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AP-1 and NF-kB synergize to transcriptionally activate latent HIV upon T-

cell receptor activation 

 
Joseph Hokello1, Adhikarimayum Lakhikumar Sharma2 and Mudit Tyagi2 
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    University Western Campus, Bushenyi, Uganda 

2. Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA 

 

ABSTRACT 

Latent HIV-1 proviruses are capable of reactivating productive lytic infection, but the precise 

molecular mechanisms underlying emergence from latency are poorly understood. In this study, 

we determined the contribution of the transcription factors NF-jB, NFAT, and AP-1 in the 

reactivation of latent HIV following T-cell receptor (TCR) activation using Jurkat T-cell clones 

harboring single latent HIV proviruses. Our findings demonstrate that during reactivation from 

latency, NF-jB enhances HIV transcription while NFAT inhibits it by competing with NF-jB for 

overlapping binding sites on the HIV long terminal repeat (LTR). We have also demonstrated for 

the first time the molecular contribution of AP-1 in the reactivation of HIV from latency, 

whereby AP-1 synergizes with NF-jB to regulate HIV transcriptional elongation following TCR 

activation. 
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Abbreviations: 
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HAART, highly active antiretroviral therapy 

HIV, human immunodeficiency virus 

LTR, long terminal repeat 
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PNK, polynucleotide kinase 

P-TEFb, positive transcription elongation factor-b 

RNAP, RNA polymerase 

TAF, TBP-associated factors 

TBP, TATA-box-binding protein 

VSV-G, vesicular stomatitis virus protein G 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Human immunodeficiency virus (HIV) establishes latent infections in memory CD4 + T cells despite prolonged intensive 

drug therapy. The ability to latently infect T cells allows HIV to escape strong humoral and cellular immune responses 

against the viral proteins, with the latent provirus pools capable of reactivating productive lytic infections following 

cessation or disruption of drug therapy. Current highly active antiretroviral therapy (HAART) mainly utilizes drugs that 

target viral proteins such as integrase, protease, and reverse transcriptase enzymes that are essential for HIV-1 replication 

[1]. Unfortunately, the latent provirus pools in memory T cells present stable reservoirs of viral variants that are prone to 

the development of drug resistance [2–5]. Transcription from the HIV long terminal repeat (LTR) is regulated at the level 

of initiation and elongation by both cellular transcription factors and viral Tat protein acting in concert [6–9]. Several 

studies have demonstrated that NF-jB is the major transcription factor required for proviral activation in T cells [10–12]. 

In unactivated T cells, NF-jBis sequestered in the cytoplasm by binding to an inhibitor of NF-jB(IjB-a) [10,13]. When T 

cells become activated by exposure to proinflammatory cytokines such as TNF-a, antigens, or mitogens, IjB-a is 

phosphorylated by IjB-a kinase-b (IKK-b) to undergo ubiquitination and subsequent proteasomal degradation to release 

NF-jB [14,15]. Activated NF-jB translocates into the nucleus to activate transcription from a wide variety of promoters 

including HIV LTR, cellular cytokine, and chemokine genes [16]. The HIV LTR core promoter region contains two NF-jB 

binding sites near the transcription start site which are overlapped by NFAT-binding sequences and both NF-jB and NFAT 

can bind to this same site. During HIV transcription, NF-jB and Sp-1 bind cooperatively to the promoter to enhance 

proviral activation [17]. Efficient induction of HIV transcription occurs following interaction of NF-jB-Sp-1 transcription 

complex with the preinitiation complex TFIID, a multiprotein complex comprising of TATA-box-binding protein (TBP) 

and TBP-associated factors (TAF) [18,19]. Transcriptional elongation of latent HIV proviruses is regulated by viral 

transactivator protein Tat [7,20]. In the absence of Tat, the vast majority of RNA polymerase (RNAP) II that initiates 

transcription from the HIV LTR is less processive and results in abortive transcription near the promoter region [21–23]. 

 
However, in the presence of viral Tat protein, the human cyclin T1 subunit of positive transcription elongation factor-b (P-

TEFb) interacts with Tat and cooperatively binds to TAR, an RNA stem-loop structure encoded by the first 59 nucleotides 

of the nascent RNA transcript. Cooperative binding of Tat and cyclin T1 to TAR element activates the kinase subunit of P-

TEFb called cyclin-dependent kinase-9 (CDK9) which hyperphosphorylates the C-terminal domain (CTD) of RNAP II 

within the elongation complex to form highly phosphorylated and processive form of RNAP II [9,24–26]. Due to the 

quiescent nature of the latently infected memory T cells, very low levels of viral Tat are generated. Before new Tat is 

synthesized to regulate proviral transcriptional elongation, promoter clearance is mediated by TFIIH which comprises of 

cyclin H and CDK7 subunits through phosphorylation of the CTD of RNAPs [27,28]. However, Kim and colleagues 

demonstrated that following activation of the TCR, P-TEFb, which is a cellular cofactor for viral Tat protein, is mobilized 

through an ERK-dependent pathway to enhance HIV transcriptional elongation before new Tat synthesis [29]. To further 

extend, besides ERK-dependent pathways, we have shown the crucial role of DNA-PK in facilitating both the initiation 

and elongation phases of HIV transcription [30–32]. Other cellular factors such as the phosphorylated-Spt5 subunit of the 

5, 6-dichloro-1-b-D-ribo-furanosylbenzimidazole (DRB) sensitivity inducing factor (DSIF) stabilize the elongating 

transcription complexes by preventing premature RNAP II disengagement from DNA templates [6,26]. It is conceivable 

that these transcription regulation mechanisms allow the initial synthesis of new Tat proteins in latently infected T cells to 

subsequently regulate HIV transcriptional elongation. 

