation (Fig. 7b,e).

Protein synthesis was monitored in stimulated cerebral neurons without or following treatment with H2O2. 
These neurons were stimulated by electrical stimulation (3 repeats of 100 Hz, 1 sec duration, each followed by 
10 sec pause), without or following treatment with the nerve growth factor NGF ( 60 ng/ml, 5 min) (Fig. 7b). The 
effect of NGF, also inducing cfos and zif268 expression17, was examined because electrical stimulation was techni-
cally impossible under hypoxia (Fig. 7b,e).

Treatment with H2O2 causing single strand breaks, extensively attenuated the stimulation-induced synthesis 
of proteins c-Fos, Zif268 and Arc, unless cerebral neurons were pre-treated with the PARG (polyADP-ribose 
glycohydrolase) inhibitor gallotannin (100 μ M, 60 min)48 (Fig. 7b).

PARG cleaves the negatively charged ADP-ribose polymers of PARP1, enabling its recurrent binding to the 
negatively charged DNA2,48. Thus, PARG inhibition interferes with PARP1 binding to nicked DNA2,48.

Assuming that polyADP-ribosylation does not prevent the binding of PARP1 to phosphorylated Erk2 (Figs 3, 
4 and 5a), application of PARG inhibitors might preserve the binding of PARP1 to phosphorylated Erk2 by pre-
venting PARP1 binding to single-strand DNA breaks (Fig. 7b). This assumption was examined in a cell-free 
system by measuring the dose-dependent effect of recombinant PARP1 polyADP-ribosylation on its binding to 
recombinant phosphorylated Erk2 in the presence of nicked DNA and β NAD (Fig. 7d).

The results indicated that binding of recombinant PARP1 to recombinant phosphorylated Erk2 in the pres-
ence of nicked DNA (ssDNA) was dependent on the intensity of PARP1 polyADP-ribosylation (Fig. 7d). The 
more intensely was PARP1 polyADP-ribosylated, the better it co-immunoprecipitated with phosphorylated Erk2 
in the presence of ssDNA (Fig. 7d). This result complied with the preserved expression of cfos, zif268 and arc in 
the presence of nicked DNA in stimulated cerebral neurons treated with gallotannin (Fig. 7b,e).

