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Extensions of D-optimal Minimal Designs for Symmetric Mixture 
Models

Yanyan Li1, Damaraju Raghavarao2, and Inna Chervoneva3

1CSL Behring Biotherapies for Life, 1020 First Avenue, King of Prussia, PA 19406

2Department of Statistics, Temple University, Philadelphia, PA 19122, USA

3Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 
Philadelphia, PA 19107, USA

Abstract

The purpose of mixture experiments is to explore the optimum blends of mixture components, 

which will provide desirable response characteristics in finished products. D-optimal minimal 

designs have been considered for a variety of mixture models, including Scheffé's linear, 

quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they 

have just as many design points as the number of parameters. Thus, they lack the degrees of 

freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal 

minimal designs are on the boundary: vertices, edges, or faces of the design simplex.

In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A 
General Mixture Model To Allow Additional Interior Points In The Design Space To 
Enable Prediction Of The Entire Response Surface—Also a new strategy for adding 

multiple interior points for symmetric mixture models is proposed. We compare the proposed 

designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations.

Keywords

Mixture models; Interior design points; D-optimal minimal design; Lack of Fit

1 Introduction

Mixture experiments, where the predictor variables are proportions of the non-negative 

components adding to 1, are increasingly used in chemical, pharmaceutical, biomedical and 

epidemiological research. The cost restrictions often seek as few design points as possible in 

order to address a particular problem efficiently. Then the standard approach is to construct a 

D-optimal minimal design that maximizes the determinant of the Fisher information matrix. 

D-optimal designs are known for a variety of mixture models, including Scheffé's linear, 

quadratic and special cubic models. Chan (2000) summarized known optimal designs for 

various mixture models. These designs usually contain the same number of design points as 

the number of parameters in the models. Therefore, minimal supported designs do not allow 
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for performing the Lack of Fit (LOF) test. Most of their design points are on the boundary 

(vertices, edges, faces) of the design space. As many mixture models aim to predict the 

entire response surface, it would be preferable to include some additional interior design 

points to test the adequacy of model by means of the LOF test.

For mixture models, commonly used designs include the simplex lattice design (Scheffé, 

1958), the simplex centroid (Scheffé, 1963), the symmetric simplex design (Murty and Das, 

1968) and the axial designs (Cornell, 1975). Their design points are mainly on the boundary: 

vertices, edges, or faces of design simplex. Optimum designs (optimum of D-, A-, and E-

optimality criteria) for estimation of parameters of the response functions have also been 

studied (Galil and Kiefer, 1977; Liu and Neudecker, 1997; Pal and Mandal, 2006, 2007; 

Mandal and Pal, 2008, 2013). But the question of extending D-optimal minimal designs has 

not been addressed for mixture models. In this paper, we investigate an approach for adding 

interior design points to known D-optimal minimal designs for general mixture models 

including a wide subclass of symmetric mixture models. In section 2, we consider adding 

one interior design point for general mixture models and investigate adding multiple interior 

points for symmetric mixture models. In sections 3 to 5, we apply the proposed 

methodology to commonly used mixture models: Scheffé's quadratic, special cubic model 

and additive quadratic models. In section 6, we consider the LOF test for various mixture 

models and compare the proposed designs with two ten-points designs (Cornell, 1986) by 

simulation. Section 7 presents the conclusions.

2 Extensions of D-optimal Minimal Designs

2.1 One Additional Interior Point for General Mixture Models

A general nth order q-factor mixture model is defined as

(1)

where , xi ≥ 0 for all i, and each function hk(xi1, …, xik) is a twice 
differentiable function of k arguments, k = 2, …, n. For most commonly used mixture 
models, hk(xi1, …, xik) are polynomial functions. For any q nonnegative components (x1, 

x2, …, xq), we use x ↔ (x1, x2, …, xq) to denote any permutation of (x1, x2, …, xq). In 

addition, we use C(n, k) to denote n!/[k!(n – k)!], when n ≥ k ≥ 0 are integers. The most 

common particular case of model (1) is the Scheffé's q-factor polynomial model of order n,

(2)

Also, if Σ1≤i1,..,in≤qβi1,…,ikxi1 … xik reduces to  for 1 ≤ k ≤ n, then model (1) 

becomes the q-factor additive polynomial model of order n,
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(3)

Polynomial mixture models are most common, but other mixture models have been also 

studied and employed (Becker, 1968, 1978; Zhang and Wong, 2013).