 
Although NF-jB on its own can activate HIV LTR transcription, several studies have demonstrated that AP-1 and NF-jB 

form functional transcription ternary complexes [33,34] with a potentiated biological activity which enhances HIV LTR 

activation [35]. On the other hand, AP-1 is also known to synergize with NFAT to regulate the expression of a variety of 

cytokine and chemokine genes involved in immune functions and regulation [36,37]. Interestingly, activation of the T-cell 

receptor (TCR) induces multiple transcription factors that have been implicated in HIV transcription regulation, including 

NF-jB [10–12,38,39], NFAT [38,40–42], and AP-1 [35,43–45]. Despite the well-established sequence of molecular events 

that lead to proviral activation by NF-jB, the molecular contribution of NFAT and AP-1 in the regulation of latent HIV 

provirus transcription following activation of the TCR remains unknown. Therefore, in the current study, we aim to 

investigate the molecular contribution of the transcription factors NFAT and AP-1 in HIV proviral transcription upon TCR 

activation. 

 
MATERIALS AND METHODS 

 
Plasmid constructs 

pHR’p-d2EGFP was derived by inserting the EcoRI and XhoI fragment of HIV-1 pNL4-3 into the pHR’ plasmid [46]. The 

short-lived version of green fluorescent protein (d2EGFP) replaces nef position at the MluI and XhoI sites. Site-directed 

mutagenesis was performed to replace histidine at position 13 with leucine (H13L) (CAT to TTA) within the HIV Tat 

gene. The H13L Tat was used over the WT Tat because unlike WT Tat, nearly 100% of the clones harboring H13L Tat are 

reactivatable following TNF-a stimulation [47]. The pHR’p-d2EGFP constructs contained either wild-type (WT) LTR or 



mutations (GGG to CTC) were introduced at the 3’ end of each of the two NF-jB binding sites to form mutant NF-jB 

(mKF-jB)-binding sites within the LTR [11]. Wild-type LTR and LTR mutants derived from firefly LTRluciferase 

reporter constructs were subcloned into the pHR’ p-d2EGFP vector at BamH1 and XhoI sites. 

 

Infection and isolation of Jurkat T-cell clones 

Infection of Jurkat T cells with lentiviral vectors and isolation of clones 2D10 (WT LTR and H13L Tat) and 2B5 (mNF-jB 

and H13L Tat) cells was previously described by Pearson et al. [47]. Vesicular stomatitis virus protein G (VSV-G)-

pseudotyped HIV particles were produced by triple transfection of 293T cells using Lipofectamine 2000 reagent as 

described previously [27]. Virus titers were determined by infection of 2 9 106 Jurkat T cells with a serial dilution of 

concentrated virus preparation (harvested medium supernatant). Six hours postinfection, cells were washed with 

phosphate-buffered saline (PBS) and RPMI 1640 medium replaced. Expression of d2EGFP was assessed by fluorescently 

activated cell sorting analysis (FACS Calibur) 72 h postinfection, and d2EGFP expression subsequently analyzed every 

week until cells was fully shutdown without detectable d2EGFP expression before reactivation experiments. 

 

Cell culture and reagents 

Clone 2D10 and 2B5 cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), 

penicillin (100 IU_mL_1), streptavidin (100 IU_mL_1), and 25 mM HEPES at 37 °C in 5% CO2. Fresh medium was 

added to cells every 2–3 days, and cell density was maintained between 1–2 9 106 cells_mL_1. All the cell culture media, 

serum was procured from Gibco, USA, while the antibiotics (penicillin/streptomycin) were procured from the Thermo 

Fisher Scientific (USA). Antibodies for NF-kB, NFAT c1/c2, AP-1, and SPT-5 were also procured from Santa Cruz 

Biotechnology. Specific MAPK inhibitor PD98059 (PD) and cyclosporine A (CsA) inhibitor were procured from the Cell 

Signaling (Danvers, MA, USA) and Alfa Aesar (Haverhill, MA, USA), respectively. 

 

Western blot analysis of NF-jB, NFAT, and AP-1 nuclear induction kinetics 

Jurkat T-cell clones 2D10 and 2B5 were activated through the TCR using 0.125 μg_mL_1 of anti-CD3 monoclonal 

antibodies plus 1.0 μg_mL_1 of anti-CD28 monoclonal antibodies or 10 ng_mL _1 of TNF-a. For each time point 

consisting of 5 9 106 cells in a 6-h activation time course, samples were collected every 15 min until 1.25 h following 

activation; thereafter, samples were collected every 30 min until 6 h. Activated cells were washed with 500 μL of ice-cold 

PBS and allowed to swell in 500 μL of CE buffer (1 mM Hepes-KOH pH 7.9, 60 mM KCl, 1 mM EDTA, 0.5% NP-40, 1 

mM DTT, 1 mM PMSF) and cells were vortexed for lysis. Nuclei were pelleted at 4K for 5 min. Cytoplasmic lysates were 

transferred to new Eppendorf tubes. Nuclei were washed with 500 μL of CE buffer and pelleted at 13K for 1 min. Nuclei 

were resuspended in 60 μL of NE buffer (250 mM Tris pH 7.8, 60 mM HCl, 1 mM EDTA, 1 mM DTT, 1 mM PMSF) and 

lysed by 4 freeze–thaw cycles in liquid nitrogen. The nuclear lysate was cleared by centrifugation at 13K for 1 min and 

supernatant transferred into a new microfuge tube. Total nuclear protein concentration in the samples was normalized 

using standard Bradford assay as described previously [48]. For each activation time point, 8.0 μL of total nuclear samples 

was loaded on to NuPAGE 10% Bis–Tris gels (Invitrogen, Carlsbad, CA, USA) for electrophoresis. Proteins on gels were 

transferred on to nitrocellulose membranes and detected using the ECL protein detection reagent (GE Healthcare, Chicago, 

