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Chlamydia Hijacks ARF GTPases To
Coordinate Microtubule Posttranslational
Modifications and Golgi Complex
Positioning

Jordan Wesolowski,a Mary M. Weber,b Agata Nawrotek,c Cheryl A. Dooley,b

Mike Calderon,d Claudette M. St. Croix,d Ted Hackstadt,b Jacqueline Cherfils,c

Fabienne Paumeta

Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USAa;
Host-Parasite Interactions Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute
of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USAb; Laboratoire de
Biologie and Pharmacologie Appliquée, Centre National de la Recherche Scientifique, Ecole Normale
Supérieure Paris-Saclay, Cachan, Francec; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh,
Pennsylvania, USAd

ABSTRACT The intracellular bacterium Chlamydia trachomatis develops in a para-
sitic compartment called the inclusion. Posttranslationally modified microtubules en-
case the inclusion, controlling the positioning of Golgi complex fragments around
the inclusion. The molecular mechanisms by which Chlamydia coopts the host cyto-
skeleton and the Golgi complex to sustain its infectious compartment are unknown.
Here, using a genetically modified Chlamydia strain, we discovered that both post-
translationally modified microtubules and Golgi complex positioning around the in-
clusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and
host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where
they induce posttranslationally modified microtubules. Similarly, both ARF isoforms
are required for the repositioning of Golgi complex fragments around the inclusion.
We demonstrate that CT813 directly recruits ARF GTPases on the inclusion mem-
brane and plays a pivotal role in their activation. Together, these results reveal that
Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified
microtubules and Golgi complex repositioning at the inclusion.

IMPORTANCE Chlamydia trachomatis is an important cause of morbidity and a sig-
nificant economic burden in the world. However, how Chlamydia develops its intra-
cellular compartment, the so-called inclusion, is poorly understood. Using genetically
engineered Chlamydia mutants, we discovered that the effector protein CT813 re-
cruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate mi-
crotubules. In this context, CT813 acts as a molecular platform that induces the
posttranslational modification of microtubules around the inclusion. These cages are
then used to reposition the Golgi complex during infection and promote the devel-
opment of the inclusion. This study provides the first evidence that ARF1 and ARF4
play critical roles in controlling posttranslationally modified microtubules around the
inclusion and that Chlamydia trachomatis hijacks this novel function of ARF to repo-
sition the Golgi complex.

KEYWORDS ARF GTPase, actin, CT813, Chlamydia trachomatis, Golgi complex,
inclusion protein, microtubules

Chlamydia trachomatis is a Gram-negative bacterium that causes a range of diseases,
depending on the serovar. Serovars D to K are the most common etiological agents

of bacterial sexually transmitted infections, while serovars L1 to L3 cause sexually
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transmitted lymphogranuloma venerium, a more systemic disease (1). Serovars A to C
cause trachoma, the leading cause of preventable infectious blindness (2). Despite the
availability of antibiotics, C. trachomatis infections often go unnoticed and untreated,
which can lead to pelvic inflammatory disease and infertility. Furthermore, antibiotic
treatment can induce chlamydial persistence, which results in recurring infections over
time (3, 4).

Chlamydia is an obligate intracellular pathogen that stimulates actin polymerization
at the plasma membrane to induce its own uptake into a membrane-bound inclusion
(5–8). The nascent inclusion is then trafficked along host microtubules to the
microtubule-organizing center (MTOC), where it resides for the duration of the Chla-
mydia life cycle (9, 10). At the MTOC, Chlamydia establishes extensive interactions with
the host Golgi complex. C. trachomatis fragments the Golgi complex into ministacks,
which are then repositioned around the inclusion (11, 12). The importance of Golgi
complex ministack formation in the pathogenesis of Chlamydia is highlighted by the
fact that increasing the formation of ministacks via small interfering RNA (siRNA)
depletion of the lateral Golgi complex tether protein Golgin-84 enhances the produc-
tion of infectious progeny (12). Chlamydia then redirects exocytic Golgi complex-
derived vesicles to the inclusion, and these vesicles are critical for inclusion develop-
ment (13–16).

Around 12 h postinfection, the chlamydial inclusion is surrounded by a “cage” of
microtubules (MTs) that controls the positioning of Golgi complex ministacks around
the inclusion (11, 17). The depolymerization of MTs with nocodazole at the middle to
late phase of the Chlamydia life cycle not only blocks the repositioning of the mini-
stacks but also impairs the generation of infectious progeny (11). Interactions between
Golgi complex ministacks and the inclusion are highly dynamic, since the ministacks
reassemble around the inclusion following the removal of nocodazole (11). MT cages
around the inclusion are enriched in posttranslationally modified alpha-tubulin, partic-
ularly acetylated and detyrosinated tubulin (11). Posttranslational modifications (PTMs)
of MTs influence the recruitment of MT effectors that ultimately impact MT depoly-
merization and structure (18). PTM MTs have also been implicated in controlling the
positioning of the Golgi complex around the inclusion (11). Importantly, the inhibition
of MT detyrosination impairs the generation of infectious progeny and the reposition-
ing of the Golgi complex around the inclusion, while enhanced PTM MTs increase
Chlamydia infectivity (11). Thus, the presence of PTM MTs and the positioning of the
Golgi complex around the inclusion appear intimately linked. However, the chlamydial
protein(s) coordinating these processes remains unknown.

Chlamydia controls interactions between the inclusion and the host by incorporat-
ing ~60 type III secreted effector proteins called Incs into the inclusion membrane
(19–21). Due to the inherent difficulty in genetically manipulating Chlamydia, the
function of only a few inclusion proteins has been established (22). Here, using a knock
out (KO) C. trachomatis strain, we demonstrate that the inclusion protein CT813 recruits
and activates host ARF GTPases to control PTM MTs and the positioning of the Golgi
complex around the inclusion. Since the function of CT813 is not limited to actin
polymerization, as the InaC nomenclature suggests (Inclusion protein for actin assem-
bly [23]), we refer to InaC/CTL0184 as CT813. Together, our findings establish CT813 as
a master cytoskeleton regulator that controls PTM MTs around chlamydial inclusions.
Importantly, these results also indicate that ARF1 and ARF4 play significant roles in the
regulation of cytoskeleton dynamics.

