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HIV-1 PERSISTENCE IN THE CNS: MECHANISMS OF LATENCY, 1 

PATHOGENESIS AND AN UPDATE ON ERADICATION STRATEGIES 2 
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Abstract: Despite -four decades of research into the human immunodeficiency virus (HIV-7 

1), a successful strategy to eradicate the virus post-infection is lacking. The major reason 8 

for this is the persistence of the virus in certain anatomical reservoirs where it can become 9 

latent and remain aquiescent for as long as the cellular reservoir is alive. The Central 10 

Nervous System (CNS), in particular, is an intriguing anatomical compartment that is 11 

tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major 12 

challenge owing to the decreased permeability of drugs into the CNS and the cellular 13 

microenvironment that facilitates the compartmentalization and evolution of the virus. 14 

Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and 15 

leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail 16 

to eliminate the virus from the CNS. To facilitate the improvement of the existing 17 

elimination strategies, as well as the development of potential therapeutic targets, the aim 18 

of this review is to provide an in-depth understanding of HIV latency in CNS and the onset 19 

of HIV-1 associated neurological disorders. 20 
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1. Introduction 33 

AIDS (Acquired Immune Deficiency Syndrome) is one of the most debilitating human 34 

diseases ever known to mankind. The causative agent was identified as HIV-1 (Human 35 

Immunodeficiency Virus 1) in the year 1981. Since its discovery, research efforts have been 36 

dedicated to developing anti-HIV-1 drugs targeting its entry and key viral enzymes, such 37 

as reverse transcriptase, integrase, and protease; these efforts have led to the development 38 

of highly active antiretroviral therapy (HAART) for the treatment of HIV-1 infection (Lassen 39 

et al., 2004a). HAART or antiretroviral therapy (ART) successfully lowered plasma HIV-1 40 

RNA levels below the detection thresholds and has significantly reduced AIDS-related 41 

mortality (Hakre et al., 2012). However, despite increased drug specificity and efficiency, 42 

treatment does not eliminate the virus and, upon interruption, viral rebound is seen even in 43 

patients with low or undetectable plasma viremia (Mata et al., 2005). This is because in 44 

certain cells, HIV-1 has the ability to remain quiescent and thus “hides” in these cells, even 45 

in the presence of antiretrovirals, and reactivate upon therapy interruption.  46 

Therefore, once infected with HIV-1, the individuals are destined to take medication 47 

throughout their life to suppress the viral load in blood. While HAART and ART can 48 

improve immune function, it can be aberrant and incomplete often leading to immune 49 

reconstitution inflammatory syndrome (IRIS), most likely due to an imbalanced recovery of 50 

host innate and adaptive immune response. Initiating ART at an early stage of infection is 51 

probably the only chance, if any, for successful immune restoration (Wilson and Sereti, 52 

2013). In most patients, owing to the ability of the virus to adapt to host immune response, 53 

and the evolution of viral variants, the medication becomes less effective, often resulting in 54 

drug replacement within the HAART regimen throughout infection (Alqatawni et al., 2020; 55 

Hokello et al., 2021b; Sharma et al., 2021). On the other hand, some of the medications are 56 

reported to have toxic side effects in patients, making the treatment less desirable and 57 

intolerable (Deeks et al., 2012). Moreover, these drugs are reported to have poor 58 

penetrability into certain anatomical compartments like the central nervous system (CNS) 59 

which hinders the effectiveness of the treatment. 60 

The CNS is considered an “immune privileged” site and the brain a sanctuary, due to 61 

tight regulation of migration of cells and other materials including the antiretrovirals into 62 

the CNS by the blood-brain barrier (BBB) and cerebrospinal fluid (CSF), thus facilitating the 63 

sustenance of HIV-1 (Salemi and Rife, 2016). Several aspects of viral entry, transcription, and 64 

latency are controlled by unique mechanisms in the brain.  65 

This review discusses the important concepts of HIV-1 transcription and latency in the 66 

CNS, describes the onset of HIV-1 associated neurological disorders, and provides an 67 

update on how this information is being utilized to design current eradication strategies.  68 

 69 

2. HIV-1 reservoirs: where does HIV-1 hide?   70 

Non-adherence or termination of ART results in a rebound of HIV-1 and this resurgence 71 

occurs either as a result of residual viral replication in infected cells that persisted due to 72 

suboptimal penetration of antiretrovirals, or as a result of the existence of a small population 73 

of cells harboring integrated and intact proviruses that do not actively produce infectious 74 

virions, but have the capacity to do so when conditions are favorible (no antiretrovirals) 75 