IL, USA). The following mAbs specific for p65, p50 (NF-jB), NFATc1, NFATc2 (NFAT), c-Fos, Fra1, c-Jun, JunD (AP-

1), and Spt5 were used in immunoblots. Densitometry analysis was used to determine relative protein levels in western 

blots using QuantityOne software (Bio-Rad, Hercules, CA, USA). 

 

Electrophoretic Mobility Gel Shift Assay (EMSA) 

Extraction of nuclear samples for Gel binding assay was performed using the protocol for western blot analysis. Ten 

percent of Glycerol was immediately added to nuclear lysate and samples frozen at _80 °C until ready for use. Two 

micrograms of nuclear lysate was reacted with 0.1 pmoles of 32P-labeled 30bp double-stranded oligonucleotides derived 

from the HIV-1 LTR containing the NFjB binding sites or oligonucleotides derived from the IL-2 promoter containing the 

distal NF-AT binding sites in 6ll of binding buffer (10 mM Tris/HCl pH 7.5, 50 mM NaCl, 10% glycerol, 1% NP-40, 1 

mM EDTA, 0.1 lg poly dI/dC) and incubated for 15 min at RT. The protein–oligonucleotide complexes were resolved on a 

nondenaturing 12.5% acrylamide (19:1) and 1X TGE buffer (24.8 mM Tris/HCl, 190 mM glycine, 1 mM EDTA) and 

visualized by standard autoradiography. 

 

Preparation of double-stranded oligonucleotides 

Two microliters of 12.5 lM single-stranded oligonucleotides was added to 5 lL of 32P-labeled c-ATP, 2 lL of T4 

polynucleotide kinase (PNK), 5 lL of 10X PNK buffer in 36 lL reaction volume and incubated at 37 °C for 1 h. Two 

microliters of 12.5 lM reverse-strand oligonucleotides was added to the reaction and boiled at 95 °C for 5 min; samples 

were spanned down and placed back on the heating block and allowed to cool down slowly to 30 °C. Double-stranded 

oligonucleotides were purified using nondenaturing 12.5% acrylamide (19 : 1) gel before use in binding assays. 

 

Chromatin Immunoprecipitation (ChIP) assay 



For each activation time point, 5 9 107 cells were fixed using 0.5% formaldehyde for 10 min at room temperature (RT). 

Cells were washed twice with 20 mL of ice-cold PBS and allowed to swell in 5 mL of CE buffer. Nuclei were pelleted at 

2K for 10 min at +4 °C and resuspended in 1 mL of SDS-lysis buffer (1% SDS, 10 mM 191 EDTA, 50 mM Tris/HCl pH 

8.1, 1 mM PMSF, 1 μg_mL_1 aprotinin, 1 μg_mL_1 pepstatin A). Genomic DNA was shredded to lengths less than 800 

bp by sonication (Misonex 3000) under the following sonication conditions; output 2.5 for 20 s, 8 times. For each time 

point, 200 μL of sonicated samples was added to 800 μL of ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM 

EDTA, 16.7 mM Tris/HCl pH 8.1, 167 mM NaCl). Samples were incubated with specific antibodies at +4 °C overnight. 

One hundred microliters of 25% protein A-sepharose was used in DNA–protein immunoprecipitation. Antibody–DNA–

protein complexes were washed with 1 mL of each wash buffer in the order given below; low salt immune complex wash 

buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris/HCl pH 8.1, 150 mM NaCl), high salt immune complex 

wash buffer (0.1% SDS, 1% Triton X-v100, 2 mM EDTA, 20 mM Tris/HCl pH 8.1, 500 mM NaCl), RIPA buffer (20 mM 

Tris/HCl pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, 5 mM EDTA), and TE buffer (10 

mM Tris/HCl pH 8.0, 1 mM EDTA pH 8.0) twice. Protein DNA complexes were eluted from protein A-sepharose twice 

using 250 μL of freshly prepared elution buffer (1% SDS, 0.1 mM NaHCO3). Twenty microliters of 5 M NaCl was added 

to total eluate and protein–DNA complexes reversed-cross-linked at 65 °C overnight. Ten microliters of 0.5 M EDTA, 10 

μL of 2 M Tris/ HCl pH 6.5, and 2 μL of 10 mg_mL_1 proteinase-K was added and samples incubated at 50 °C for 2hrs 

followed by phenol extraction and ethanol precipitation. ChIP was performed using the following antibodies, RNAP II 

(#39097, Active Motif) and c-Fos (K-25, Santa Cruz). 