RESULTS
CT813 recruits host GTPases ARF1 and ARF4 to the inclusion membrane by

direct protein-protein interactions. Previous work showed that ectopically expressed
CT813 coimmunoprecipitates with ARF1 and that green fluorescent protein (GFP)-
tagged ARF GTPases are recruited around the inclusion in a CT813-dependent manner
during infection (23). We confirmed these observations using FLAG-tagged CT813
overexpressed in noninfected cells; only ARF1 and ARF4 were found to interact with
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CT813 in this experimental setting, suggesting a more restricted specificity (Fig. 1A,
left). Furthermore, these data indicated that the interaction between CT813 and ARF
occurs independently of additional chlamydial proteins, since these cells were not
infected.

We validated that CT813 interacts with ARF GTPases during infection using a
genetically modified strain of C. trachomatis overexpressing CT813-FLAG. C. trachomatis
was stably transformed with a vector encoding both (i) CT813-FLAG under control of
the tetracycline promoter and (ii) GFP driven by a constitutive Neisseria meningitidis
promoter (see Fig. S1A in the supplemental material). The addition of anhydrotetracy-
cline (Tet) induced CT813-FLAG expression (Fig. S1B). CT813-FLAG was then immuno-

FIG 1 CT813 recruits host ARF GTPases to the inclusion by direct protein-protein interactions. (A)
Anti-FLAG immunoprecipitation of FLAG-CT813 from transfected cells. (B) Immunoprecipitation of
CT813-FLAG from cells infected with CT813-FLAG-overexpressing Chlamydia cells in the presence of
dimethyl sulfoxide (DMSO) or Tet for 24 h. Lysates for the experiments shown in panels A and B
were processed as controls. Actin was used as a loading control. (C, left) Δ17ARF1-GDP or -GTP was
cosedimented with CT813-containing liposomes. Samples were then resolved by SDS-PAGE, and proteins
were revealed by Coomassie staining. Sup, supernatant. (Right) Average ratio of ARF1 in the pellet versus
ARF1 in the supernatant from three independent experiments � standard deviations. (D) HeLa cells
expressing ARF1-HA or ARF4-HA were infected with WT Chlamydia for 18 h. Cells were labeled with
anti-HA (red), anti-GM130 (blue), and anti-IncA (green) antibodies. Bar, 10 �m. The line intensity scans
indicate the coincidence of HA with IncA staining on WT inclusions. ARF-HA constructs are denoted as
red lines, and IncA constructs are shown as green lines.
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precipitated from infected cells, and the bound ARF isoforms were analyzed by Western
blotting. Only ARF1 and ARF4 coimmunoprecipitated with CT813 in CT813-FLAG-
tagged Chlamydia-infected cells (Fig. 1B), demonstrating that the interaction occurs
during infection and confirming its specificity.

Next, we tested whether CT813 and ARF GTPases directly interact in a liposome
recruitment assay with purified recombinant CT813 and ARF1 proteins. In this assay, we
analyzed whether a truncated version of ARF that cannot bind to membranes on its
own (Δ17ARF1) was recruited to liposomes in which CT813 had been reconstituted.
Both Δ17ARF1-GDP and Δ17ARF1-GTP were recruited to CT813-containing liposomes
(Fig. 1C), indicating that CT813 interacts directly with ARF and that this interaction
occurs irrespective of the nature of the bound nucleotide and independently of other
cellular or bacterial factors.

Finally, we determined the localization of CT813-recruited ARF1 and ARF4 during
infection by using cells transfected with low levels of hemagglutinin (HA)-tagged ARF1
and ARF4. To discriminate between ARF1 and ARF4 bound to Golgi complex ministacks
and those present on the inclusion membrane, we analyzed regions of the inclusion
membrane where Golgi complex ministacks were absent. As shown in Fig. 1D, both
ARF1 and ARF4 colocalized with the inclusion membrane marker IncA, indicating that
they are recruited to the inclusion membrane. Consistent with the immunoprecipita-
tion data, ARF3, ARF5, and ARF6 were not recruited to wild-type (WT) inclusions
(Fig. S2). While GFP-tagged ARFs 1 to 5 have been described on the inclusion (23), large
tags like GFP can disrupt ARF function and are likely the cause of the discrepancy (24).
Using a Chlamydia strain in which CT813 expression was knocked out via group II
intron-based insertional inactivation (Fig. S1C and D), we observed that ARF1 and ARF4
did not localize to the inclusion, demonstrating that CT813 is required for ARF recruit-
ment to the inclusion (Fig. 1E). Based on these findings, we conclude that CT813
specifically interacts with and recruits ARF1 and ARF4 to the inclusion membrane
during infection.

CT813, ARF1, and ARF4 control Golgi complex positioning during infection.
During infection, C. trachomatis fragments the Golgi complex into ministacks that
subsequently surround the inclusion (11). This reorganization of the Golgi complex is
critical for inclusion development (12). The CT813 KO Chlamydia strain displayed
smaller inclusions (Fig. S3) and produced fewer infectious progeny (Fig. S1E). Since ARF
GTPases are major regulators of Golgi complex structure in mammalian cells (25), we
hypothesized that CT813 may divert ARF1 and ARF4 to manipulate Golgi complex
membranes to promote inclusion development and replication. To address this hy-
pothesis, we first determined the role of CT813 in Golgi complex positioning during
infection by using WT and CT813 KO Chlamydia-infected cells. In WT Chlamydia-
infected cells, Golgi complex fragments spread to �45 �m in length around the
inclusion (Fig. 2A). In contrast, the Golgi complex remained compact in the CT813 KO
Chlamydia-infected cells, with 50% to 60% of the cells exhibiting a Golgi complex of
�15 �m, compared to only 10% in WT-infected cells (Fig. 2B). These observations
indicate that CT813 plays a critical role in Golgi complex positioning during Chlamydia
infection.