http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi
http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi
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Figure 6.  Intra-molecular re-arrangements in PARP1 associated with its activation. (a) Optional consensus 
Erk-docking sites in the F-domain of PARP1, which contains its catalytic (CAT), helical (HD) and WGR 
domains, are occluded in DNA-bound PARP1. (a’) A ribbon structural model for the open conformation of 
PARP1 with optional consensus docking sites for phosphorylated Erk. Phosphorylated Erk monomers (in 
homodimer) are indicated by dark and light gray ribbons. The optional Erk binding motifs (633KYPKK637, 
683KK684, 747KKPPLL752 and 1007FNF1009) in HD, CAT and WGR domains of PARP1 are indicated by orange 
spheres. The CRS/CD protein-binding region in Erk2, and the optional Erk binding motifs in PARP1 are 
highlighted by red and blue shadows, to indicate negatively (red) and positively (blue) charged domains (c’–e’). 
(b’) The closed conformation of DNA-bound PARP1 was modeled according to protein data bank (PDB 
4DQY). (c’) The electrostatic potential map of phosphorylated Erk2. The CRS/CD protein-binding region 
on phosphorylated Erk2 is indicated by a black circle. Negatively and positively charged domains are colored 
red and blue, respectively (see color bar in panels (d,e)). (d’,e’) The electrostatic potential map calculated for 
domains WGR, HD and CAT of PARP1 in the region containing consensus Erk docking motifs (circled).  
(b) Calculated intra-molecular motions in the helical (HD) and the catalytic domains (CAT) of PARP1 
exposing its NAD binding site. Intra-molecular motions were calculated for region aa662-1014 in the complex 
of PARP1-bound to nicked DNA (Protein Data Bank 4DQY), as well as in PARP1-bound to phosphorylated 
Erk-homodimer. The localization of the binding site of NAD in the CAT-domain of PARP1 is indicated. A 
motion with the helical and the catalytic domains of PARP1 moving to opposite directions exposes the NAD 
binding site in Erk-bound PARP1 (Supplementary Methods; Movies displayed in Fig. S6). (c) A high [32P]
polyADP-ribosylation of r-PARP1 incubated with r-phosphorylated Erk2 at low [32P]NAD concentration. 
At low [32P]NAD concentration(50 nM, 1 μ Ci/ sample), r-PARP1 (100 ng) incubated with r-p-Erk (100 ng) 
was more [32P]polyADP-ribosylated than r-PARP1 incubated with ssDNA (1μ M). Recombinant H1 was [32P]
polyADP-ribosylated by activated PARP1 in both reactions. The [32P]PolyADP-ribosylated proteins were auto-
radiographed. Recombinant proteins were immunolabeled. Representative results of 4 different experiments.
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Figure 7.  Stimulation-induced IEG expression in cerebral neurons was attenuated by PARP1 binding 
to nicked DNA. (a) Expression of c-fos and zif268 in PARP1-KO cerebral neurons transfected with PARP1 
constructs. Upper: GFP-fusion vectors with constructs of either full-length PARP1 or PARP1 lacking its 
N-terminal (aa1-201) were expressed in PARP1-KO cerebral neurons (Methods). PARP1 expression was 
identified by three DNA segments, two encoding regions in the C-terminal (2132–2712, 2117–2717 bp) and one 
encoding region in the N-terminal of PARP1 (136–536 bp). Lower: Stimulation-induced (3 repeats of 100 Hz, 
1 sec pulse, followed by 10 sec pause) expression of c-fos and zif268 in the transfected neurons was measured by 
RT-PCR, without or after treatment with H2O2 (1 mM, 10 min) causing single strand breaks (c). This treatment 
attenuated the gene expression only in PARP1-KO neurons transfected with full-length PARP1. Each value 
represents the mean relative expression rate measured in 4 reactions performed in each of 3 experiments.  
(b) High levels of cFos, Zif268 and Arc proteins were measured in nuclear protein extracts of cultured cerebral 
neurons during 120 min after stimulation (3 repeats of 100 Hz, 1 sec, each followed by 10 sec pause), without 
or after incubation with NGF (60 ng/ml, 5 min). Protein levels were low in neurons treated with H2O2 (1 mM, 
10 min) before stimulation, unless the neurons were pre-treated with the PARG inhibitor, gallotannin (100 μ M, 
60 min). Representative results of 3 experiments are displayed. (c) Gallotannin (100 μ M, 60 min) did not 
induce DNA single-strand breaks repair in cerebral neurons treated with H2O2 (1 mM, 10 min). (d) PolyADP-
ribosylation retained the binding of r-PARP1 to r-p-Erk2 in the presence of ssDNA. PolyADP-ribosylation 
of r-PARP1 (200 nM) dose-dependently up-regulated its co-immunoprecipitation with r-p-Erk2 (200 nM) in 
the presence of ssDNA (400 nM) and β NAD. Representative results of 3 experiments are displayed. (e) Left: A 
reduced expression of c-fos, zif268 and arc measured by RT-PCR in cultured rat cerebral neurons stimulated by 
NGF (60 ng/ml) under hypoxia (100% Argon, 60 min; black), relative to their expression at normal atmosphere 
(grey). Pre-treatment with gallotannin (100 μ M, 60 min) retained their expression under hypoxia. Right: Single 
strand DNA-breaks in cerebral neurons exposed to hypoxia (100% Argon, 60 min). Each value represents the 
mean relative expression rate measured in 4 reactions performed in each of 3 experiments.
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Single-strand DNA breaks prevented LTP generation.  Treatment causing DNA single strand breaks 
exclusively prevented LTP generation in stimulated hippocampal CA3-CA1 connections (Methods; Fig. 8). 
Notably, the baseline response was not affected, nor already generated LTP (Fig. 8a).

LTP generation in response to a brief high frequency stimulation of the Schaffer collaterals (100 Hz, 1 sec) was 
exclusively prevented by treatment inducing single-strand breaks (Fig. 8a).