 

Real-time PCR analysis of eluted DNA  

Precipitated DNA samples were dissolved in 250 μL of distilled water and 5 μL of the sample used in real-time PCR using 

the SYBR green PCR master mix (Bio-Rad) as described previously by Kim et al. [29]. No-antibody control values were 

subtracted from each sample value to remove the nonspecific background signal. The following HIV-1 primer sets were 

used in real-time PCR amplification. HIV Nuc-1 region (forward primer + 30) 5’ CTGGGA GCT CTC TGG CTA ACT-3’ 

(reverse primer + 134) 5’-TTA CCA GAG TCA CAC AAC AGA CG-3’. Downstream primers (HIV envelope region) 

(forward primers + 2593) 5’-TGA GGG ACT ATT GGA GAA 221 GTG A-3’ (reverse primer + 2691) 5’-TCT GCA 

CCA CTC TTC TCT TTG C-3’. Cellular gene primers used were EGR2 (forward primer + 35) 5’-CGA GGG GAC TCA 

CTG ACT GTT A-3’ (reverse primer + 126) 5’- TTG CCA CTG ACT CTC TCC TGT C-3’. 

 

Statistical analysis 

Data were analyzed using Microsoft Excel or GRAPHPAD PRISM 5.0 (GraphPad Software, San Diego, CA, USA). For 

paired samples, statistical analyses were performed using Student’s ttest. One-way analysis of variance (ANOVA) was 

performed for multiple data point comparisons. Experimental data are presented as the mean _ SD of at least three 

independent experiments. P < 0.05 was considered significant: P values were defined as ∗ P < 0.05 and ∗∗P < 0.01. 
 

RESULTS 

 
NF-jB is the major transcription factor induced by TNF-a stimulation 

Earlier, most studies that have attempted to address the role of AP-1 transcription factors in the regulation of HIV 

transcription relied on ex vivo systems where cells are co-transfected with plasmid constructs that express high levels of 

exogenous proteins and the LTR-Luc reporters. The effects of exogenously expressed AP-1 transcription factors on HIV 

LTR activation are then assayed by measurement of the reporter protein expression usually 72 h post-transfection. 

Whereas this approach enabled determination of whether or not AP-1 activates HIV transcription, it was limited by the 

fact that it is insufficient to enable detailed kinetic studies of endogenously expressed AP-1 transcription factors and how 

they modulate the duration and magnitude of HIV transcriptional response in time-course experiments. In the experiments 

described here, we have chosen to study the nuclear induction kinetics of endogenously expressed transcription factors 

mobilized following TCR activation and how they modify the duration and magnitude of HIV provirus transcription. We 

utilized the well established Jurkat T-cell line model of HIV latency; Clone 2D10 cells. The Clone 2D10 cells harbor a 

single latently infected HIV provirus. The latent HIV provirus in the Clone 2D10 cells contains WT LTR and H13L Tat in 

which nearly 100% of the latently infected Clone 2D10 cells are reactivatable following TNF-a stimulation. The use of 

immunoblots allowed us to determine transcription factors that become induced following TNF-a stimulation or TCR 

activation and their nuclear induction kinetics over a six hour activation time course. Nuclear entry of NF-jB following 

TNF-a stimulation occurs in two distinct phases over a six-hour activation time course. Upon TNF-a stimulation, NF-jB is 

immediately induced into the nucleus reaching maximal nuclear levels by 30 min during the first induction phase lasting 

until 1.5 h (Fig. 1A,B). During the second activation phase, NF-jB nuclear levels peak between 3 and 4hrs. Albeit AP-1 c-

Jun subunit is induced with a much-delayed kinetics after 4.5 h of TNF-a stimulation, AP-1 c-Fos, NFATc1, and NFATc2 

are not induced by TNF-a stimulation (Fig. 1A,B). 

 

T-cell receptor (TCR) activation induces NF-jB, NFAT, and AP-1 with unique kinetics 



Ligation of the TCR results in activation of three distinct major signal transduction pathways, namely, (a) the MAPK 

pathway which leads to AP-1 induction, (b) the Ca2+-calcineurin pathway which results in NFAT induction, and (c) the 

protein kinase C (PKC) pathway which induces NF-jB via the CARMA1, Bcl10, and MALT1 (CBM) protein complex 

present upstream of the IjB kinase (IKK) complex. Activation of the TCR/CD3 complex using anti-CD3 and anti-CD28 

mAbs enhances PKC-mediated NF-jB induction through activation of the Akt kinase (protein kinase B) which synergizes 

with the PKC activation signals. In contrast to TNF-a stimulation which induces NF-jB as the major factor, activation of 

the TCR using anti-CD3 and anti-CD28 mAbs is more complex and results in the induction of multiple transcription 

factors including NF-jB p65 and p50, NFATc1 and NFATc2, AP-1 c-Fos and c-Jun with varied induction kinetics. 

Western blot analysis using p65- and p50-specific antibodies demonstrated that basal levels of nuclear NF-jB are present 

in latently infected Jurkat T-cell clones, 2D10 cells (Fig. 2A,B and Fig. S1). SPT-5 was used as a nuclear protein loading 

control (Fig. S2). Soon after TCR activation, NF-jB is immediately mobilized into the nucleus reaching maximal nuclear 

levels by 30 min and between 3 to 4hrs during the first and second induction phases, respectively (Fig. 2A,B and Figure 

S1). The most notable differences in NF-jB induction following TNF-a or TCR activation occur during the second nuclear 

induction phase. Whereas the induction kinetics of NF-jB following TNF-a or TCR activation are comparable, there is 

significantly more nuclear NF-jB during the second activation phase following TNF-a stimulation than during TCR 

activation. The gel retardation assays further validated these findings, as we found a time-dependent binding of nuclear 

NFjB to the HIV LTR, in a time-course experiment following TCR activation, with peak at around 30 min (Figure S1). 