Next, we used siRNA to test whether ARF1 and ARF4 are also required for Golgi
complex positioning during WT Chlamydia infection (Fig. S4B). In infected control cells,
both GM130 (cis) and Giantin (medial) Golgi complex markers labeled the Golgi
complex ministacks surrounding the inclusion (Fig. 2B, Ctrl siRNA). This observation is
consistent with the typical distribution of the Golgi complex during Chlamydia infection
(12). In contrast, the Golgi complex remained compact in either ARF1 or ARF4 siRNA-
treated cells (Fig. 2B, ARF1 siRNA and ARF4 siRNA), demonstrating that both ARF
isoforms are involved in Golgi complex positioning during infection and that their
functions are not redundant. Note that Golgi complex morphology in noninfected cells
is not affected by ARF1- or ARF4-siRNA treatment, suggesting that the effect observed
during infection is not due to a global Golgi complex defect (data not shown) (26).
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Altogether, these data suggest that CT813 uses ARF1 and ARF4 to control Golgi
complex positioning during Chlamydia infection.

CT813 and ARF GTPases cooperate to stabilize microtubules around the inclu-
sion. Chlamydia remodels PTM MTs to recruit Golgi complex ministacks to the inclusion
(11). Our observation that CT813, ARF1, and ARF4 are key players in Golgi complex
positioning thus raised the possibility that they are involved in the manipulation of MTs
during Chlamydia infection. First, we assessed whether the structure of alpha-tubulin
cages was dependent on CT813 or ARF1 and ARF4. The total amount of alpha-tubulin,
as well as the structure of alpha-tubulin cages, remained unaffected by the depletion
of CT813 (Fig. 3A; Fig. S4A). Similarly, siRNA-mediated depletion of ARF1 or ARF4 had

FIG 2 CT813, ARF1, and ARF4 control Golgi complex positioning during infection. (A, left) Cells infected with the
indicated Chlamydia strains were fixed 24 h postinfection and stained with anti-giantin (red) and anti-LPS (green)
antibodies. The images correspond to maximum projections. Asterisks denote inclusions. Bar, 5 �m. The white line
indicates how the Golgi complex was measured. (Right) The percentages of infected cells containing a Golgi
complex of the indicated size from five independent experiments � standard deviations (SD). The inset denotes
average Golgi complex sizes from five independent experiments � SD. A minimum of 100 cells per condition was
counted for each experiment. **, P � 0.01; ***, P � 0.001. (B) HeLa cells were treated with the indicated siRNAs for
48 h prior to infection with WT Chlamydia. Cells were fixed 24 h postinfection and labeled with anti-GM130 (green)
and anti-giantin (red) antibodies to label the Golgi complex. Asterisks indicate inclusions. Bar, 20 �m.

FIG 3 CT813, ARF1, and ARF4 cooperate to stabilize MTs around the inclusion. (A) Cells infected with the indicated
Chlamydia strains were lysed 24 h postinfection (hpi), and samples were analyzed by Western blotting. HSP70
served as a loading control. Numbers indicate the percent change in the indicated tubulin with respect to HSP70
and compared to the noninfected control. Results are representative of three independent experiments. (B) WT and
CT813 KO Chlamydia-infected cells were fixed 24 hpi and labeled with anti-detyrosinated tubulin (Dt-tub; green)
and anti-acetylated tubulin (Ac-tub; red) antibodies. Asterisks denote inclusions. Bar, 5 �m. (C) High-resolution
microscopy images of WT Chlamydia-infected cells fixed 24 h pi and labeled with anti-acetylated tubulin (Ac. Tub;
red) and anti-CT813 (green) antibodies. (D and E) HeLa cells were treated with the indicated siRNAs for 48 h prior
to infection with WT Chlamydia. Cells were fixed 24 hpi and labeled with anti-detyrosinated tubulin (Dt-tub; green)
(D) or anti-acetylated tubulin (Ac-tub; green) (E) antibodies. DNA was stained with Hoechst. Bar, 20 �m. (F)
siRNA-treated infected cells were lysed 24 hpi, and samples were analyzed by Western blotting. HSP70 served as
a loading control. Numbers indicate the percent change in the indicated tubulin with respect to HSP70 in
comparison with noninfected cells for each condition. Results are representative of three independent
experiments.
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no significant impact on alpha-tubulin cages or protein levels (Fig. 3F; Fig. S4B),
suggesting that CT813, ARF1, and ARF4 do not control the formation of MT cages.

Next, we analyzed the amount of PTM tubulin. As previously observed (11), the
amount of both detyrosinated and acetylated alpha-tubulin increased by 81% and
201%, respectively, during WT Chlamydia infection compared to the noninfected
control (Fig. 3A, NI and WT) (11). Remarkably, the amount of PTM MTs in CT813 KO
Chlamydia-infected cells was significantly reduced compared to that in WT-infected
controls (Fig. 3A, KO), demonstrating that CT813 is involved in the generation of PTM
MTs during infection. Next, we assessed the organization of PTM MTs during infection.
Using immunofluorescence microscopy, we detected a significant enrichment of dety-
rosinated and acetylated tubulin cages around WT inclusions (Fig. 3B, WT). In contrast,
detyrosinated and acetylated tubulin cages were disorganized in CT813 KO Chlamydia-
infected cells, leading to the incomplete enclosure of the PTM MT cages around the
inclusion and disheveled structures (Fig. 3B, KO), which correlated with the decrease in
the amount of PTM MTs. While the PTM MTs around CT813 KO inclusions were
impaired, PTM MTs remained associated with the Golgi complex (Fig. S5), suggesting
that there is not a global defect in PTM MTs. Interestingly, using high-resolution
microscopy we observed that CT813 was expressed on the inclusion surface in discrete
microdomains (Fig. 3C) and that acetylated tubulin appeared to form direct contacts
with the inclusion via these CT813 microdomains.