The D-optimal minimal designs are known for a variety of mixture models. Let X be the 

given Mn × Mn D-optimal minimal design matrix for model (1). For example, for general 

polynomial mixture model, Mn = C(q + n – 1, n), and for general additive polynomial 

model, Mn = nq. Without loss of generality, we assume σ2 = 1. Then the corresponding 

nonsingular information matrix (X′X) is also known. The design matrix is constructed as

and is partitioned as , with Mn × q matrix , where 

, and Mn × (Mn – q) matrix , where 

. Respectively,

(4)

where V′V is a q × q matrix and U′U is a (Mn – q) × (Mn – q) matrix. Let us further denote

(5)

Using the Schur Complement,
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First, consider the problem of adding one interior design point to the known D-optimal 

minimal design. Let  be the new interior design point to be added, where

(6)

(7)

with  and . Further denote by X1 the new design matrix, 

Theorem 1 For the extended design X1,  has a local maximum with respect to 

additional interior design point  (with  and ) if and only if 

v1 is a solution of the equations

(8)

where  and 1q–1 is a column vector of (q – 1) ones. The Hessian matrix

(9)

is negative definite.

The proof of Theorem 1 is given in the Appendix 1.

2.2 Symmetric Mixture Models

We consider model (1) to be a symmetric mixture model if all functions

(10)
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with , are symmetric functions of q arguments x1, …, 

xq. Most of the commonly used mixture models are symmetric, including the Scheffé's 

quadratic, special cubic, full cubic, and additive mixture models. From the proof of Theorem 

1, it is straightforward to obtain the Proposition 1 below:

Proposition 1 Let model (1) be symmetric and  be a symmetric function 

of q variables . The extended minimal design with one added point v1 has the 

same D-efficiency as the extended minimal design with one added point v2 if v2 ↔ v1.

Thus, for symmetric mixture models, each stationary point, except for the overall centroid, 

provides at least q distinct additional design points. The following proposition gives a 

sufficient condition for f(v) to be a symmetric function.

Proposition 2 Let (X′X)−1 be partitioned as in (5). If matrices A, B and D are such that 

functions , and  are invariant with respect to a transposition of any ith 

and jth coordinates of vector v1 (1 ≤ i ≤ j ≤ q), then  is a symmetric 

function of q arguments

Proof: Since any permutation can be expressed as a composition of a sequence of 

transpositions, it is sufficient to show that function  is invariant with 

respect to any transposition of arguments (a permutation of any two coordinates  and  in 

the independent subvector ). Using (5), 

. Then f(v1) is invariant with respect to a 

permutation of any two coordinates  and  by the assumptions.

3 Scheffé's Quadratic Mixture Model

3.1 One Additional Point for Quadratic Mixture Model

Scheffé's quadratic mixture model is defined as

(11)

There are  parameters in the model and, hence at least  design points are 

needed to estimate all parameters. For practical applications, it is sufficient to consider 

models with 3 or more factors. Kiefer (1961) proved that the {q, 2} simplex-lattice design is 

D-optimal. This minimal design contains q vertices ↔ (1, 0, …, 0) and C(q, 2) midpoints 