This observation is not limited to the HIV LTR which harbors double NF-jB binding sites but it also applies to the 

canonical single NF-jB binding site derived from the IL-2 promoter. Like NF-jB, NFATc1 and NFATc2 are induced soon 

after activation. Whereas the induction levels of NFATc1 increase significantly during latter activation time points, 

NFATc2 is efficiently induced immediately following TCR activation but its induction is limited to early activation time 

points lasting until 2hrs (Fig. 2A–C). However, treatment of Clone 2D10 cells with cyclosporine A for 1 h before TCR 

activation resulted in inhibition of nuclear induction of both NFATc1 and NFATc2 (Fig. 3A,B). Unlike NF-jB and NFAT 

which are induced soon following TCR activation, nuclear induction of AP-1 c-Fos and c-Jun subunits is so unique and 

delayed until 45 min reaching maximal nuclear levels by 3 h (Fig. 2A,D). However, MAPK inhibitor PD98059 selectively 

and specifically inhibited AP-1 c-Fos but not c-Jun induction (Fig. 4A,B). Pretreatment of clone 2D10 cells with both 

PD98059 and cyclosporine A for 1hr before TCR activation inhibited both AP-1 c-Fos and NFAT induction (Fig. 5A, B). 

We also determined whether or not TCR activation induces other AP-1 subunits in addition to c-Fos and c-Jun. 

Interestingly, TCR activation also induced AP-1 Fra-1 and JunD, which was not inhibited by MAPK inhibitor PD98059 

suggesting that unlike c-Fos, these AP-1 subunits are induced via a different MAPK signal pathway similar to c-Jun which 

is not affected by MAPK inhibitor PD98059 (Fig. 6A–D). The use of Clone 2D10 model system of HIV latency allowed 

us to study the detailed nuclear induction kinetics of the endogenous transcription factors that are mobilized following 

TCR activation. In this case, TCR activation, unlike TNF-a stimulation, induces multiple transcription factors with distinct 

nuclear induction kinetics over a six-hour time course. 

 

AP-1 contributes to latent HIV provirus transcription following TCR activation 

Using Clone 2D10 cells harboring single latently infected HIV proviruses, we determined the individual contribution of 

AP-1 c-Fos, NFAT, and NF-jB on d2EGFP expression as a measure of proviral transcription using FACS analysis 

following 16 h of TCR activation or TNF-a stimulation. Prior to FACS analysis after 16 h of cellular activation, Clone 

2D10 cells were either untreated or pretreated for 1 h with MAPK inhibitor PD98059 to specifically inhibit c-Fos 

induction, CsA to inhibit NFATc1 and NFATc2 or PD/CsA drug combination to inhibit AP-1 c-Fos, NFATc1, and 

NFATc2 and cells activated using TNF-a or anti-CD3 and anti-CD28 mAbs. Drug treatments without activation were 

included to control for the effects of each inhibitor on provirus activation and were found to exhibit no activation effects 

on d2EGFP expression as expected (Fig. 7A). TNF-a stimulation of Clone 2D10 cells resulted in 98% d2EGFP expression 

demonstrating that activation of latent HIV provirus transcription in Jurkat T-cell clones is strictly dependent on NF-jB 

which is the major transcription factor induced following TNF-a stimulation (Fig. 7B). PD, CsA, or PD/CsA combination 

does not inhibit d2EGFP expression following TNF-a stimulation (Fig. 7B). The observation that TNF-a induces only NF-

jB as the major factor which regulates HIV transcription and the fact that it does not induce AP-1 and NFAT allowed us to 

utilize TNF-a stimulation to control for TCR activation experiments which induce multiple factors via distinct signal 

pathways. In contrast to TNF-a stimulation, when clone 2D10 cells were activated through the TCR under similar drug 

conditions, we observed a robust 49% d2EGFP expression (Fig. 7C). However, PD which specifically inhibits AP-1 c-Fos 

induction significantly decreased d2EGFP from 49% to 29% (a significant 20% reduction) demonstrating that AP-1 c-Fos 

contributes to HIV provirus transcription following TCR activation (Fig. 7C). Surprisingly, unlike MAPK inhibitor 

PD98059 which inhibited HIV transcription, CsA treatment resulted in a strong increase in d2EGFP expression of 66% up 

from 49% (a significant 17% increase) demonstrating that NFAT inhibits HIV transcription in Jurkat T-cell cones 

following TCR activation such that blocking NFAT results in increased HIV LTR transcriptional activation after 16 h of 

activation (Fig. 7C). Inhibition of HIV provirus transcription by NFAT following TCR activation is because DNA binding 

sequences of NFAT overlaps the two NF-jB binding sites within the HIV LTR with the result that when NFAT and NF-jB 

are both induced and are available in the nucleus at the same time such as during TCR activation, binding of NFAT which 



has distinct binding sequence requirements directly blocks NF-jB recruitment to the HIV LTR. Interestingly in samples 

treated with PD/CsA drug combination, enhancement of d2EGFP expression by CsA was offset by the inhibitory effects 

of MAPK inhibitor PD98059 following TCR activation, thereby restoring d2EGFP expression (44%) to levels similar to 

TCR activation (49%) without drug inhibitors. These observations demonstrate the complexity and multifaceted effects of 

TCR activation and signaling in the modulation of HIV provirus transcription. 