Finally, we investigated the contribution of ARF1 and ARF4 to the formation of PTM
MT cages during infection. As shown in Fig. 3D and E, both types of PTM MT cages were
significantly impaired in ARF1 or ARF4 siRNA-treated cells infected with WT Chlamydia,
leading to incomplete and disheveled PTM MT structures around the inclusion. Addi-
tionally, the amount of acetylated and detyrosinated tubulin failed to increase in
ARF-depleted cells infected with WT Chlamydia (Fig. 3F, compare data for anti-
acetylated alpha-tubulin [Ac-tub] and anti-detyrosinated alpha-tubulin [Dt-tub] in Ctrl
versus ARF1 and ARF4 siRNA-treated cells). These observations demonstrated that both
ARF1 and ARF4 play critical roles in the induction of PTM MT cages around the
inclusion, which phenocopies the role of CT813.

CT813-dependent PTM MT cage formation is required for Golgi complex repo-
sitioning. A role for CT813 in the formation of actin cytoskeletal cages around the

inclusion was recently identified in a chemically mutagenized strain (23). We confirmed
this observation in the CT813 KO strain (Fig. S6A, WT and KO). Since the cytoskeleton
is intimately connected and the CT813 KO strain loses both actin and PTM MT cages,
we investigated the roles of actin and PTM MT cages in Golgi complex repositioning by
using the CT813-FLAG-overexpressing strain. Similar to the CT813 KO strain, the over-
expression of CT813-FLAG impaired Golgi complex positioning around the inclusion by
~50% (Fig. S6B). Likewise, the induction of PTM MTs (Fig. S6C) and the formation of PTM
MT cages (Fig. S6D) were impaired, suggesting that the overexpression of CT813-FLAG
functions in a dominant-negative manner. Surprisingly, CT813-FLAG-overexpressing
inclusions were still surrounded by actin cages (Fig. S6A, DMSO and Tet). These data
indicate that it is likely the loss of PTM MT cages and not actin cages in the CT813 KO
strain that is responsible for the Golgi complex positioning defect; this further supports
a central role for CT813-dependent induction PTM MTs and PTM MT cage formation in
Golgi complex positioning around the inclusion.

Chlamydia activates ARF in a CT813-dependent manner. ARF GTPases cycle

between GDP- and GTP-bound states. Since CT813 recruits ARF1 to the inclusion
membrane (Fig. 1) and the nucleotide-bound state of ARF controls its activity (27), we
determined the activation state of ARF during Chlamydia infection. GTP-bound ARF was
isolated from noninfected and Chlamydia-infected cells by using the ARF effector GGA1
as bait (Fig. 4A, left). GGA1 specifically binds ARF1-GTP and is commonly used to assess
ARF activation (28). We observed increased levels of ARF1-GTP upon infection with WT
Chlamydia and significantly reduced levels of ARF-GTP in CT813 KO-infected lysates
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(Fig. 4A, KO versus WT). These results indicate that Chlamydia induces ARF activation in
a CT813-dependent manner.

The increase of ARF-GTP levels could result from CT813 functioning as a guanine
nucleotide exchange factor (GEF) to activate ARF. To investigate this possibility, we
carried out a fluorescence-based in vitro kinetics assay in which GDP/GTP exchange of

FIG 4 Chlamydia activates ARF in a CT813-dependent manner. (A) Cells were infected with the indicated
Chlamydia strains at a multiplicity of infection of 5 for 24 h. The levels of ARF-GTP in the lysates were
assessed using the glutathione S-transferase (GST)-tagged ARF effector GGA1 as bait. The absence of
ARF-GTP in the noninfected control was likely due to the low sensitivity of the ARF1 antibody. IncA,
another inclusion protein, was used as an infection control. GST-GGA1 was used as a loading control. (B)
CT813 and myrisotylated ARF1 were incorporated into liposomes. The addition of mGTP to the reaction
mixture resulted in a nonspecific increase in fluorescence. Subsequent increases in fluorescence, indi-
cating the exchange of GDP for mGTP on ARF1, were not observed until the GEF Brag2 was added to the
reaction mixture. (C and D) Myristoylated ARF1 loaded with the indicated nucleotides was reconstituted
into liposomes with or without CT813. Nucleotide exchange in the forward (GDP-to-GTP) and reverse
(GTP-to-GDP) direction using the GEF ARNO (C) or an isolated Sec7 domain (D) was conducted as
described in Materials and Methods. (E, left) HeLa cells were infected with WT Chlamydia and transfected
with ARF1 WT-HA, ARF1 Q71L-HA, or ARF1 T48N-HA. Cells were fixed 24 h postinfection and labeled with
anti-HA (green) and anti-IncA (red) antibodies. Bar, 20 �m. (Right) Intensity line scans, indicating overlap
of HA and IncA signals.
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myristoylated ARF1-GDP was measured. Recombinant CT813 and myrisotylated ARF1
were incorporated into liposomes. The addition of 2=,3=-O-(N-methyl-anthraniloyl)-
guanosine-5=-triphosphate (mantGTP, or mGTP) to the reaction mixture resulted in a
nonspecific increase in fluorescence. Subsequent increases in fluorescence, indicating
the exchange of GDP for mGTP on ARF1, were not observed until the GEF Brag2 was
added to the reaction mixture, indicating that CT813 does not function as a GEF on its
own (Fig. 4B). Alternatively, CT813 could stabilize ARF-GTP by binding as an effector. To
test this possibility, we took advantage of the fact that all GEFs exchange nucleotides
in both the forward (GDP-to-GTP) and reverse (GTP-to-GDP) directions (29). If CT813
functions as an effector, then it would be predicted to increase forward exchange by
displacing the equilibrium toward ARF-GTP and to slow reverse exchange by compet-
ing with the GEF. Surprisingly, we observed that CT813 inhibited nucleotide exchange
by the ARF GEF ARNO both in the forward direction by ~4-fold (Fig. 4C, upper) and in
the reverse direction by ~2-fold (Fig. 4C, lower). Inhibition of nucleotide exchange was
also observed with another cellular ARF GEF, Brag2 (Fig. S7), and with the isolated Sec7
domain of ARNO (~7-fold) (Fig. 4D). These observations indicate that CT813 is not a
classical effector and that its site of interaction on ARF1 overlaps with the binding site
of cellular ARF GEFs.