↔ (2, 2, 0, …, 0), and the blocks in X′X are given by , 
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where Iq is the identity matrix and Jq is the matrix of ones of order q, U′V = (aij,k) is 

 matrix with

where i, j, k = 1, 2, …, q and i < j and the rows of U′V are labeled ij representing all 

interaction terms. Then as shown in the Appendix 2, we have

(12)

where B0 and B1 are the association matrices of a triangular association scheme of order 

 defined in Appendix 2. Using the expression for (X′X)−1 provided in the Appendix 

2, it is straightforward to show that conditions of Proposition 2 are satisfied. Hence, the 

conditions of Proposition 1 are satisfied, and all permutations of a stationary point result in 

the same determinant of the information matrix. Therefore, we can use the permutation of 

any stationary point except the overall centroid to get at least q additional distinct points. By 

solving equations (8), we get (2q + 1) stationary points. We sort the stationary points to three 

solution groups according to their distance to the overall centroid points, calculated as 

Solution IQ: overall centroid 

Solution IIQ: x ↔ (1 – (q – 1)δ, δ, …, δ), where 

Solution IIIQ: x ↔ (1 – (q – 1)δ, δ, …, δ), where 

Let us denote . Then the Hessian matrix is

where  and
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(13)

The proof of Theorem 1 implies that the first part of this Hessian matrix is a non-negative 

definite matrix. The second part, matrix W, cannot be a negative definite matrix because 

 for any canonical vector ek. Hence the Hessian matrix cannot be a negative 

definite matrix, and none of the interior stationary points can be a local maximum of 

. In the absence of a local maximum, we select an additional design point 

among the stationary interior points so that the value of  is maximized. Among 

the stationary points, solution I obtains the maximum value of  when q = 3 and 

solution II has the maximum value of  when q ≥ 4.

3.2 Multiple Design Points for Quadratic Mixture Model

Since the quadratic mixture model is a symmetric model, the multiple interior design points 

could be obtained as permutations of any stationary solutions except for the overall centroid. 

Thus, we consider the following Designs IIQ and IIIQ based on solutions IIQ and IIIQ:

Design IIQ: minimal design plus x ↔ (1 – q – 1)δ, δ, …, δ), where 

Design IIIQ: minimal design plus x ↔ (1 – q – 1)δ, δ, …, δ), where 

The new Designs IIQ and IIIQ are compared to the following commonly used designs:

Design IV: minimal design plus q midpoints between vertices and the overall 

centroid, i.e. 

Design V: minimal design plus q midpoints between vertices and (0, 

), i.e. 

Design VI: minimal design plus q midpoints between the overall centroid and (0, 

), i.e. 

Usually Designs IV-VI are augmented with the overall centroid point, so we add the overall 

centroid to all considered designs, and compare designs with a total of (q + 1) additional 
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interior points. The D-efficiency is calculated as 100 × |X′X|1/p/N, where p = C(q, 2) is the 

number of parameters in the mixture model, and N is the number of points used to fit the 

model. Here N = C(q, 2) + q + 1. Table 1 summarizes the D-efficiency (denoted as Dq+1) for 

all considered extended minimal plus (q + 1) points designs. In summary, the proposed 

design has higher or comparable D-efficiencies when compared to standard designs. More 

specifically, Design IIIQ has the highest D-efficiency among all designs except for q = 3; 

Design VI has the highest D-efficiency when q = 3. However the difference is relatively 

small mainly because the determinant of the information matrix from D-optimal minimal 

design decreases when the number of factors increase.

4 Additive Quadratic Mixture Model

The additive quadratic mixture model is defined as

(14)

There are 2q parameters in the model and at least 2q design points are needed to estimate all 

parameters. Here, we consider additive quadratic models with q ≥ 3. Chan et al (1995, 1998) 

proved that the D-optimal saturated axial design for model (14) contains the points x ↔ (1, 

0, …, 0), and x ↔ (1 – (q – 1)δ, δ, …, δ), where δ = 1/(q – 1) when 3 ≤ q ≤ 6, and 

 when q ≥ 7. The last expression for δ is 

asymptotically 1/2 when q → ∞. As shown in the Appendix 3, the blocks of (X′X)−1 are 

given by A = a1(q, δ)Iq + a2(q, δ)Jq, B = b1(q, δ)Iq + b2(q, δ)Jq, D = d1(q, δ)Iq + d2(q, δ)Jq.