 

 

(Dufour et al., 2020). This small population of cells are in a state of “quiescence” or “latency” 76 

and can exist within various compartments in the body including brain, blood, gut-77 

associated lymphoid tissue, bone marrow, and genital tracts (Eisele and Siliciano, 2012; 78 

Trono et al., 2010). According to Blankson et. al, a viral reservoir is defined as “a cell type or 79 

anatomical site in association with which replication-competent forms of the virus persist 80 

with more stable kinetic properties than the main pool of actively replicating virus” 81 

(Blankson et al., 2002). For a cell type to be considered a true reservoir, it must satisfy the 82 

following criterion: (i) viral DNA must be integrated into the host cell genome, (ii) cell 83 

should be capable of harboring the virus in a dormant and non-infectious state for a long 84 

period and this may include possessing the mechanism to establish and maintain latent 85 

infection, and (iii) cell should possess the ability to produce fully active replication-86 

competent viral particles upon activation (Eisele and Siliciano, 2012). While at least two out 87 

of the three criteria of a true latency reservoir: the presence of HIV-1 integrated DNA and 88 

the mechanisms allowing the virus to persist for long period have been described in many 89 

cell types (Blankson et al., 2002), it has been somewhat of a challenge to determine whether 90 

the cells can produce replication competent virus. This is particularly true in case of CNS 91 

cells such as microglia, which reside in deep tissues and are inaccessible in living subjects. 92 

However, ex vivo quantification of cellular reservoirs in the periphery from patient blood 93 

was possible through quantitative viral outgrowth assay (QVOA), however, this tool cannot 94 

be used to identify the cellular reservoirs in the CNS due to their inaccessibility (Machado 95 

Andrade and Stevenson, 2019). 96 

2.1. Central Nervous System 97 

It is still unknown whether CNS is a true viral reservoir. A review by Gray et al. (Gray 98 

et al., 2014a) addressed this issue in detail and highlighted that the CNS satisfies most of the 99 

requirements to be classified as a viral reservoir. Evidence from in vitro experimental models 100 

and autopsied brains indicate that HIV-1 can infect several different cell types in the CNS, 101 

including macrophages, microglia, and to some extent, astrocytes (Churchill et al., 2006; 102 

Churchill et al., 2009; Cosenza et al., 2002). Perivascular macrophages and microglia within 103 

the CNS are the resident immune cells of the brain and respond to any type of injury. These 104 

cells are also known to harbor integrated HIV-1 in their genomes (Churchill et al., 2006; 105 

Gehrmann et al., 1995; Wallet et al., 2019). Both cell types are susceptible to HIV-1 infection 106 

as they express CD4 and the coreceptors (CCR5 and CXCR4) required for HIV-1 entry 107 

(Vallat et al., 1998). Astrocytes express the coreceptors required for HIV-1 entry but lack 108 

expression of CD4 (Gray et al., 2014b; Sabri et al., 1999). Despite the lack of CD4, astrocytes 109 

can still become infected via a CD4-independent mechanism (Tornatore et al., 1994). 110 

Peripheral macrophages have a relatively short half-life, however, a continuous supply of 111 

these cells in the CNS is maintained by circulating monocytes. In comparison, astrocytes 112 

and microglia have long half-lives (Carson et al., 2006; Sofroniew and Vinters, 2010). Due to 113 

the high number of cells harboring latent HIV-1, and their long half-lives, it can be suggested 114 

that these cells in the CNS satisy atleast two of the three characterestics of a true reservoir.  115 

Since it is challenging to determine whether these cells produce replication competent 116 

viral particles using ex vivo quantification methods, the amount of HIV RNA collected from 117 

CSF can be considered as an acceptable substitute (Gianella et al., 2016). Comprehensive 118 

sequence and phylogenetic analyses on 14 individuals infected with HIV-1 who had been 119 

serially sampled in CSF and blood plasma before and after interruption of ART revealed 120 

that HIV-1 emerged from the CSF upon interruption of ART indicating that viral escape 121 



 

 

from the CNS is possible (Gianella et al., 2016). Genetic and phenotypic analyses of HIV-1 122 

env gene in four individuals with persistent CNS escape (three as part of the THINC study 123 

in UCSC and YALE, and one enrolled in Torino, Italy) indicate that replication-competent 124 