To determine whether Chlamydia exploits this nucleotide-independent interaction,
we analyzed the localization of overexpressed HA-tagged GTP-locked ARF1 (Q71L) or
GDP-locked ARF1 (T48N) (30) in WT Chlamydia-infected cells. As shown in Fig. 4E, both
ARF1 Q71L (GTP) and ARF1 T48N (GDP) were recruited to the inclusion membrane,
indicating that CT813 binds to both forms and recruits them to the inclusion.

ARF activation controls Golgi complex positioning around the inclusion and
the organization of stable MTs. Given the role of ARF GTPases in controlling Golgi
complex and PTM MT organization around the inclusion and given the fact that CT813
recruits both GDP- and GTP-bound ARF1 to the inclusion membrane (Fig. 4E), we
investigated the respective roles of each nucleotide-bound form during infection in
cells expressing low levels of HA-tagged ARF1 WT, ARF1 Q71L (GTP locked), or ARF1
T48N (GDP locked) in WT Chlamydia-infected cells. First, we analyzed their impact on
the repositioning of Golgi complex ministacks. The overexpression of ARF-GTP (Q71L)
and WT ARF1 displayed normal Golgi complex positioning around the inclusion
(Fig. 5A, WT and Q71L). In contrast, the overexpression of the GDP-locked (T48N) ARF1
inhibited Golgi complex spreading around the inclusion by ~40% (Fig. 5A, T48N). These
results indicated that ARF must be able to convert to its GTP-bound form in order to
reposition the Golgi complex around the inclusion and that ARF-GDP has a dominant-
negative effect, either directly or indirectly.

Lastly, we assessed their respective roles in MT stability. Cells overexpressing ARF1
Q71L-HA and WT ARF1 displayed normal PTM MT cages. In contrast, the overexpression
of GDP-locked ARF1 T48N inhibited the formation of PTM MT cages by ~50% (Fig. 5B).
Importantly, neither ARF Q71L nor ARF T48N overexpression affected the formation of
alpha-tubulin cages (Fig. S8). These results indicate that, similar to Golgi complex
positioning, the ability of ARF to be activated by GTP is required to regulate the
formation of PTM MT cages around the inclusion. Altogether, these results suggest that
repositioning of the Golgi complex and stabilization of MTs are coordinately regulated
by ARF-GTP under control of CT813.

DISCUSSION

Chlamydia trachomatis requires the fragmentation and repositioning of the host
Golgi complex for the development of its inclusion and the generation of infectious
progeny (11, 12). Because the Golgi complex is tightly regulated to ensure proper
localization, transport, assembly, fragmentation, and ribbon formation (31), Chlamydia
must work against the normal flow of Golgi complex membranes to control Golgi
complex localization and dynamics during infection. ARF GTPases are major regulators
of Golgi complex dynamics and structure because they control cisternal maturation,
vesicular trafficking, and membrane lipid composition through the reversible associa-
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tion with Golgi complex membranes (25). Seminal studies using brefeldin A, which
causes the collapse of the Golgi complex into the endoplasmic reticulum, illustrated the
importance of ARF activation in regulating the Golgi complex structure (32–34). Thus,
ARFs are ideal targets for Chlamydia to manipulate the Golgi complex. Here, we have
demonstrated that Chlamydia uses the inclusion protein CT813 to hijack Golgi complex
ARF GTPases ARF1 and ARF4, in order to control Golgi complex dynamics around the
inclusion.

ARF GEFs activate ARF GTPases through nucleotide exchange. Importantly, GEFs also
recruit ARF proteins to membranes (35). The localization of ARF GEFs to specific
membranes controls when and where ARFs function. Interestingly, CT813 recruits ARF1
and ARF4 independently of other proteins (Fig. 1), and CT813 is required for Chlamydia-
induced ARF1 activation (Fig. 4A). Although CT813 alone does not display GEF activity
in vitro (Fig. 4B), these data show that Chlamydia infection induces ARF activation by a
mechanism that involves its direct interaction with CT813. Considering the unusual
binding properties of CT813 to ARF1, possible mechanisms could involve CT813 as a
recruitment factor for a cellular GEF, or for another component that remains to be
identified, which would allow CT813 to function as a GEF. In this respect, CT813 may be
part of a multimeric GEF, similar to the mammalian TRAPP complex (36, 37) or the
Mon1/Ccz GEF (38). The second possibility is supported by the fact that CT813 interacts
with both ARF-GDP and ARF-GTP, which is a hallmark of GEFs (29), and that CT813
competes with cellular GEFs in vitro.

FIG 5 ARF activation controls Golgi complex recruitment through the formation of stable MTs. HeLa cells
were infected with WT Chlamydia and transfected with WT, Q71L, or T48N ARF1-HA. (A) Cells were fixed
24 h postinfection (hpi) and labeled with anti-HA (green) and anti-giantin (red) antibodies. DNA was
stained with Hoechst stain. Bar, 20 �m. The graph represents Golgi complex lengths in infected cells,
normalized to that of ARF1 WT-HA-transfected cells from three independent experiments, � standard
deviations (SD). A minimum of 100 cells per condition was measured for each experiment. (B) Cells were
fixed 24 hpi and labeled with anti-HA (green) and anti-detyrosinated tubulin (Dt-tub; red) antibodies.
DNA was stained with Hoechst. Bar, 20 �m. The graph represents the percentage of cells containing
Dt-tub cages, normalized to that of ARF1 WT-HA-transfected cells from three independent experi-
ments � SD. A minimum of 100 cells per condition was measured for each experiment. Asterisks
denote inclusions. **, P � 0.01.
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In mammalian cells, the Golgi complex is intimately associated with PTM MTs (39,
40). Golgi complex stacks disperse along PTM MTs following MT depolymerization (39).
Similarly, Chlamydia trachomatis couples the relocation of Golgi complex ministacks
around the inclusion to the PTM of inclusion-associated MTs (11). However, the
molecular mechanism by which this coordination occurs has remained elusive. Our data
support a model whereby Chlamydia utilizes the inclusion membrane protein CT813 to
coordinate PTM MTs and Golgi complex repositioning around the inclusion. Chlamydia
induces the local accumulation of PTM MTs through the CT813-dependent recruitment
and activation of host ARF GTPases. It is along these PTM MTs that Golgi complex
ministacks move around the inclusion.