Since the block of (X′X)−1 is the linear combination of Iq and Jq, it is straightforward that 

conditions of Proposition 2 are satisfied. Thus, conditions of Proposition 1 are satisfied and 

we can use permutations of any stationary point except the overall centroid to obtain at least 

q additional interior points.

Denoting

the Hessian matrix can be expressed as

where
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(15)

For any canonical vector ek = (1, 0, …, 0), 

 is greater than 0 for all q. Hence the 

Hessian matrix cannot be a negative definite matrix, and the stationary points for the additive 

quadratic model are either local minimal points or saddle points. Since the additive quadratic 

model is symmetric, we can add q additional distinct interior design points by permuting 

stationary solutions except for the overall centroid. Design IIA and IIIA are the proposed 

designs, which consist of 3q + 1 points: q permuted stationary points, one overall centroid 

and 2q D-optimal minimal design points. Design IIA has a shorter distance to the overall 

centroid than Design IIIA. Table 2 summarizes the D-efficiencies for proposed Designs IIA 

and IIIA, and standard Designs IV-VI in section 3.2. Note that there is only one stationary 

solution (overall centroid point) when q = 4 and Designs IIA-IIIA are not available for q = 4. 

In summary, Design IIA has the highest efficiency among all designs when q ≥ 4 and Design 

VI has the highest efficiency when q = 3.

5 Special Cubic Mixture Model

Another commonly used mixture model is the Scheffé's Special cubic model. It is defined 

as:

(16)

Lim (1990) proved that the D-optimal minimal design contains x ↔ (1, 0, …, 0), 

 and . There is a total of 

 parameters in the model. As shown in the Appendix 

4, the blocks of (X′X)−1 are A = Iq,  and , 

where U′V, B0 and B1 are the same as for the quadratic mixture model (12). Using the 

expression for (X′X)−1 provided in the Appendix 4, it is straightforward to show that 

function  is invariant with respect to any transposition of  and . 

Therefore, we can use permutations of any stationary point to get multiple additional points 

using Propositions 1 and 2.
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Let us denote . Then the Hessian matrix could 

be expressed as 

where

(17)

with l = C(q + 1, 2),  and C(q – 2, 3) =0 when q < 5. Zero-diagonal symmetric 

matrix W cannot be negative definite, and the same arguments as in section 3 imply that the 

stationary points are either saddle points or points of local minimum. The multiple interior 

design points are added by permuting stationary points other than the overall centroid. The 

number of stationary solutions varies with the number of factors. We label the proposed 

design as Design IIC, IIIC,…, with lower design labels representing designs with shorter 

distances between the stationary solutions and the overall centroid. For stationary solutions 

containing more than q additional points, we choose q out of all permuted points for 

comparisons. We also include the overall centroid point in all designs. Table 3 summarizes 

the D-efficiencies for all designs. In general, the proposed designs have higher or similar D-

efficiency when compared to the standard designs IV-VI.

6 Ten-points Designs for Three-Component Mixture Models

6.1 D-efficiency

Cornell (1986) considered two ten-point designs for the three-component quadratic mixture 

model. One is the {3, 3} simplex-lattice design, called as Design I. It contains 10 design 

points: 3 points of x ↔ (1, 0, 0), 6 points of x ↔ (1/3, 2/3, 0) and the overall centroid (1/3, 

1/3, 1/3). Another design is the 3-component simplex centroid design, augmented with three 

interior points x ↔ (2/3, 1/6, 1/6), which is Design IV in Section 3.2. We compare the 

proposed design with Design I and Design IV using three commonly used models: 

quadratic, additive quadratic and special cubic models. The design points for quadratic and 

additive quadratic models are the same, labeled as Design IIQ and IIIQ. The proposed 

designs for the special cubic model are labeled as Design IIC and IIIC.