HIV-1 can persist in the CNS even when the patient is on ART (Joseph et al., 2019). 125 

2.2 Blood Brain Barrier (BBB) 126 

The blood brain barrier (BBB) is a semi-permeable barrier that selectively prevents the 127 

entry of ions, neurotransmitters and macromolecules from the periphery into the 128 

extracellular compartment of the CNS. It comprises of brain microvascular endothelial cells, 129 

pericytes, perivascular macrophages and perivascular astrocytes, interconnected through 130 

tight junctions. The combined surface area of this barrier spans 12 - 18 m2 in an average 131 

human adult making it the largest interface for blood-brain exchange (Abbott et al., 2010; 132 

Abbott et al., 2006). The presence of energy-dependent ABC efflux transporters (ATP-133 

binding cassette transporters) and solute carrier transpoters selectively pump any of the 134 

endogenous metabolites, proteins or xenobiotics ingested through diet or otherwise 135 

acquired from the environment out of the brain, to prevent any damage to the neurons. 136 

Factors that govern the entry of antiviral drugs across the BBB are high polar surface area 137 

(PSA, >80 Å2), high unsaturation (> 6 hydrogen bonds that increase the lipophilicity of the 138 

compound), presence of rotatable bonds and a molecular weight of > 450 Da (Abbott et al., 139 

2010). While antivirals designed to target the brain are known to cross the BBB, the presence 140 

of various transporter and efflux mechanisms leads to minimal accumulation and low 141 

concentration of the drug in the CNS than in the periphery (Ene et al., 2011). This suboptimal 142 

concentration of the antiretroviral is insufficient to inhibit HIV-1 transcription and 143 

replication, as a result of which the virus is able to maintain a low level of replication in the 144 

CNS (Bertrand et al., 2016). 145 

2.3 Viral entry into the CNS 146 

Viral entry into the CNS can occur as early as within the first week of infection (Valcour 147 

et al., 2012). One of the popular theories that aim to explain the entry of HIV-1 into the CNS 148 

is the “Trojan horse theory” which proposes that the virus primarily enters the CNS through 149 

infected monocytes or CD4+T lymphocytes circulating in the plasma (Spudich and 150 

Gonzalez-Scarano, 2012). While the blood-brain barrier (BBB) tightly regulates the entry of 151 

foreign substances into the brain, many external and internal factors can alter its 152 

permeability, especially when physiological homeostasis is interrupted. The viral protein 153 

(transactivator of transcription) Tat is shown to alter the permeability of the BBB at least in 154 

part by decreasing the production of occludin in the endothelial tight junctions (Andras et 155 

al., 2003; Xu et al., 2012) (Fig 1). The viral envelope protein (gp120) mediates HIV-1 entry 156 

into the CNS via transcytosis across the BBB (Banks et al., 2001).   157 

HIV-1 enters macrophages and microglia through the well-established CD4-mediated 158 

mechanism (Fig 1). Recently, a specific subset of infected monocytes that preferentially cross 159 

the BBB, the HIV+ CD14+ CD16+ monocytes, has been characterized (Veenstra et al., 2017). 160 

These cells express several proteins such as Junctional Adhesion Molecule-A (JAM-A), 161 

Activated Leukocyte Cell Adhesion Molecule (ALCAM), and chemokine receptors CCR2 162 

that assist in crossing the BBB (Wallet et al., 2019). Although macrophages are CD4+ and 163 

express both CXCR4 and CCR5 coreceptors, HIV-1 entry occurs mostly through the 164 

coreceptor CCR5 (Berger et al., 1998). In contrast, astrocytes lack the expression of CD4, but 165 



 

 

HIV-1 can still infect these cells by associating itself with intracellular vesicles containing 166 

the tetraspanin-family protein CD81 (Gray et al., 2014b; Vallat et al., 1998) (Fig 1). Infection 167 

occurs in microglial cells despite the high expression of cellular restriction factor SAMHD1 168 