Golgi complex fragmentation and repositioning around the inclusion is important
for Chlamydia development by enhancing Chlamydia’s access to nutrients and lipids
(11, 12). While the CT813 KO strain (data not shown) and the chemically mutagenized
CT813 strain developed by Kokes et al. (23) do not display defects in sphingomyelin
recruitment, the CT813 KO Chlamydia strain displays smaller inclusions, indicating a
defect in inclusion development, which may involve other lipid species. Further sup-
porting the importance of Golgi complex repositioning during infection, the CT813 KO
strain also produced fewer infectious progeny. In contrast, the chemically mutagenized
CT813 strain did not display a growth defect (23). This discrepancy could be due to the
difference between completely knocking out a gene and mutagenesis, in which some
functions may remain.

The PTM of tubulin is a consequence of MT stability (41). Interestingly, the loss of
CT813, ARF1, and ARF4 profoundly affects the PTM of MT cages present around the
inclusion (Fig. 2), indicating that these proteins are involved in the same pathway. To
our knowledge, a direct role for ARF1 and ARF4 in the regulation of MTs has never been
established. Thus, our data suggest a novel function for these isoforms in regulating MT
stability. Dynamic instability is a fundamental characteristic of MTs and is regulated in
part by MT-associated proteins (MAPs) (42). MAPs influence the association of other
proteins, such as MT-severing proteins, with MTs (18, 43). By inhibiting MT severing,
MAPs prolong the life of MTs, which can then be posttranslationally modified. Thus,
CT813, ARF1, and ARF4 may play a role in the recruitment of MAPs to alpha-tubulin,
which in turn acts on MT cages to influence their stability. For example, 14-3-3 proteins,
which bind to acetylated tubulin (44), have also been shown to interact with CT813 (23).
It will be interesting to investigate whether 14-3-3 proteins function in parallel with the
CT813/ARF complex to coordinate microtubule stability. However, we cannot rule out
a role for these proteins in the direct recruitment of enzymes responsible for the PTM
of MTs, such as acetyltransferases and carboxypeptidases (18).

In addition to MT cages, the chlamydial inclusion is surrounded by a network of actin
that maintains the integrity of the inclusion (45). CT813 has also been implicated in
regulating the formation of these actin cages (Fig. S6) (23). Thus, CT813 functions as a
master cytoskeletal regulator. Interestingly, MT and actin cage formation occur with
distinct temporal kinetics (11, 45). How CT813 transitions from one cytoskeletal element
to another is under investigation.

Examining host-pathogen interactions enabled the discovery of a new function for
ARFs in regulating MT stability. It will be important to determine whether hijacking of
ARF GTPases to regulate MT stability is a common pathogenic mechanism used to
hijack different host cell pathways. Ultimately, identifying the molecular components
involved in this pathway will shed light on how ARF1 and ARF4 regulate PTM MTs.

MATERIALS AND METHODS
Cell culture and transfections. HeLa cells (ATCC) were cultured as described previously (46). Cells

were transfected using Continuum transfection reagent (Gemini Bioproducts) according to the manu-
facturer’s instructions. For siRNA transfection, HeLa cells were transfected using 1 nM siRNA and
DharmaFect I reagent (Dharmacon) according to the manufacturer’s instructions at 48 h prior to
infection.

CT813 nomenclature. Since the function of CT813 is not limited to actin polymerization, we do not
use the InaC nomenclature. CT813 is defined as CTL0184/InaC from the LVG-L2 434/Bu strain of
Chlamydia trachomatis (nucleotides 235,152 to 235,946).
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Chlamydia strains. Chlamydia trachomatis L2 was propagated and purified as described elsewhere
(47, 48). The CT813 KO C. trachomatis strain was generated by retargeting the intron to CT813 via the
TargeTronics algorithm and transformed as described previously (49). CT813-FLAG L2 was generated by
transforming C. trachomatis L2 with a plasmid carrying genes encoding CT813-FLAG under control of a
tetracycline promoter as described elsewhere (50). Chlamydia growth was assessed at 48 h as described
for earlier studies (49).

Antibodies. The following primary antibodies were used: anti-ARF1 (mouse [mo]; Santa Cruz
Biotechnology [SCBT]); anti-ARF3 (mo; SCBT); anti-actin (rabbit [rb]; Sigma); anti-acetylated alpha-tubulin
(mo; Sigma); anti-alpha-tubulin (mo; Sigma); anti-HSP70 (chicken [ck]; StressMarq); anti-detyrosinated
alpha-tubulin (rb; Abcam, Inc.); anti-FLAG (mo; Thermo Fisher); anti-FLAG (rb; Sigma); anti-HA (chicken;
Thermo Fisher); anti-pan-ARF (mo; Millipore); anti-ARF6 (rb; Cell Signaling); anti-ARF5 (mo; Abnova);
anti-ARF4 (rb; ProteinTech); anti-giantin (rb; BioLegend); anti-GM130 (mo; Becton Dickinson [BD]);
anti-lipopolysaccharide (anti-LPS; mo; Virostat); anti-CT813 (rb; T. Hackstadt); anti-IncA (rb; T. Hackstadt).
Goat anti-rabbit and anti-mouse IgG–Alexa Fluor488, -555, and or -647– conjugated secondary antibod-
ies, goat anti-chicken IgY Alexa Fluor555-conjugated secondary antibody, and donkey anti-rabbit and
anti-mouse IgG– horseradish peroxidase (HRP)– conjugated secondary antibodies were purchased from
Invitrogen. Donkey anti-chicken IgY–HRP– conjugated secondary antibody was purchased from Pierce.