 

AP-1 c-Fos modulates HIV provirus transcription by enhancing elongation 

Given the specificity of MAPK inhibitor PD98059 in the inhibition of c-Fos induction which resulted in a significant 

decrease in d2EGFP expression by FACS analysis, we determined the precise molecular mechanism through which AP-1 

c-Fos contributes to reactivation of latent HIV proviruses. Using ChIP analysis to measure RNAP levels along the provirus 

in kinetic experiments, we observed that PD98059 does not block the recruitment of RNAP to the HIV LTR (+30 to +134) 

indicating that initiation rates are constant with or without PD98059 treatment (Fig. 8A). However, PD98059 treatment 

induced a significant reduction in RNAP levels downstream of the HIV transcription start site within the envelope region 

(+2593 to +2691) following the initial round of transcription (Fig. 8B). This demonstrates that AP-1 c-Fos specifically 

contributes to HIV transcription by enhancing elongation such that inhibition of c-Fos nuclear mobilization results in a 

dramatic reduction in processive RNAP complexes following TCR activation. PD98059 in the PD/CsA inhibitor 

combination similarly inhibited elongation of latent HIV provirus transcription but not initiation (Fig. 8C,D). Therefore, 

AP-1 c-Fos contributes to the reactivation of latent HIV proviruses by enhancing transcriptional elongation. 

 

NF-jB and NFAT induced by TCR activation regulate the expression of cellular genes 

T-cell functions are regulated by a milieu of cytokines and chemokines, the majority of which expression are regulated 

either by NF-jB or NFAT or both. We took advantage of this observation and analyzed transcription of selected cellular 

genes including early growth response-2 (EGR2) to control for transcriptional activity of the TCR-mobilized transcription 

factors in our ChIP analysis using the same ChIP samples as shown in Fig. 8 and also to provide an internal control for the 

effects of drug inhibitors. EGR2 is a cellular transcription factor that regulates expression of Fas molecules known to 

modulate apoptosis or programmed cell death and EGR2 gene transcription itself is regulated by both NF-jB and NFAT 

transcription factors. Interestingly, the NF-jB binding sequence on the EGR2 promoter (GGGACTT) has homology to the 

NF-jB LTR binding sequence (GGGACTTTCC)x2 which binds not only NF-jB but also NFAT, suggesting that the EGR2 

promoter is capable of binding both NF-jB and NFAT. It is conceivable that in the absence of NF-jB, NFAT can regulate 

EGR2 gene expression or inhibit NF-jB activation of EGR2 gene transcription through competitive binding to overlapping 

or similar binding sequences. Following activation of the TCR, NF-jB but not NFAT regulates EGR2 gene transcription 

during the first nuclear entry cycle of NF-jB and it was not affected by MAPK inhibitor PD98059 (Fig. 9A). However, 

blocking NFAT induction using CsA resulted in a significant increase in EGR2 gene transcription as measured by RNAP 

recruitment to the EGR2 promoter indicating that NFAT competitively inhibits NF-jB activation of EGR2 gene such that 

blocking NFAT mobilization using CsA significantly increases EGR2 transcription following TCR activation (Fig. 9B,C). 

ChIP analysis of cellular genes provided internal controls for the regulation of HIV LTR transcription by TCR-mobilized 

transcription factors which demonstrates that NF-jB, NFAT, and AP-1 induced upon TCR activation are functional and 

regulate not only HIV gene transcription but also cellular gene expression (Fig. 9). 

 
Enhancement of HIV transcriptional elongation by AP-1 c-Fos is mediated via NF-jB binding sites 

Some studies have demonstrated that AP-1 can form functional transcription complexes either with NF-jB or NFAT. On 

the other hand, the HIV LTR upstream sequences other that the core promoter region is known to contain AP-1 binding 

sites while other intragenic AP-1 binding sequences within the pol gene are reported to be critical for virus infectivity. 

Results of our studies with MAPK inhibitor PD98059 demonstrate that AP-1 c-Fos specifically contributes to HIV 

provirus transcription by enhancing elongation. However, whether AP-1 c-Fos fulfills this function by acting individually 

or through the formation of transcription ternary complexes with NF-jB is unknown. To test this hypothesis, we utilized 

Jurkat T-cell clone 2B5 cells which harbor mNF-jB LTR. This mutation blocks binding of both NF-jB and NFAT to the 

HIV LTR to activate transcription. Utilization of clone 2B5 cells therefore provided an excellent condition to determine 

whether or not, AP-1 alone can activate an HIV promoter without the requirement for NF-jB or NFAT binding. Analysis 

of d2EGFP expression as a measure of LTR activation in clone 2B5 cells following 16hrs of TCR activation showed no 

d2EGFP expression demonstrating that AP-1 on its own is unable to activate HIV transcription following TCR activation 

of Jurkat T-cell clones and that AP-1 c-Fos requires NFjB to synergistically modulate HIV transcriptional elongation (Fig. 

10). It is imperative to point out that FACS analysis of d2EGFP expression presented in Fig. 10 utilized a different gating 

system from those presented in Fig. 7. We further sought to determine whether or not synergistic interaction between AP-1 

c-Fos and NF-jB to regulate HIV transcriptional elongation may require direct binding of AP-1 to the HIV promoter. By 

analyzing LTR structures in different HIV-1 subtypes, we observed that unlike HIV-1 subtypes; A, C, and E, subtypes B 

and D HIV LTRs harbor no AP-1 binding sites within its core promoter region (result not shown). Interestingly, the HIV 

molecular clone pNL4-3 utilized in our lentiviral pHR’ p-d2EGFP construct is derived from subtype B virus suggesting 

that this molecular clone contains no AP-1 binding sites within its core promoter region. Indeed, analysis of the LTR 



sequence of this molecular clone revealed no substantial AP-1 binding site which, therefore, demonstrates that synergy 

between AP-1 c-Fos and NF-jB to modulate HIV transcriptional elongation is devoid of direct binding of c-Fos to the LTR 

but rather requires NF-jB binding through which c-Fos is co-recruited to the HIV promoter to modulate HIV 

transcriptional elongation. 