Figure 1 sketches the ternary plots for all designs. Table 4 lists the D-efficiency for all 

designs. Note that the ratio of the boundary points and interior points for Design I is 9:1. 

Design I, which contains all boundary points except the overall centroid, has the highest D-
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efficiency among all designs. Yet the other designs (Design IIQ, IIIQ, IIC, IIIC and Design 

IV) provide a more uniform distribution of the information about the surface inside the 

triangle, as the ratio of the boundary points and interior points is 6:4. For the other designs, 

Design IIIQ has the highest D-efficiency for quadratic and additive quadratic models, and 

Design IIC has the highest D-efficiency for special cubic model. Next we will explore the 

power of the LOF test by simulation.

6.2 Power of the LOF test

LOF describes how the model fits a set of observations by summarizing the discrepancy 

between the observed values and the expected values under the fitted model. For testing the 

LOF, the residual sum of squares is partitioned into the sum of squares due to pure error 

(SSPE) and the sum of squares due to Lack of Fit (SSLF) as follows:

(18)

(19)

where i = 1, 2, 3, …, nj and j = 1, 2, …, c. Yij denotes the ith observation at the jth design 

point, Ȳj• is the average of the nj observations at the jth design point, and Ŷj is the fitted 

value at jth design point. Under the assumptions of normally distributed errors, the sums of 

squares due to pure error and sum of squares due to LOF have chi-square distributions with 

corresponding degrees of freedom. The degree of freedom associated with SSPE is N – c, 

where N is the total number of observations and c is the number of the design points. The 

degree of freedom for SSE is N – p, where p is the number of parameters in the mixture 

model. The lack of fit sum squares (SSLF) is calculated as SSLF = SSE – SSPE with the 

degree of freedom c – p.

F-statistics is used to test for LOF:

(20)

In the simulation studies, we assume the true models are the commonly used mixture 

models, such as special cubic model, special quartic models etc. We also assume that the 

errors are independent and identically normally distributed with mean zero and a common 

variance σ2 = 0.1, ∊ ∼ N(0, 0.1). There are 2000 datasets simulated for each design, with 2 

to 5 replicates for each design point. Table 5 lists the true models and the fitted models. 
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Under the assumption of the true models, the LOF is calculated by using the fitted models to 

detect the model inadequate at significant level 0.05. Figure 2 shows the LOF power for 

three mixture models. In summary, the proposed designs with the shortest distance to the 

overall centroid shows the highest LOF power among all designs, i.e. Design IIQ for 

quadratic and additive models, Design IIC for special cubic model.

7 Conclusion

We have investigated adding multiple interior points to the D-optimal minimal designs for a 

wide subclass of symmetric mixture models. The proposed designs address the interest of 

predicting the entire design surface and enabling testing the lack of fit. When compared to 

the standard designs, the proposed designs demonstrate higher or comparable D-efficiency. 

Additionally the proposed design with the shortest distance to the overall centroid shows the 

highest LOF power when the true models are the commonly used mixture models, such as 

special cubic, special quartic models, etc.

1. Proof of Theorem 1

The generalization of the Sylvester's determinant theorem (Harville (2008)) implies that

Since the determinant |X′X| is already maximized by the definition of the D-optimal 

minimal design X, maximizing  is equivalent to maximizing 

subject to constraint . The general approach is to use Lagrange multipliers and 

maximize

where (Mn − q) × 1 vector . Then q × 1 vector

(21)

where (Mn − q) × q matrix . Since , (21) implies (8). 

Further,
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(22)

Let us denote , where ek is q × 1 kth 

canonical vector, and . Then using (1.4.16) in Vonesh and Chinchilli 

(1997), the 1 × q vector

(23)

so that ,

where  and .