Recombinant DNA/vector and cloning. PCR and cloning were conducted using standard proce-
dures and the primers listed in Table 1. GST-GGA1 was a kind gift from B. Collins (University of
Queensland). FLAG-CT813 was constructed by PCR amplification of CT813 using primers FO541 and
FO543 and ligation into pCMV-tag2b (a gift from P. Roche, NIH). ARF1-HA, ARF3-HA, ARF4-HA, ARF5-HA,
and ARF6-HA were generated by PCR amplification from HeLa cDNA using primers FO661 to -670 and
ligation into pcDNA3.1(�) containing a C-terminal HA tag. ARF1-Q71L-HA was made by PCR amplification
of ARF1-Q71L (gift from J. Keen, Thomas Jefferson University) using primers FO661 and -662 and ligation
into pcDNA3.1(�) containing a C-terminal HA tag. ARF1-T48N-HA was constructed using QuikChange

TABLE 1 List of primers

Primer Sequence (5=–3=) Construct

FO397 GGGCATATCCATATGACTACTCTTCCCAATAC 6�His-CT813
FO398 ACGCGTCGACTCACTATATCGAACCACGTCTTCC

FO498 AAGGAAAAAAGCGGCCGCATGACTACTCTTCCCAATAATTG pBomb4-CT813-Tet
FO499 ACGCGTCGACCTACTTGTCATCGTCATCCTTGTAGTCTATCGAACCACGTCTTCC

FO541 AACTGCAGATGACTACTCTTCCCAATACTTGTACTTCA Flag-CT813
FO543 CCCAAGCTTCTATATCGAACCACGTCTTCCTGG

FO661 CGAGGTACCATGGGGAACATCTTCGCC ARF1 WT-HA
FO662 CTGCAACTCGAGCTTCTGGTTCCGGAGCTGATT ARF1 Q71L-HA
FO663 CGAGGTACCATGGGCAATATCTTTGGAAACC ARF3-HA
FO664 CTGCAACTCGAGCTTCTTGTTTTTGAGCTGATTGGC

FO665 CTAGGTACCATGGGCCTCACTATCTCCTCC ARF4-HA
FO666 CTGCAACTCGAGACGTTTTGAAAGCTCATTTGACAG

FO667 ATAGGTACCATGGGCCTCACCGTGTCC ARF5-HA
FO668 CTGCAACTCGAGGCGCTTTGACAGCTCGTG

FO669 ATAGGTACCATGGGGAAGGTGCTATCCAAAA ARF6-HA
FO670 CTGCAACTCGAGAGATTTGTAGTTAGAGGTTAACCATGTG

FO704 GATCGTGACCACCATTCCCAACATAGGCTTCAACGTGGAAACCGTGG ARF1 T48N-HA
FO705 GTTTCCACGTTGAAGCCTATGTTGGGAATGGTGGTCACGATCTCACCC

FO708 CGTCTCCTTTGAGCTGTTTGC hPPIA RT-PCR
FO709 TTGACACTTCCTGGGACTGG

FO710 CGTGTTTGCTGTGAAGACGGT hARF1 RT-PCR
FO711 ACGCTCTCTGTCATTGCTGT

FO712 GAGGGAGCGGAGCGGAAC hARF3 RT-PCR
FO713 GCATTAGGCAGATCCTGTTTGTTTG

FO714 TGCTTCTGCCCATCACAAGT hARF4 RT-PCR
FO715 AGCATCCAATCCAACCATCA

FO716 ATGCGGATTCTCATGGTTGG hARF5 RT-PCR
FO717 TCAGCAGATTCTTGGACCCG
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PCR (Agilent) and the primers FO704 and -705 according to the manufacturer’s instructions. His-CT813
was constructed by PCR amplification of CT813 using primers FO397 and -398 and ligation into
pET28a(�). Tetracycline-inducible CT813-FLAG for Chlamydia transformation was constructed by PCR
amplification of CT813 with primers FO498 and -499 and ligation into pBOMB4-Tet (46, 50).

siRNA. SmartPool ON-TARGETplus human ARF1, ARF4, and nontargeting control siRNA were pur-
chased from Dharmacon. The siRNA sequences are shown in Table 2.

RT-PCR. RNA was extracted using the RNeasy kit (Qiagen). Reverse transcription-PCR (RT-PCR) was
performed using the Verso 1-step RT-PCR kit (Thermo Fisher) with 100 ng of RNA and 200 nM each primer
(FO708 to -717). Primer sequences are listed in Table 1.

Immunoprecipitation. For the immunoprecipitation experiments, HeLa cells were lysed in cold lysis
buffer (50 mM Tris, 100 mM NaCl, 2 mM MgCl2, 1% NP-40, 10% glycerol [pH 7.5] supplemented with
2 mM phenylmethylsulfonyl fluoride, 2 �g/ml pepstatin A, 1 �g/ml leupeptin, 50 mM NaF, and 1 mM
Na3VO4) for 1 h on ice. Lysates were clarified by centrifugation, and equal amounts of total protein were
incubated overnight at 4°C with anti-FLAG antibody immobilized on protein G Plus agarose beads. Beads
were washed with lysis buffer, boiled in Laemmli buffer, and analyzed by Western blotting.

Western blotting. Samples for our Western blotting analysis were separated on 10% or 4-to-12%
bis-Tris SDS-PAGE gels (Invitrogen) and transferred to polyvinylidene difluoride membranes for 1 h at 100
V and 4°C. Blotting was performed as described elsewhere (51). To quantify changes in tubulin levels
during infection, the ratio of tubulin to HSP70 was obtained for each noninfected and infected sample.
The data were then normalized to the results with the noninfected sample, which were set as 100%.