 

DISCUSSION 

 
Physical and functional interplay between AP-1 and NF-jB, both of which belong to different families of transcription 

factors, was first reported by Stein et al.[34] who demonstrated that the bZIP domain of AP-1 c-Fos and c-Jun physically 

interacts with the Rel-homology domain (RHD) of NF-jB p65 forming a transcription complex with enhanced DNA 

binding and potentiated biological function including activation of the HIV LTR transcription. By utilizing the HIV-1 

latently infected U1 monocytic cell lines, Yang and colleagues demonstrated that AP-1 and NF-jB transcription factors 

synergize to activate HIV LTR following cytokine stimulation and that this synergy was mediated through the NF-jB 

binding sites [35]. Functional interaction between AP-1 and NF-jB is demonstrated to regulate expression of cytokine 

genes and bimolecular fluorescence complementation (BiFC)-based techniques such as BiFC-FRET have allowed direct 

visualization of AP-1-NF-jB ternary complex formation in living cells [33]. Whereas these studies have demonstrated 

unique molecular interaction and mechanism of transcription regulation through functional complementation between 

different transcription factors, they are limited by the fact that it was not possible to determine the contribution of each 

transcription partner in the transcription complex. In this study, we directly determined the individual contribution of AP-1 

in the AP-1-NF-jB transcription complex in kinetic studies of the reactivation of latently infected HIV proviruses 

following TCR activation. 

 

Unlike TNF-a stimulation which induces NF-jB as the major and only transcription factor, activation of the TCR induces 

multiple distinct signal transduction pathways leading to induction of multiple transcription factors including NF-jB, 

NFAT, and AP-1 with distinct nuclear levels and entry phases. Uniquely, NF-jB p65 and p50 induction occur in parallel, 

and both exhibit two nuclear induction phases over a 6-h activation time course. The biphasic NF-jB nuclear entry was 

first reported by Saccani and colleagues [49] who demonstrated that certain NF-jB-dependent target genes were 

transcribed either during the first or second waves of NF-jB nuclear mobilization. Like NF-jB, induction of NFATc1 and 

NFATc2 is immediate following TCR activation but with varied kinetics. While NFATc2 induction lasts until 2hrs, 

NFATc1 is induced in three distinct isoforms; NFATc1/C (upper band) and NFATc1/B (middle band) induction increases 

during latter activation time points while isoform NFATc1/A (lower band) induction is delayed until 2.5 h after activation 

and the nuclear level increases during subsequent activation time points (Figs 2 and 11). The delayed nuclear induction of 

NFATc1/A isoform is because the synthesis and induction of this isoform are activation-induced such that there are time 

requirements for message translation followed by nuclear induction of the newly synthesized NFATc1/A proteins [50,51]. 

Unlike NF-jB and NFAT which are immediately induced upon TCR activation, induction of AP-1 c-Fos and c-Jun is 

delayed until 45 min, and once induced, its nuclear levels increase during subsequent time points (Figs 2 and 11). AP-1 is 

an early-expressed gene. Low levels of inducible residual AP-1 are present in the cytoplasm; however, following 

activation of the TCR, expression of AP-1 genes is activated resulting in more AP-1 induction during latter activation time 

points following message translation [52]. 

 

Latent HIV provirus transcription in Jurkat T cells is dependent on NF-jB which is the major transcription factor induced 

by proinflammatory cytokine TNF-a stimulation. Consistent with the findings of Williams et al. [12], that sustained NF-jB 

induction is a prerequisite for efficient expression of latent HIV proviruses, we observed that sustained NF-jB nuclear 

mobilization results in enhanced HIV transcription following TNF-a stimulation of clone 2D10 cells. ChIP analysis 

demonstrated that RNAP II levels along the provirus during HIV transcriptional initiation and elongation closely mirrored 

NF-jB nuclear mobilization kinetics. In contrast to TNF-a stimulation, we observed that the kinetics of RNAP II 

recruitment to the LTR following TCR activation occurs in parallel to nuclear NF-jB levels particularly during the first 

phase of NF-jB nuclear mobilization when HIV transcription is strictly NF-jB-dependent. Cyclosporine A treatment 

enhanced RNAP II recruitment to the HIV LTR during early activation time points corresponding to the first phase of NF-

jB nuclear induction by blocking NFAT which competitively inhibits NF-jB binding to the HIV promoter to activate HIV 

transcription (Fig. 8C). Because AP-1 also synergizes with NFAT other than NF-jB, it is conceivable that besides 

competitive binding with NF-jB to the HIV LTR, NFAT also competes with NF-jB for the limited availability of nuclear 

AP-1 c-Fos as another mechanism of NFAT inhibition of HIV transcription following TCR activation. During latter 

activation time points when AP-1 becomes available in the nucleus, activation time points corresponding to the second 

phase of NF-jB nuclear mobilization, HIV transcription occurs in parallel to both NF-jB and AP-1 nuclear induction 

kinetics during which AP-1 c-Fos specifically synergizes with NF-jB to enhance HIV transcriptional elongation. Blocking 

c-Fos specifically by PD98059 strongly inhibited HIV transcriptional elongation (Fig. 8B,D). Our observation that a 

transcription complex consisting of AP-1 c-Fos and NF-jB ternary complex modulates HIV transcriptional elongation is 



consistent with the observation by West et al. [11] that NF-jB p65 stimulates HIV transcriptional elongation in addition to 

stimulating initiation. Stein et al. [34] demonstrated that physical interaction between AP-1 and NF-jB is mediated via the 

bZIP region of AP-1 and RHD of NF-jB and that functional ternary complex formation required active TAD of both AP-1 

and NF-jB transcription factors. Consistent with this observation, we measured NF-jB recruitment to the HIV promoter 

region using the Gel binding assay upon TCR activation (Fig. S1). We observed that NF-jB is recruited to the HIV LTR in 

parallel with its nuclear levels during the first phase of its nuclear induction with maximal binding occurring at 30 min. On 

the other hand, ChIP analysis revealed that both NFAT and NF-jB are recruited to the HIV LTR following TCR activation. 