(SAM domain and HD domain 1) (Rodrigues et al., 2017), probably due to its 169 

phosphorylation by cyclin kinase 1 (CDK1), which is induced in cells that cycle between G0 170 

to G1 state (Mlcochova et al., 2017). 171 

 172 

 173 

Fig 1. Viral entry into CNS cells and establishment of latency in microglial cells. 1. HIV-1 infection 174 
occurs primarily through infected CD4+T cells in the blood. Viral proteins can compromise the 175 
permeability of the BBB to facilitate the CNS entry of infected cells. 2. HIV-1 enters astrocytes mainly 176 
through the CD81 tetraspanin protein family, and enters microglia through the well-established CD4 177 
mediated mechanism. 3. HIV-1 latency in microglia is established through the recruitment of histone 178 
deacetylases (HDAC1, HDAC2) and histone methyltransferase (Suv39H1) by CTIP-2 to the HIV-1 179 
long terminal repeat (LTR) to induce repressive epigenetic marks on Lysine 9 of histone H3. CTIP2 180 
acts in synergy with LSD1 which associates itself with two members of the hCOMPASS complex, 181 
hSet1, and WDR5 to bring about another repressive epigenetic mark on Lysine 4 of histone H3. The 182 
illustration was prepared using BioRender software. 183 

Once inside the target cell, many factors influence viral replication. Many cells in the 184 

brain including macrophages and microglia express the proinflammatory cytokine, CXCL8 185 

(IL-8), which plays a role in enhancing HIV-1 replication (Lane et al., 2001). CXCL8 mediated 186 

enhanced replication is dependent on nuclear factor-kappa beta (NF-κB) signaling (Mamik 187 

and Ghorpade, 2014). Besides, elevated IL8 levels are seen in the CSF of patients with HIV-188 

1 associated dementia when compared with neurocognitively normal HIV-1-infected 189 

patients (Zheng et al., 2008). These findings suggest that HIV-1 develops specialized 190 

replication mechanisms in the CNS. 191 



 

 

2.3.1 Compartmentalization 192 

The presence of unfavorable environment that affects viral replication and a range of 193 

conditions limiting viral trafficking leads to the evolution of virus to that specific site 194 

resulting in viral compartmentalization (Salemi, 2013). HIV-1 compartmentalization in the 195 

CNS can occur either during primary or late infection, and the restricted entry into the CNS 196 

triggers viral genetic adaptation into a distinct HIV-1 metapopulation that can enter the 197 

protective barrier and contribute to latent viral reservoir (Lamers et al., 2011; Schnell et al., 198 

2010). HIV-1 virus in the CNS possesses unique long terminal repeat (LTR) promoters, with 199 

mutations in the Sp1 motif directly adjacent to the two NF-κB binding sites, which render 200 

the virus more quiescent and may condition the virus into taking on a latent phenotype 201 

(Gray et al., 2016a). These mutations were absent from non-CNS-derived LTR sequences 202 

from the same patients demonstrating the distinct subpopulation of latent HIV-1 reservoir 203 

(Gray et al., 2016a). Major HIV-1 target cells within the CNS are perivascular macrophages, 204 

microglia and astrocytes (Burdo et al., 2013; Williams et al., 2001). They have long half-lives 205 

that allow the virus to persist and enable the maintenance of the viral reservoir within the 206 

CNS (Crowe et al., 2003; Koppensteiner et al., 2012; Sofroniew and Vinters, 2010). 207 

Recent discovery of lymphatic vessels that drain from the brain dura matter to the deep 208 

cervical lymph nodes (Aspelund et al., 2015; Louveau et al., 2016) has particular relevance 209 

to HIV-1 infection as these vessels serve as physical conduits draining both CSF and brain 210 

interstitial fluid from CNS to periphery. HIV-1 infected cells in the CNS (latent or active), if 211 

mobile, could theoretically travel out of this compartment and ‘reseed’ the systemic 212 

reservoir (Spudich, 2016). 213 

3. Establishment of latency in the CNS 214 

Reverse transcription of retroviruses such as HIV-1 is essential for the integration and 215 

production of infectious virions (Sloan et al., 2011). Reverse transcription of viral RNA gives 216 

rise to at least two types of cDNA: linear and circular. Linear viral cDNA along with viral 217 

integrase, capsid proteins, and some viral cellular proteins form a pre-integration complex 218 

(PIC) that is responsible for carrying the proviral DNA into the nucleus (Hamid et al., 2017). 219 

The viral integrase then mediates the integration of viral DNA into the host cellular genome 220 