The binding of phosphorylated Erk2 to PARP1 in cell nuclei prepared from the hippocampal slices was also 
prevented under these conditions (Fig. 8b). PARP1-Erk2 binding was examined in hippocampal slices briefly 
stimulated by high K+ induced depolarization49,50. This stimulation was used to enhance biochemical processes 
induced by the tetanic stimulation of the Schaffer collaterals21–23. PARP1-Erk2 co-immunoprecipitation was 
measured in cell nuclei prepared from hippocampal slices briefly exposed to high K+ (1 min wash with 50 mM 
K+ ACSF50), before and following treatment with H2O2 (1 mM; 15 min) (Fig. 8b). PARP1 co-immunoprecipitated 
with phosphorylated Erk2 only in the chromatin of stimulated hippocampal slices that were not treated with 
H2O2 (Fig. 8b). This result is consistant with depolarization-induced PARP1-Erk2 binding prevented by treatment 
causing DNA single strand breaks, which also prevented LTP generation in response to high frequency stimula-
tion (Fig. 8a).

Discussion
Ex vivo and in vivo experiments implicated Erk2-induced expression of specific immediate early genes in synaptic 
plasticity and long-term memory25–28,36,51. Our results suggest that Erk2-induced PARP1 activation mediates this 
activity of Erk. These results comply with the dependence of long-term memory acquisition during training on 
PARP1 activation13–18.

PARP inhibition did not affect excitatory post-synaptic NMDA currents (Fig. S1), inducing LTP in the hip-
pocampal CA3-CA1 connections21,23. However, PARP1 was implicated in nuclear processes immediately fol-
lowing high-frequency stimulation inducing synaptic potentiation. These processes were examined in a model 
system of electrically stimulated cultured cerebral neurons29,30 (Fig. S3). High frequency stimulation induced 
binding of phosphrylated Erk2 to PARP1 in the chromatin of cerebral neurons (Figs 3 and 4), concomitantly 
with Erk-induced PARP1 activation9 (Figs 3b and 6, S6), polyADP-ribosylated linker histone H1 (Fig. 4b), and 
facilitated access of PARP1-bound phosphorylated Erk2 and acetylated histone H4 to promoters of immediate 
early genes cfos and zif26825–28 (Fig. 4a). PARP1-dependent access of phosphorylated Erk2 and acetylated H4 to 
the promoters of c-fos and zif268 and to their transcription factors Elk1 and CREB were identified by ChIP assay 
(Fig. 4). These results complied with PARP1-dependent IEG expression34–38 (Figs 2 and 7a).

In accordance, cfos, zif268 and arc expression was suppressed after PARP1 inhibition or its genetic deletion 
in cerebral neurons of PARP1-KO mice (Figs 2,4 and 7a). Furthermore, LTP was not generated after PARP1 or 

Figure 8.  DNA single-strand breaks prevented the generation of LTP. (a) Field excitatory postsynaptic 
potentials (fEPSPs) were recorded from hippocampal slices (5 slices; prepared from 4 male mice). Hippocampal 
slices were stimulated by the two independent pathway stimulation and recording (Methods). A sample 
illustration of individual records sampled at the indicated time intervals is presented (Top). A train of 
high-frequency stimulation (100 Hz, 1 sec, denoted with big arrows) was delivered to each pathway. The 
first stimulation delivered to one of the pathways produced a response of long-term potentiation (LTP). 
Same stimulation delivered to the second pathway, 15 minutes after application of H2O2 (1 mM) and 
5 minutes washout, failed to produce LTP. Similarly, same stimulation delivered to each pathway 80 mins 
after H2O2 application and adjustment of the stimulation intensity to baseline level (downward small arrow) 
failed to induce LTP of both pathways. (b) Left: DNA single-strand breaks prevented PARP1-Erk2 co-
immunoprecipitation in the chromatin of cells prepared from depolarized hippocampal slices (depolarization 
induced by 1-min wash with ACSF containing 50 mM K+). Slices prepared from 10 hippocampi were 
depolarized, before or after treatment with H2O2 (1 mM, 15 min, and 5 min washout) inducing single-strand 
DNA breaks (Right).
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MEK inhibition (Fig. 1 and S2), or after PARP1 genetic deletion in the hippocampal CA3-CA1 connections of 
PARP1-KO mice (Fig. 1c), which indeed do not acquire long-term memory during training14.

