Successful management of severe liver failure on venoarterial extracorporeal membrane oxygenation using molecular adsorbent recirculating system.

Shigeki Tabata
Thomas Jefferson University, Shigeki.Tabata@jeffersonhospital.org

Nicholas Cavarocchi
Thomas Jefferson University, nicholas.cavarocchi@jefferson.edu

Hitoshi Hirose
Thomas Jefferson University, Hitoshi.Hirose@Jefferson.edu

Let us know how access to this document benefits you

Follow this and additional works at: https://jdc.jefferson.edu/surgeryfp

Part of the [Surgery Commons](https://jdc.jefferson.edu/surgeryfp)

Recommended Citation

Tabata, Shigeki; Cavarocchi, Nicholas; and Hirose, Hitoshi, "Successful management of severe liver failure on venoarterial extracorporeal membrane oxygenation using molecular adsorbent recirculating system." (2012). *Department of Surgery Faculty Papers*. Paper 79.

https://jdc.jefferson.edu/surgeryfp/79
As submitted to:

Journal of heart and lung transplantation

And later published as:

Successful management of severe liver failure on veno-arterial extracorporeal membrane oxygenation using molecular adsorbent recirculating system.

Dec 2012, Volume 31, Issue(12), pp.1322-3.

Shigeki Tabata, MD, PhD, Nicholas Cavarocchi, MD, Hitoshi Hirose, MD, PhD.

Division of Cardiothoracic Surgery, Department of Surgery

Thomas Jefferson University, Philadelphia, PA, USA

Address reprint requests to Hitoshi Hirose, MD, PhD.

Division of Cardiothoracic Surgery, Department of Surgery

Thomas Jefferson University

1025 Walnut Street, Room 605, Philadelphia, Pennsylvania 19107, USA

Tel: 1-215-518-4418

Fax: 1-215-955-6010

Email address: genex@nifty.com

Total word count: 672
A 49-year-old female with Adriamycin induced cardiomyopathy presented with
decompensated biventricular congestive heart failure. Despite multiple Inotropes, the patient’s
hemodynamics deteriorated and she underwent veno-arterial extracorporeal membrane
oxygenation (VA-ECMO) placement as a bridge to decision. Pre-ECMO workup showed liver
dysfunction with elevated total bilirubin of 5.9 mg/dl, normal liver enzymes and liver ultrasound
image. Tentative diagnosis of “end-stage liver failure” was made without a biopsy.

Shortly after initiation of ECMO, the patient developed massive hemoptysis which was
successfully managed with continuation of ECMO and ventilator management. The patient’s
total bilirubin continued to increase to peak of 56 mg/dl on ECMO day #9 (Figure 1). Molecular
adsorbent recirculating system (MARS) was initiated on ECMO day 9 thru 14. The bilirubin
improved dramatically with MARS. Liver biopsy performed while on ECMO provided a
definitive diagnosis of cholestasis without cirrhosis. The patient underwent Heart Mate II left
ventricular assist device (LVAD) placement and ECMO removal on ECMO day 20. There was no
further episode of liver failure, and the patient was eventually discharged from hospital.

VA-ECMO is a support therapy for the patients with profound cardiac and/or respiratory
failure, and its outcomes are closely related with end-organ recovery. Non-survivors of ECMO
follow a common pathway of development of intractable and progressive multi-organ
dysfunction. Death can rapidly follow the development of liver dysfunction. Current therapy of
liver failure superimposed on cirrhosis is limited to treat the precipitating event; if the
precipitating event can be eliminated, the liver can recover to its previous compensated state.
Patient with liver failure accumulate toxic molecules and accumulation of these substances may
induce encephalopathy, hypotension, renal failure, macrophage dysfunction, and/or inhibition of
hepatocyte recovery.

MARS is a cell-free extracorporeal liver support device based on the principle of albumin
dialysis. Blood is perfused through a specific membrane dialyzer that uses 20% albumin as a
molecular adsorbent that is re-circulated and perfused in-line through charcoal and anion exchanger columns. Toxic molecules accumulated in the plasma can be eliminated by passage of blood or plasma over sorbent columns since most of these molecules are lipophilic and albumin bound. The molecules which can be removed by MARS include bile acids, conjugated bilirubin, aromatic amino acids, medium chain fatty acids, mercaptans, and cytokines. MARS not only remove selectively albumin bound substances but also MARS will eliminate water soluble toxins such as ammonia, creatinine. Removal of these toxins by MARS may preserve end organ functions and decreased toxin molecule levels to facilitate organ recovery.

Previously Peek reported that no patient survived from ECMO with MARS if the bilirubin was greater than 23 mg/dl (400 umol/L). The peak bilirubin of our patient was 56 mg/dl (957 umol/L). A decrease in serum bilirubin for three consecutive days was the primary end point of MARS support on this patient. The bilirubin level remained stable and did not increase after completion of MARS treatment. Liver biopsy confirmed reversible pathology of liver. At this point, this patient’s end-organ (liver) dysfunction was resolving. The right ventricular function was recovered while on ECMO and no longer required biventricular support. Chronic left ventricular failure necessitated implantable LVAD. MARS was initiated as a bridge to the decision to LVAD, eliminating elevated bilirubin without adverse effects. Retrospective, the liver dysfunction may have been transient although the peak serum bilirubin level was fatally high. The LVAD implantation was prohibited until hepatic failure was resolved with MARS.
Disclosure statement

All of the listed authors indicated no potential conflict of interest.
References

Legends of Figures

Figure 1: Total bilirubin was significantly improved after molecular adsorbents recirculating system (MARS) during extracorporeal membrane circulation (ECMO), which was followed by left ventricular assist device (LVAD) placement.