(Lusic and Siliciano, 2017). Host transcriptional factors such as NF-κB, nuclear factor of 221 

activated T-cells (NFAT), and activator protein 1 (AP-1) regulate HIV-1 long terminal 222 

repeats (LTR) transcription either individually or through functional synergy with one 223 

another (Hokello et al., 2021a; Hokello et al., 2020). Active transcription of the integrated 224 

provirus leads to the production of new viral progeny and this cycle is usually completed 225 

within days (Perelson et al., 1997). While the majority of infections are actively transcribed, 226 

some cells become latent (Dahabieh et al., 2015). This is post-integration latency and the 227 

mechanisms lead to this kind of latency are discussed below.  228 

Circular viral cDNA, often containing either one or two copies of the long terminal 229 

repeat (LTR) region, is considered defective and is unable to integrate into the host genome. 230 

In the pre-integration state, viruses can produce viral transcripts such as Nef , Tat and Rev, 231 

but these transcripts are incompletely spliced and are unable to produce infectious virions 232 

(Hamid et al., 2017; Sloan et al., 2011). Hence, the presence of unintegrated, unproductive 233 

viral DNA characterizes pre-integration latency. Unintegrated viral DNA was first reported 234 

in brain and blood tissue of HIV-1 infected dementia patients, with considerably higher 235 

levels found in patients with HIV-1 encephalitis (Pang et al., 1990).  236 



 

 

Historically, latent cells are thought to harbor transcriptionally silent HIV-1 provirus. 237 

However, recent evidence indicates that complete silencing of the HIV-1 promoter is a rare 238 

event and majority of latently infected cells express low levels of incomplete viral transcripts 239 

due to blocks at several stages (Hermankova et al., 2003; Lassen et al., 2004b; Lassen et al., 240 

2006; Wilson and Sereti, 2013). However, in the presence of favorible conditions (no 241 

antiretrovirals, epigenetic modulation, presence of viral Tat), they can produce replication 242 

competent virus (Mohammadi et al., 2014; Razooky et al., 2015; Romani and Allahbakhshi, 243 

2017). Recent evidence suggests that even unintegrated viral DNA can yield productive 244 

infections upon complementing/superinfection with other defective variants (Gelderblom 245 

et al., 2008; Quan et al., 2009). Activation of non-dividing cells such as resting CD4+ T cells 246 

resulted in integration and subsequent production of active virions from unintegrated viral 247 

DNA maintained extrachromosomally for several weeks in a dormant state (Stevenson et 248 

al., 1990). Despite harboring non-productive provirus, latent cells are associated with 249 

markers of immune activation such as IFN (Stunnenberg et al., 2020), or increased CD4+ T 250 

cells expressing CD38, CCR5, and/or PD-1, even in the presence of antiretrovirals (Hatano 251 

et al., 2013). 252 

Some common factors that drive susceptible cells into latency are briefly discussed 253 

below. Although the percentage of these cells is very small (approximately 1 in one million 254 

of resting CD4+T cells per infected individual), this latent pool prevents complete HIV-1 255 

eradication in patients undergoing antiretroviral therapy (Siliciano et al., 2003; Tyagi and 256 

Bukrinsky, 2012). Using primary CD4+ T cells, for the first time we showed that levels of 257 

positive transcription elongation factor b (P-TEFb), which is involved in HIV-1 transcription 258 

elongation, are low in latently infected primary CD4+T cells confirming strong links 259 

between the defect in transcription and latency (Hokello et al., 2019; Tyagi et al., 2010).  260 

3.1. General mechanisms of the establishment of latency 261 

Mechanisms underlying HIV-1 latency are still under study. While several mechanisms 262 

acting at transcriptional and post-transcriptional level are proposed, it is well accepted that 263 

the establishment of latency is a multifactorial process (Dahabieh et al., 2015) (Fig 2).  264 

 265 



 

 

 266 

Fig 2: Schematic of the general factors that influence HIV-1 Latency 267 

Several viral proteins influence the establishment of latency. HIV-1 Tat (transactivator 268 

of transcription) protein is critical for facilitating either active replication or reactivation of 269 

the latent virus (Jordan et al., 2001; Lin et al., 2003; Marzio et al., 1998; Tyagi et al., 2001). 270 

Several studies indicate that the attenuation of Tat may be involved in the establishment of 271 

latency: Natural variants of Tat harboring various mutations such as H13L (identified in 272 

latently infected U937 cells), WHA, WHB, WHC, and WHD (isolated from patient-derived 273 

HIV-1 strains) show reduced interaction with its cellular cofactor P-TEFb resulting in 274 

decreased trans-activation activity (Emiliani et al., 1998; Meyerhans et al., 1989; Reza et al., 275 