Thus, PARP1-Erk binding promoting IEG expression (Figs 2–4 and 7a,d), promoted the forthcoming protein 
synthesis implicated in synaptic plasticity or long-lasting synaptic potentiation21,23,51. Recent findings indicating 
protein synthesis during the early phase of high-frequency induced LTP52 may support gene expression during 
early LTP. However, these results do not exclude extra-nuclear processes implicated in early LTP23.

Notably, LTP failed to develop in response to high frequency stimulation after treatment causing single strand 
DNA breaks preventing PARP1-Erk2 binding (Fig. 8), and abrogating the expression of c-fos and zif268 due to a 
predominant binding of PARP1 to single strand DNA breaks occluding its potential Erk binding sites (Figs 5, 6a 
and 7a,d).

Furthermore, LTP generated in response to high frequency stimulation 5–10 min before application of MEK 
or PARP1 inhibitors, was maintained intact (Figs 1 and S2). Moreover, generated LTP remained intact despite 
producing DNA single-strand breaks (Fig. 8). These results suggest that the brief effects of PARP1-Erk2 binding 
and their synergistic activity in the chromatin were required for the forthcoming LTP generation (Fig. S7).

The interference of DNA single strand breaks with IEG expression (Fig. 7) may attribute the previously 
observed aging-induced attenuation in gene expression53 to the accumulation of DNA single strand breaks in 
aged irreplaceable neurons19,20,53,54.

The DNA of mammalian cerebral neurons is constantly exposed to damaging processes, mostly by reactive 
oxygen species (ROS), which are normally produced in their mitochondria due to high-energy demands55. ROS 
cause single strand DNA breaks by oxidative reactions with the nucleic acids55. Thus, age-induced decline of anti-
oxidant defensive mechanisms, the inability to replace aged neurons and the constant exposure of their DNA to 
oxidative stress during their life span, cause accumulation of single strand breaks in the DNA of cerebral neurons 
in senescence, despite the existing DNA repair mechanisms19,20.

Single strand DNA breaks interfering with IEG expression under hypoxia (Fig. 7e) could be implicated in the 
negative effects of hypoxia on synaptic plasticity in the hippocampus20.

Furthermore, failure to generate LTP due to accumulating DNA single-strand breaks in aged cerebral neurons 
(Fig. 8) could be implicated in the deterioration of memory acquisition and learning abilities, frequently experi-
enced in senescence19,20,53. Thus, deterioration in learning abilities might not necessarily reflect death of cerebral 
neurons. It could result from the accumulation of amendable single-strand DNA breaks in aged irreplaceable 
cerebral neurons interfering with LTP generation (Figs 6–8). In this case, memory acquisition could be improved 
by attenuating the binding of PARP1 to nicked DNA (Figs 7 and 8). In support, recent evidence indicated an 
improved long-term memory acquisition of aged mice treated with the PARG inhibitor gallotannin48,56.

Notably, PARP1 inhibitors impaired long-term memory acquisition of trained animals only when admin-
istered at least 30 min before training13,15. Their application after training did not affect the already acquired 
memory of the trained animals13. Similarly, PARP inhibitors prevented the induction of LTP only when applied 
before stimulation (Fig. 1e,f). These findings may suggest a possible use of PARP1 inhibitors for erasing a specific 
memory without affecting past memories or learning abilities.

In summary, the presented findings disclose a molecular mechanism in the chromatin of cerebral neurons, 
which is necessary for LTP generation, and can be manipulated by pharmacological interventions.