However, treatment of cells with CsA significantly inhibited NFAT binding to the HIV LTR mean while binding of NF-jB 

to the LTR was enhanced (Fig. S3). Given that AP-1 and NF-jB are transcription partners and that AP-1 alone is unable to 

activate transcription from the HIV LTR, it is clearly demonstrable that AP-1 c-Fos and NF-jB synergize to form 

transcriptionally active ternary complexes which is co-recruited to the HIV promoter to modulate HIV transcriptional 

elongation following TCR activation. 

 

In addition to the two NF-jB binding sequences located with the core HIV promoter, multiple AP-1 binding sites have 

been identified within the HIV LTR [53,54] albeit not all HIV subtype-specific promoters harbor AP-1 binding sequences. 

The intragenic AP-1 binding sites within the pol gene have been shown to enhance virus infectivity [43,55]. We examined 

whether or not AP-1 can activate HIV LTR transcription in the absence of NF-jB by binding to its DNA binding site. 

Using clone 2B5 cells harboring mNF-jB LTR which blocks both NF-jB and NFAT bonding, we demonstrated that AP-1 

alone without NF-jB is unable to activate HIV transcription. Because functional interaction between two different 

transcription factors usually requires binding of each factor to composite DNA binding sites, we next examined whether or 

not synergistic interaction between AP-1 c-Fos and NF-jB to regulate HIV transcriptional elongation occurs as a result of 

direct AP-1 binding to the LTR. Analysis of the LTR structures in different HIV-1 subtypes demonstrated that the pNL4-3 

molecular clone utilized in the pHR’p-d2EGFP proviral construct lacks AP-1 binding sites at the LTR demonstrating that 

functional synergy between AP-1 c-Fos and NF-jB to regulate HIV transcriptional elongation following TCR activation is 

mediated via NF-jB DNA binding sequences such that when NF-jB binding is blocked, AP-1 alone is unable to activate 

d2EGFP expression in clone 2B5 cells. Regulation of HIV proviral transcription is a process tightly regulated by multiple 

but complementary T-cell signal pathways. AP-1 and NFjB synergize to enhance HIV transcriptional elongation mediated 

via NF-jB LTR binding sites following TCR activation (Fig. 12A,B). In this investigation, we have utilized a well-

established T-cell line-based model system of HIV latency. The current study is the extension of our previous findings that 

we obtained using a primary T-cell-based latency model system [56]. Based on our findings, we, for the first time, 

demonstrated that AP-1 synergizes with NF-jB to enhance HIV transcriptional elongation and eventually fully reactivate 

latent HIV proviruses, following TCR activation. 

 

CONCLUSIONS 
 

Persistence of latent HIV provirus pools in memory CD4 + T cells despite prolonged intensive drug therapy remains the 

greatest obstacle to successful HIV treatment and cure. T-cell receptor (TCR) signaling is the only physiological process 

known to reactivate latent HIV proviruses in vivo. Ligation of the TCR induces multiple transcription factors including 

NFjB, NFAT, and AP-1, which have previously been reported to regulate HIV transcription via distinct signaling 

pathways. By utilizing MAPK inhibitor PD98059 and cyclosporine A to block AP-1 and NFAT, respectively, we analyzed 

the molecular contribution of each factor in the reactivation of latent HIV proviruses in Jurkat T-cell clones by monitoring 

the distribution of RNAP II along the latent HIV provirus using the high throughput chromatin immunoprecipitation assay 

following TCR activation. Upon TCR ligation, NF-jB and NFAT translocate into the nucleus within 15 min; however, AP-

1 nuclear mobilization is delayed until 45 min. NF-jB exhibits two distinct nuclear entry phases and the kinetics of 

proviral activation following TNF-a treatment is strictly NF-jB-dependent during both nuclear entry phases. In contrast, 

following TCR activation, RNA polymerase II recruitment to the HIV LTR is NF-jB-dependent only during the first phase 

of NF-jB nuclear mobilization. However, 45 min following activation, AP-1 is induced and both AP-1 c-Fos subunit and 

NF-jB co-assemble on the promoter to regulate HIV transcriptional elongation during the second phase of NF-jB nuclear 

mobilization. Treatment of Jurkat Tcell clones with MAPK inhibitor PD98059 specifically blocked AP-1 c-Fos nuclear 

mobilization and recruitment to the HIV promoter, which strongly inhibited HIV transcriptional elongation as 

demonstrated by the remarkable reduction in RNAP II levels downstream of the provirus. Studies using Cyclosporine A 

demonstrated that NFAT inhibits HIV LTR activation through competitive binding with NF-jB to the HIV promoter. 

Other than P-TEFb, a cellular co-factor for viral Tat protein, this paper for the first time identified the involvement of AP-

1 in the regulation of HIV transcriptional elongation through synergistic interaction with NF-jB following TCR activation. 
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