Respectively, the Hessian is

It is straightforward that

Also, , where , and therefore,
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Let us denote , then

(24)

Thus, the Hessian may be expressed as

(25)

Using (5) we can write

(26)

Further, we have

(27)

and combining (26) and (27) we obtain (9).

2. Matrix (X′X)−1 for Quadratic Mixture Model

The blocks in X′X are given by , , where Jq is the 

matrix of ones of order q, and U′V = (a(i,j),k) is a  matrix with

Li et al. Page 14

Commun Stat Theory Methods. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the rows of matrix U′V are indexed by pairs (i, j), 1 ≤ j < l ≤ q, and k = 1, 2, …, q.

Denote A11 = V′V, A22 = U′U, A21 = U′V and , then

where F = A22 − A21A11
−1 A12 is non-singular. It is straightforward to verify that

where  and B1 is the association matrix of the first associates in a triangular 

association scheme of order  (Raghavarao, 1971). The association scheme is an 

array of q rows and q columns with the following properties:

• The positions in the principal diagonal are blank.

•
The  positions above the principal diagonal are filled by the numbers 1, 

2, …, .

• The array is symmetric about the principal diagonal.

• The ones that lie in the same row and same column are treated as first associate, 

the others are treated as the second associate.

Thus, these association matrices of a triangular association scheme are indexed by pairs (i, 
j), 1 ≤ j < l ≤ q and defined as follows:

where 

Note that
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The following results from Raghavarao (1971),

(28)

(29)

(30)

are used to obtain

(31)

Hence D = F−1 = 24B0 + 4B1. And

B′ = −16A12, and

Thus, we have

(32)
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3. Matrix (X′X)−1 for Additive Quadratic Mixture Model

The blocks of (X′X)−1 in (5) are given by A = a1(q, δ)Iq + a2(q, δ)Jq,B = b1(q, δ)Iq + b2(q, 

δ)Jq and D = d1(q, δ)Iq + d2(q, δ)Jq.

4. Matrix (X′X)−1 for Special Cubic Model

The blocks of (X′X)−1 are given by A = Iq,  and 

, where U′V, B0 and B1 are from quadratic mixture model (12). 

Here D22 is the matrix of order C(q, 3),

with ijk, i′j′k′ representing all three factor interaction terms i, j, k and i′, j′, k′. Also (C(q, 

1)) × C(q, 3) matrix E1,

and (C(q, 2)) × C(q, 3) matrix E2,

with i, j, k representing the rows, ij and ijk representing two factor and three factor 

interactions respectively.
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Figure 1. The Ten-point Designs
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Figure 2. The LOF Power for Three Mixture Models in Table 5
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Table 1
Minimal Plus (q + 1) Points Designs for Quadratic Mixture Model

Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

3
IIQ

x ↔ (0.290, 0.355, 0.355) and 
3.089

IIIQ
x ↔ (0.765,0.117,0.117) and 

3.184

IV
x ↔ (2/3,1/6,1/6) and 

3.148

V
x ↔ (1/2,1/4,1/4) and 

3.121

VI
x ↔ (1/6, 5/12,1/12) and 

3.212*

4
IIQ

x ↔ (0.322,0.226,0.226,0.226) and 
1.423

IIIQ
x ↔ (0,707,0.098,0.098,0.098) and 

1.454*

IIV
x ↔ (5/8,1/8,1/8,1/8) and 

1.447

V
x ↔ (1/2,1/6,1/6,1/6) and 

1.442

VI
x ↔ (1/8, 7/24, 7/24, 7/24) and 

1.444

5
IIQ

 and 
0.812

IIIQ
 and 

0.822*

IV
 and 

0.820

V
 and 

0.819

VI
 and 

0.814

6
IIQ

 and 
0.522

IIIQ
 and 

0.526*

IV
 and 

0.525

V
 and 

0.525

VI
 and 

0.520
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Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