Methods
Antibodies and recombinant proteins used in the presented experiments.  PARP1 and its recom-
binant domains were immunolabeled by the monoclonal antibody (Serotec, Cat # MCA1522; Oxford, UK) and 
the polyclonal antibody (Alexis, Cat # ALX210-302). Erk2 was immunolabeled by antibody directed against the 
c-terminal of Erk2 (#sc-154; Santa Cruz Biotechnology, CA, USA), phosphorylated Erk1/2 (Sigma), Elk1 and 
phosphorylated Elk1 (Cell Signaling Technologies, MA, USA). Antibodies directed against acetylated histones 
H3 and H4 were from Upstate Biotechnology (Millipore) CA, USA. Antibodies directed against transcription 
factors c-Fos (Cell Signaling Technologies), Egr1 (Zif268; Cell Signaling Technologies), phosphorylated CREB 
(phosphorylation of serine-133; Cell Signaling Technologies) and Arc (Novous Biologicals, Cambridge, UK). 
For cytochemistry, first antibodies were labeled by fluorescent secondary antibody: CyTM2 (green) or fluores-
cent CyTM3 (red) conjugated affinity pure goat-anti-rabbit or goat anti-mouse secondary antibodies (Jackson 
ImmunoResearch). Recombinant proteins: Elk1 (Elk1 residues 307–428 coupled to GST; Cell Signaling 
Technologies), recombinant human PARP1 was commercial (Alexis, Enzo Life sciences, NY,USA) or prepared by 
Dr John Pascal, Thomas Jefferson University, Philadelphia, USA, recombinant PARP1 domains were prepared in 
the lab of Dr Francoise Dantzer (Strasbourg, France) recombinant PARP1 (1-494aa) was prepared in the lab of Dr. 
John Pascal, as well as constructs in a GFP fusion vector of full-length PARP-1 and PARP-1 residues 201- 1014aa 
for expression in cultured neurons of PARP1 KO mice. Recombinant phosphorylated Erk2 was prepared in the 
lab of Prof Seger, Weizmann Institute of Science, Rehovot.

Primary cell cultures were prepared from brain cortex and hippocampus (cerebral neurons) of 18 to 19 day 
rat or mice embryos, as described before57. Experiments were conducted according to rules and regulations of 
Institutional Animal Care and Use Committee.

Nuclear protein extracts.  Cell nuclei were isolated from cultured cerebral neurons as described before57. Nuclear 
proteins were extracted after incubation (30 min on ice) in a high salt concentration buffer, containing 0.42 M 
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25% glycerol, 20 mM Tris-HCl pH 8.0, protease and phosphatase inhibitors. 
Supernatants obtained after centrifugation (15,000 rpm 4 °C, 15 min) contained extracted nuclear proteins.
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Electrophysiology in hippocampal slices.  The methods of recording from hippocampal slices were described 
before23,58. Briefly, male 129/Sv mice (2–2.5 month-old) were rapidly decapitated and their brains were removed 
and placed in ice cold ACSF containing (mM) 124 NaCl, 2 KCl, 26 NaHCO3, 1.24 KH2PO4, 2.5 CaCl2, 2 MgSO4 
and 10 glucose, at pH7.4. The hippocampi were cut into 350–400 μ m transverse slices using a McIlwain tis-
sue chopper. Slices were incubated for 1.5 h in carbogenated (5% CO2 and 95% O2) ACSF at room temperature 
in a holding chamber. Recording was made from slices that are slightly submerged in a standard chamber at  
33.8–34.0 °C with a flow rate of 2.5 ml ACSF/min. Field excitatory postsynaptic potentials (fEPSPs) were recorded 
in stratum radiatum of the CA1 region of hippocampal slices through a glass pipette containing 0.75 M NaCl 
(4 MΩ ). Synaptic responses were evoked by stimulation of the Schaffer collaterals using two sets of bipolar elec-
trodes placed on both sides and equidistant from the recording pipette, such that two independent stimulation 
channels were used for each slice23,58 (Fig. 1a). LTP was induced by high-frequency stimulation (100 Hz, 1 sec). 
Before applying the stimulation, evoked fEPSPs (50% of maximum amplitude) were recorded for a stable baseline 
period of at least 10 min. Stimulation of one pathway did not cause any noticeable change in response to stimula-
tion of the second pathway, verifying their independence58. Data acquisition and off-line analysis were performed 
using pCLAMP 9.2 (Axon Instruments, Inc). All numerical data are expressed as mean ±  SEM, and fEPSP slope 
changes after stimulation and drug application were calculated with respect to baseline. PARP1(− /+ ) 129/Sv 
mice were donated by Dr Dantzer (Strasbourg) and bred for PARP1 (− /− ) mice in Cohen-Armon’s lab under the 
rules and regulations of the Institutional Animal Care and Use Committee.

