Efficacy of miniaturized imacor trans-esophageal echocardiogram (TEE) prove in mechanical circulatory support.

Hitoshi Hirose  
*Thomas Jefferson University*, Hitoshi.Hirose@Jefferson.edu

Christopher Y. Kang  
*Thomas Jefferson University*, christopher.kang@jefferson.edu

Joshua K. Wong  
*Thomas Jefferson University*

Harrison T. Pitcher  
*Thomas Jefferson University*, Harrison.pitcher@jefferson.edu

Caitlyn M. Johnson  
*Thomas Jefferson University*, Caitlyn.Johnson@jefferson.edu

*See next page for additional authors*

**Let us know how access to this document benefits you**

Follow this and additional works at: [https://jdc.jefferson.edu/surgeryfp](https://jdc.jefferson.edu/surgeryfp)

**Recommended Citation**


*This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Surgery Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.*
**Introduction**

In the surgical cardiac intensive care unit (ICU), therapeutic interventions often need to be done at the bedside, necessitating the need for a rapidly employable diagnostic tool for the cardiac intensivist. Cardiac function and volume status are critical components to patient care. Intravascular volume status is difficult to establish. Current modalities use indirect methods to gather data which can misdirect patient care. Conventional TTE and TEE are unsuitable for continuous and effective hemodynamic assessment.

**ImaCor hTEE Probe**

- A miniaturized TEE probe
- FDA approved
- Real time monitoring, able to use for 72 hours continuously.
- Allows direct visualization of intravascular volume and cardiac function
- No need of anesthesia or sedation.

**Methods**

IRB approved retrospective review of mechanical circulatory support patients and post heart transplant patients who had ImaCor TEE (hTEE) monitoring in ICU.

3 categories of intervention based on hTEE

- **Major**: Tamponade, ECMO wean
- **Moderate**: Device wean, inotrope management, fluid and hemodynamic management
- **Minor**: ECMO cannula placement, other data

**Results**

N = 34 patients with hTEE monitoring  
N = 21 post MCS or HTX  
- Devices employed: 6  
  - ECMO: 13  
  - Post LVAD: 9  
  - Impella: 3  
  - Post HTX: 4  
  - Pts with multiple: 6

<table>
<thead>
<tr>
<th>Major (n=4, 19%)</th>
<th>Post-hTEE Dx</th>
<th>Pre-hTEE Dx</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Heart TX</td>
<td>Hemodynamic Instability (n=1)</td>
<td>Tamponade (n=1)</td>
<td>Operative Evacuation</td>
</tr>
<tr>
<td>MCS (ECMO/VAD)</td>
<td>ECMO Wean (n=3)</td>
<td>Biventricular failure (n=1)</td>
<td>Contraindication of LVAD, Withdraw of Care</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moderate (n=13, 62%)</th>
<th>Post-hTEE Dx</th>
<th>Pre-hTEE Dx</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Heart TX</td>
<td>Hemodynamic Instability (n=6)</td>
<td>RV Failure (n=4)</td>
<td>Increased Fluids, Inotrope management</td>
</tr>
<tr>
<td>MCS (ECMO/VAD)</td>
<td>ECMO Wean (n=3)</td>
<td>No Tamponade (n=2)</td>
<td>Medical management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minor (n=4, 19%)</th>
<th>Post-hTEE Dx</th>
<th>Pre-hTEE Dx</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS (ECMO/VAD)</td>
<td>Hemodynamic Instability (n=4)</td>
<td>No LV thrombus (n=1)</td>
<td>Observation</td>
</tr>
<tr>
<td></td>
<td>ECMO venous cannula Clot (n=1)</td>
<td></td>
<td>Reposition</td>
</tr>
<tr>
<td></td>
<td>ECMO cannula malposition (n=2)</td>
<td></td>
<td>Emergent Bedside Reposition</td>
</tr>
</tbody>
</table>

**Financial**

The cost difference between this new device and the traditional TEE is also significant ($900 USD vs $4600 USD). Our institution saved in excess of $150,000 USD with the use of this device instead of traditional TEE.

- **ImaCor hTEE**
  - Device : $65,000
  - Probe : $900

**Comparative Cost of Conventional TEE vs. hTEE for 2 studies in 72 hours**

<table>
<thead>
<tr>
<th></th>
<th>TEE</th>
<th>hTEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof fee</td>
<td>$380</td>
<td>$185</td>
</tr>
<tr>
<td>Technical fee</td>
<td>$3906</td>
<td>$2332</td>
</tr>
<tr>
<td>Observation</td>
<td>$225</td>
<td>$0</td>
</tr>
</tbody>
</table>

**Conclusions**

This device has proven to be an invaluable new adjunct in the ICU by allowing previously unobtainable continuous real time monitoring of MCS/Post HTX. The use of the ImaCor hTEE probe provides the intensivist with timely important clinical data that improves patient care and is economically advantageous. Using serial hTEE data, the clinician can reliably make accurate decisions in regards to operative interventions.