7
IIQ

 and 
0.363

IIIQ
 and 

0.364*

IV
 and 

0.364

V
 and 

0.364

VI
 and 

0.361

8
IIQ

 and 
0.266

IIIQ
 and 

0.267*

IV
 and 

0.267

V
 and 

0.267

VI
 and 

0.265

Note:

*
Maximum D-efficiency for each factor.
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Table 2
Minimal Plus (q + 1) Points Designs for Additive Quadratic Mixture Model

Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

3
IIA

x ↔ (0.290,0.355,0.355) and 
3.892

IIIA
x ↔ (0.765,0.117,0.117) and 

4.012

IV
x ↔ (2/3,1/6,1/6) and 

3.966

V
x ↔ (1/2,1/4,1/4) and 

3.932

VI
x ↔ (1/6, 5/12,1/12) and 

4.047*

4
IV

x ↔ (5/8,1/8,1/8,1/8) and 
2.807*

V
x ↔ (1/2,1/6,1/6,1/6) and 

2.741

VI
x ↔ (1/8, 7/24, 7/24, 7/24) and 

2.698

5
IIA

 and 
2.059*

IIIA
 and 

2.037

IV
 and 

2.055

V
 and 

2.007

VI
 and 

1.812

6
IIA

 and 
1.602*

IIIA
 and 

1.493

IV
 and 

1.601

V
 and 

1.568

VI
 and 

1.275

7
IIA

 and 
1.394*

IIIA
 and 

1.262
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Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

IV
 and 

1.393

V
 and 

1.385

VI
 and 

1.117

8
IIA

 and 
1.231*

IIIA
 and 

1.067

IV
 and 

1.228

V
 and 

1.229

VI
 and 

0.958

Note:

*
Maximum D-efficiency for each factor.
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Table 3
Minimal Plus (q + 1) Points Designs for Special Cubic Model

Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

3
IIC

x ↔ (0.090,0.455,0.455) and 
1.418*

IIIC
x ↔ (0.751,0.124,0.124) and 

1.353

IV
x ↔ (2/3,1/6,1/6) and 

1.340

V
x ↔ (1/2,1/4,1/4) and 

1.354

VI
x ↔ (1/6, 5/12,1/12) and 

1.375

4
IIC

x ↔ (0.108,0.297,0.297,0.297) and 
0.281*

IIIC
x ↔ (0.070,0.070,0.430,0.430) and 

0.280

IVC
x ↔ (0.699,0.100,0.100,0.100) and 

0.271

IV
x ↔ (5/8,1/8,1/8,1/8) and 

0.270

V
x ↔ (1/2,1/6,1/6,1/6) and 

0.273

VI
x ↔ (1/8, 7/24, 7/24, 7/24) and 

0.279

5
IIC

 and 
0.082

IIIC
 and 

0.083*

IVC
 and 

0.082

VC
 and 

0.081

IV
 and 

0.080

V
 and 

0.081

VI
 and 

0.082

6
IIC

 and 
0.031

IIIC
 and 

0.032
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Factors Designs Additional Points to the D-optimal Minimal Design Dq+1

IVC.
 and 

0.032*

VC.
 and 

0.032

VIC
 and 

0.031

IV
 and 

0.031

V
 and 

0.031

VI
 and 

0.032

Note:

*
Maximum D-efficiency for each factor.
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Table 5
Fitted and True Models for Three Mixture Models

1) Fitted Model: Quadratic Mixture Model

True Model 11: y = 2x1 + 1.9x2 + 1.8x3 + 0.5x1x2 + 0.5x1x3 + 0.5x2x3 + 6x1x2x3 + ∊

True Model 12:

2) Fitted Model: Additive Quadratic Mixture Model

True Model 21:

True Model 22:

3) Fitted Model: Special Cubic Mixture Model

True Model 31:

True Model 32: y = 2x1 + 1.9x2 + 1.8x3 + 1x1x2 + 1x1x3 + 1x2x3 + 2x1x2x3 +4(x14 + x24 + x34) + ∊
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