The effect of H2O2 on LTP was examined as follows: After 20 minutes of baseline recording, first tetanic stim-
ulation (100 Hz, 1 sec) was applied to pathway 1, which resulted in LTP of a magnitude of 1.64 ±  0.004. H2O2 (at 
final concentration in ACSF 1 mM, Sigma Aldrich) was added for 15 minutes after potentiated pathway has stabi-
lized. Its application did not affect either magnitude of already established LTP or baseline responses of pathway 1. 
Following 5 minutes of washout of H2O2, a tetanus was delivered to pathway 2 to investigate H2O2 impact on LTP 
induction. Post-tetanic long-term potentiation failed to develop (LTP 1.12 ±  0.01, p <  0.001 was measured). After 
1 hour of recording and adjustment of stimulation intensity of both pathways to baseline level, a second tetanic 
stimulation was applied to each pathway. LTP did not developed in both pathways (LTP 1.19 ±  0.01 ;p <  0.001 was 
measured in pathway 1 and 1.05 ±  0.01 p <  0.05 in pathway 2, correspondingly).

Electrical stimulation (‘bath stimulation’) of cerebral neurons in primary culture was applied by a pulse 
generator controlled by pCLAMP 6.0 (Axon Instruments, Inc.) and a digital to analogue conversion (D/A 1200 
Digidata), as described before7. Usually, train of pulses (0.5 msec) of 1 sec duration, 1–100 Hz frequency, was 
repeated 3 times, each followed by 10 sec pause intervals. Pulse amplitude was the minimal voltage required for 
a break of action potential in randomly chosen neurons in the culture, as described before7. About 30 Volt was 
applied to the bath solution (5 ml growth medium containing MEM eagle enriched by 2 mM Glutamax, 0.6% glu-
cose, 5% Horse Serum, 20 μ g/ml gentamycin). This stimulation caused pre-synaptic vesicles recycling (Fig. S3).

Culturing neurons on glia cells.  Mouse postnatal cultures were platted on glia cells prepared from rat E19 
embryos, as detailed before59. Glia cells proliferated for 10 days before plating the mouse culture. This procedure 
was used for re-plating of transfected neurons and for plating cerebral neurons of PARP1 KO mice.

PARP1 activation in cerebral neurons.  Two-dimensional (2-D) gel electrophoresis was used to identify 
stimulation-induced activation of the positively charged DNA-binding protein PARP1 by the shift in its isoelec-
tric point (pI) towards lower pH, due to polyADP-ribosylation adding negatively charged phosphates to PARP1. 
This method was used to estimate PARP1 activation in situ13,15,57. In support, PARP1 activation was measured by 
the shift in the pI of [32P]polyADP-ribosylated PARP1 in isolated nuclei of stimulated cerebral neurons incubated 
with [32P]NAD (1 μ Ci/sample; 1000 mCi/mmol; Amersham, UK) (Fig. S4).

For RT-PCR profiling.  we used RNeasy Plus mini kit (Qiagene, CA, USA) for RNA preparation, and we used 
RevertAid First Strand cDNA Synthesis Kit #K1622 (Thermo scientific) for cDNA preparation. Primers that 
initiated amplification of the indicated cDNA segments in the rat genes cfos, Zif268 and arc (forward and 
reverse) were: for c-fos, 5′ GTTCCTGGCAATAGTGTGTTC3′  and 5′ GCTGAAGAGCTACAGTACGTG3′ , 
for arc, 5′ TGGAGTCTTCAGACCAGGTG3′  and 5′ GCTGGCTTGTCTTCACCTTC3′ , for zif268, 
5 ′  CAGGAGTGATGAACGCAAGA3 ′   and 5 ′  AGCCCGGAGAGGAGTAAGTG3 ′  ,  for  c- jun1 , 
5′ TGAGAACTTGACTGGTTGCG3′  and 5′ CAGGTGGCACAGCTTAAACA3′ . For the control gene GAPDH; 
5′ CTGGAAAGCTGTGGCGTGATGG3′  and 5′ TCCTCAGTGTAGCCCAG GATGC3′  and for the control gene 
β-actin, 5′ AGAGCTATGAGCTGCCTGAC3′  and 5′ AATTGAATGTAGTTTCATGGATG3′ .