Immunofluorescence. For our immunofluorescence analysis, HeLa cells were fixed with 4% para-
formaldehyde in cytoskeleton buffer (10 mM morpholineethanesulfonic acid, 138 mM KCl, 3 mM MgCl2,
2 mM EGTA, 0.32 M sucrose; pH 6.1) for 20 min. All incubations were performed at room temperature.
Cells were permeabilized with either (i) 0.05% saponin in blocking buffer (10% goat serum, 0.1% bovine
serum albumin in phosphate-buffered saline [PBS; pH 7.4]) for 1 h for experiments with anti-HA,
anti-FLAG, anti-giantin, anti-GM130, anti-IncA, and anti-LPS antibodies or (ii) with 0.5% Triton X-100 in
PBS for 10 min followed by three washes with 0.1% Triton X-100 in PBS and incubated for 1 h in blocking
buffer for experiments with anti-acetylated tubulin, anti-detyrosinated tubulin, and anti-alpha-tubulin
antibodies. Coverslips were incubated with primary antibodies diluted in blocking buffer containing the
appropriate detergent for 1 h. Following several washes, coverslips were incubated with Alexa Fluor-
conjugated secondary antibodies and Hoechst stain for 1 h. Coverslips were then washed and mounted
with ProLong Diamond antifade reagent (Invitrogen). Images were acquired using a Nikon TiE inverted
fluorescence microscope with a 60� oil immersion lens and Elements software (Nikon). Images were
processed using ImageJ (NIH). To measure the length of the Golgi complex, z-stacks were acquired in
0.3-�m sections and deconvolved. Length measurements were acquired by tracing the Golgi complex of
infected cells from maximum intensity projections to capture the Golgi complex in all planes via the
Elements software (Nikon). A minimum of 100 cells per condition for each experiment was measured.

ARF1-GTP binding assay. For the ARF1-GTP binding assay, HeLa cells were infected for 24 h with WT
or CT813 KO Chlamydia strains. The cells were then lysed as described above. Lysates were clarified by
centrifugation, and equal amounts of total protein were incubated with recombinant GST-GGA1-GAT
immobilized on glutathione-agarose beads for 1 h at 4°C. Following several washes, the beads were
boiled in Laemmli buffer and samples were analyzed by Western blotting.

Recombinant protein purification. Human myrARF1 was coexpressed in Escherichia coli cells with
yeast N-myristoyl transferase (NMT) and purified as described previously (52). N-terminal His-tagged
full-length human ARNO (3G isoform) and ARNOSec7 constructs were overexpressed in Escherichia coli
and purified on a Ni-nitrilotriacetic acid (Ni-NTA) affinity column, followed by size exclusion chromatog-
raphy as described previously for ARNOSec7 (53). The 6�His-TEV-human Brag2Sec7PH protein (residues 390
to 763) (54) was purified by Ni-NTA affinity chromatography and gel filtration.

Liposome reconstitution. Lipids were obtained from Avanti Polar Lipids. Liposomes were prepared
for reconstitution as described previously in a buffer containing 50 mM HEPES, 200 mM KCl, 1 mM
dithiothreitol (DTT), 10% glycerol, pH 7.4 (55). Liposomes contained 38% phosphatidylcholine, 20%
phosphatidylethanolamine, 20% phosphatidylserine, 2% phosphatidylinositol-3,4,5-triphosphate, and
20% cholesterol and were extruded through a 0.2-�m filter (Whatman). Detergent-purified CT813 was
incorporated into liposomes by dialysis, and the protein-containing liposomes were purified by flotation

TABLE 2 List of siRNAs

siRNA target siRNA sequence (5=–3=) Catalog no.

Nontargeting control UGGUUUACAUGUCGACUAA D-001810-01-05

hARF1 SMARTpool UGACAGAGAGCGUGUGAAC J-011580-05
CGGCCGAGAUCACAGACAA J-011580-06
ACGAUCCUCUACAAGCUUA J-011580-07
GAACCAGAAGUGAACGCGA J-011580-08

hARF4 SMARTpool AGACAACCAUUCUGUAUAA J-011582-05
GCUAUGGCCAUCAGUGAAA J-011582-06
GAACUGGUCUGUAUGAAGG J-011582-07
GGGCUUCAGUCUCUUCGUA J-011582-08
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on a sucrose gradient. All flotation (centrifugation for 1 h at 55,000 rpm) and cosedimentation
(saccharose-containing liposomes centrifuged for 30 min at 100,000 rpm) experiments were performed
in 50 mM HEPES, 200 mM KCl, 1 mM MgCl2, 1 mM DTT, 10% glycerol, pH 7.4.

Kinetic measurements of nucleotide exchange. Activation of myrARF1 was monitored by FRET
between the tryptophans of ARF1 and mantGTP (emission and excitation wavelengths of 292 and
440 nm, respectively) at 37°C in 50 mM HEPES, 200 mM KCl, 1 mM MgCl2, 1 mM DTT, 10% glycerol, pH 7.4.
Empty liposomes or CT813-liposomes (100 �M) were incubated for 2 min at 37°C with 0.4 �M myrARF1
and 5 nM Brag2 or 20 nM ARNO, before the addition of 5 �M mantGTP. The reverse reaction was
monitored by addition of 100 �M GDP to mantGTP-loaded ARF1. Activation of Δ17ARF1 by ARNOSec7 was
monitored under the same conditions with 1 �M Δ17ARF1 and 50 nM ARNOSec7.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02280-16.
FIG S1, TIF file, 1.2 MB.
FIG S2, TIF file, 0.7 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 2.5 MB.
FIG S5, TIF file, 0.4 MB.
FIG S6, TIF file, 2.4 MB.
FIG S7, TIF file, 0.1 MB.
FIG S8, TIF file, 0.7 MB.
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