Primers that initiated amplification of the indicated cDNA segments in the genes c-fos, zif268 and 
arc (forward and reverse) in mice were: c-fos forward 5′ TCCGGGCTGCACTACTTA3′  and reverse 
5′ TGTTTCACGAACAGGTAAGGT3′ , respectively. For zif268, 5′ GTGTGGTGGCC TCCCCGGCT3′  and 
5′ CACTGACGGCGACGGGAAGCC3′ , respectively. For arc, 5′ GCCACAAATGCAGCTGAAGCAG3′  
and 5′  GTGGTGTGGTGATGCCCTTTCC3′  , respectively. For the control gene β-actin forward 
5′ GGGCTGTATTCCCCTCCAT3′  and reverse 5′ GCGTGAGGGAGAGCATAGC3′ , respectively.

Chromatin immunoprecipitation (ChIP) assay.  We used the ChIP assay protocol5 to identify binding of 
phosphorylated Erk2 and Acetylated H4 (AcH4) to promoters of c-fos, and zif268. DNA-bound proteins were 
crosslinked to the DNA of stimulated mice cerebral neurons (by formaldehyde 1%) at different intervals after 
stimulation. The crosslinked chromatin was cleaved into segments of approximately 1000-bp by sonication 
on ice (Probe Sonicator; Heat Systems Inc., Farmingdale, USA). Promoters and transcription factors were 
co-immunoprecipitated by antibody directed against AcH4 (#06-866 anti-acetyl-H4 antibody directed against 
epitope aa2-19 in H4 acetylated on lysines 5,8,12,16; Upstate Biotechnology (Millipore) CA, USA), or by 
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antibody directed against the c-terminal of Erk2 (#sc-154; Santa Cruz Biotechnology, CA, USA). Both DNA and 
proteins were recovered from the crosslinked chromatin segments after co-immunoprecipitation as described 
before5. For DNA isolation, formaldehyde cross-linking was reversed by heating (65 °C, 2 h). After protein 
digestion, DNA was purified on Zymo-SpinTM columns (ChIP DNA Clean & Concentrator kit, Zymo research 
corp.). DNA segments in the promoters were amplified by RT-PCR by using the following primers: for the 
promoter of c-fos, primers 5′ GTGCTGCCGTCCTTTAAAAC-3′  and 5′ -GAGAGAGGGGCTGAGAAGCT-3′  
( a mp l i f i e d  s e g m e nt  6 0 – 2 0 4 )  a n d  p r i m e r s  5 ′  C T G C AC T G AT T T G G G AT G G G - 3 ′   a n d 
5′ -TAGGAGAAGCAAGTACGCAGC3′  (amplified segment 98–150). For the promoter of Zif268 
5′ -TGGGGCTCCCGAAATACAAC-3′  and 5′ -AAGAGGGGGACTTGGCTTTG-3′  (amplified segment 382–
395), and primers 5′ -AGGACGGAGGGAATAGCCTT-3′  and 5′ -ACTGGTTC TTGGGACACTGC-3′  (ampli-
fied segment 659–787). Proteins were recovered from the croslinked chromatin after 15 boiling in sample 
buffer.

Expression of PARP1 in PARP1-KO cerebral neurons.  Cerebral neurons of PARP1-KO mice were transfected 
24 hours after plating with two plasmids (in mammalian expression vector (pEGFP-N1) encoding GFP-fusion 
full-length PARP1 or GFP-fusion PARP1 lacking residues aa1-201 (lacking the DNA binding zinc fingers 
domain), which were prepared in Dr John Pascal Lab (Jefferson University, Philadelphia). The expression of 
c-fos and zif268 was measured by RT-PCR in transfected GFP-labeled KO cerebral neurons sorted by FACS, 
60–72 hours after transfection. The transfected neurons were re-plated on cultured rat glia cells and stimulated by 
bath stimulation, without or after treatment with H2O2 (1 mM, 10 min).

DNA isolation and detection of DNA breaks.  DNA was isolated from the nuclei of cultured neurons using the 
PureLink genomic DNA kit (Invitrogen, Cat # K1820-01). Single strand DNA breaks were identified on alkali 
agarose gels containing 1% agarose, 50 mM NaCl, 1 mM EDTA, soaked for 60 min with 30 mM NaOH and 1 mM 
EDTA, as described before7. Double strand DNA breaks were detected in 1% agarose gel at pH 7.4. The migration 
of DNA in 1% agarose gel was detected by staining under UV illumination. In cell-free experiments we used com-
mercial ssDNA (salmon sperm DNA) carrying numerous single strand breaks (Sigma).

PARP1 silencing by siRNA.  This method was described before5,9. Two sequences, aa800-807 and aa890-897, 
in the PARP1 catalytic domain were targeted for PARP1 silencing. PARP1 targeted siRNA was prepared by 
Darmacon (Lafayette CO, USA). For control we used the non specific siRNA#2 (non-spec. rat siRNA; Darmacon). 
Cerebral neurons were transfected by XtremeGENE siRNA transfection reagent (Cat no. 04476093001, Roche 
Diagnostic, GmbH Mannheim, Germany). PARP1 silencing was achieved 72 hours after transfection with 100–
200 nM siRNA.

Bioinformatic analysis of PARP1 binding to phosphorylated Erk2.  Identified docking sites of Erk on the F-domain 
of PARP141–44: Phosphorylated Erk2 homodimer47 was reconstructed from the crystal contact interface in PDB 
(Protein Data Bank). Phosphorylated Erk2 homodimer was docked on the helical, catalytic and WGR domains of 
PARP1 (PDB 4DQY). Details are included in Supplementary Methods.

Treatment with H2O2.  Cerebral neurons in cell culture (10 days after plating), and hippocampal slices were 
exposed to H2O2 (1 mM, 10–15 min), and then thoroughly washed, as described before7.

Cerebral neurons under hypoxia conditions.  Cultured rat cerebral neurons were exposed after over-night star-
vation (MEM-Eagle growth medium containing 0.5% Horse serum instead of 5% in normal growth medium, 
0.6% glucose, 2 mM Glutamax and 20 μ g/ml Gentamycin) to hypoxia at 37 °C for 60 min. Hypoxia was imposed 
after replacing the normal atmosphere in a close chamber with 100% Argon. A similar procedure was described 
before60.

Co-immunoprecipitation.  was used to identify bound recombinant proteins or nuclear proteins as described 
before5,9. Binding to specific antibodies trapped the proteins on Protein A/G Agarose Beads (1 h, 4 °C). The bound 
proteins were recovered (1–2 min, boiling in sample buffer) separated on polyacrylamide SDS gel and immuno-
detected on Western blots.

Dot Blot analysis searching PARP1 domains binding phosphorylated Erk2.  Binding of recombinant phosphoryl-
ated Erk2 (1 μ g) to recombinants of PARP1 and to recombinant domains of PARP1 was examined by dot-blot 
analysis. In addition, binding of phosphorylated Erk2 to polyADP-ribosylated recombinant human PARP1 and 
free [32P]-labeled poly(ADP-ribose were examined. The blots were blocked in ‘binding buffer’ (50 mM Tris-HCl 
pH7.5, 120 mM NaCl, 0.1% NP40, 0.5 mM PMSF, 20 mg/ml BSA) for 30 min at room temperature. These blots 
were incubated for 3 h at room temperature in ‘binding buffer’ containing 5 μ g/ml of each of the purified recom-
binant: human PARP1, recombinant domains of human PARP1, polyADP-ribosylated human PARP1, or 2 μ g/
ml of free [32P]polyADP-ribose polymers. The blots were then washed with TBS-Tween-20 0.1%. Anchored 
proteins were detected on the nitrocellulose membrane with the appropriate antibodies. Binding to free [32P] 
poly(ADP-ribose) was measured by autoradiography.

All the methods were carried out in accordance with the approved guidelines. All experimental protocols were 
approved by the Institutional Animal Care and Use Committees of the Sheba Medical Center and the Tel-Aviv 
University.
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