2003). The force selecting defective Tats that can lead to latency favors Tat variants with 276 

revival activity sufficient to maintain a latent phenotype. Attenuation of Tat activity can 277 

thus serve as a mechanism of latency (Reza et al., 2003).  278 

At the transcriptional level, proviral silencing can occur as a result of several factors: 1) 279 

Transcriptional interference that exists as a result of spatial occlusion or dislodgment of 280 

transcription initiation or elongation complexes from the provirus (Lenasi et al., 2008). 2) 281 

Integration of the provirus into a site that is or is susceptible to being repressive for 282 

transcription (Jordan et al., 2001). HIV-1 tends to avoid latency by preferentially integrating 283 

into actively transcribed genes. Once integrated, the provirus requires host transcriptional 284 

machinery for viral expression. Integration into sites that are susceptible to being repressive 285 

for transcription can lead to latency. 3) The absence of transcriptional factors required for 286 

HIV-1 expression in the host nucleus (Ganesh et al., 2003), and 4) the presence of cellular 287 

transcription repressors (Tyagi and Karn, 2007; Williams et al., 2006). 288 

Transcriptional interference (TI) is defined as “the suppressive influence of one 289 

transcriptional process, directly and in cis, on a second transcriptional process.” TI results 290 



 

 

from the existence of two adjacent interfering promoters which may be convergent 291 

(transcribing in the same direction), divergent (transcribing in opposite directions), tandem 292 

(one upstream of the other but transcribing in the same direction), or overlapping (where 293 

promoter binding sites share a common DNA sequence), and when the stronger promoter 294 

reduces the expression of the weaker promoter (Shearwin et al., 2005). Han et al. 295 

demonstrated the presence of orientation-dependent TI using an experimental model with 296 

two systems in which HIV-1 proviruses are inserted in the exact same position within the 297 

host gene, but in different orientations with respect to the host gene (Han et al., 2008) 298 

Cellular defense proteins (or restriction factors) are an integral part of the host’s innate 299 

immune system. Several restriction factors are released in response to HIV-1 infection to 300 

decrease the progression of viral transcription and active replication. Some of these factors 301 

act during the early stages of the HIV-1 life cycle and induce latency: TRIM22 acts as a 302 

transcriptional suppressor by decreasing the interaction between Sp1 and HIV-1 promoter 303 

(Turrini et al., 2015); COMMD1, inhibits HIV-1 replication by binding to κB-responsive 304 

promoters and decreasing the duration of NF-κB recruitment to chromatin (Maine et al., 305 

2007); PML (or TRIM19), restricts HIV-1 transcription by recruiting inhibitory cyclin T1 306 

aggregation into PML nuclear bodies (Marcello et al., 2003). 307 

Antisense transcription of the genome gives rise to different classes of RNAs such as 308 

small RNAs and non-coding RNAs (ncRNAs). These ncRNAs regulate chromatin structure 309 

by recruiting chromatin-modifying complexes through the formation of RNA scaffolds 310 

(Holoch and Moazed, 2015; Moazed, 2009). Several cellular lncRNAs either directly or 311 

indirectly contribute to HIV-1 latency. One such example is the lncRNA NRON that restricts 312 

HIV-1 gene expression by inducing Tat proteasomal degradation (Li et al., 2016). The 313 

inhibition of HIV-1 gene expression is also mediated by microRNAs and is evidenced in 314 

resting CD4+T cells. A cluster of cellular miRNAs including miR-28, miR-125b, miR-150, 315 

miR-223, and miR-382 target the 3’ ends of HIV-1 messenger RNAs and inhibit gene 316 

transcription; inhibition of these miRNAs resulted in active transcription and translation of 317 

the HIV-1 provirus (Huang et al., 2007). Small RNAs employ RNA interference (RNAi) 318 

pathways to modify chromatin and target gene expression (Reinhart and Bartel, 2002; Volpe 319 

et al., 2002). RNAi pathways mediate transcriptional repressive events at the epigenetic level 320 

(Holoch and Moazed, 2015).  321 

In addition to cellular and transcriptional factors, the post-translational modifications 322 

on histone proteins or epigenetic mechanisms also influence the establishment of latency. 323 

The N-terminus of histone proteins undergo post-translational modifications such as 324 

methylation, acetylation, phosphorylation, etc., and contribute to transcriptional activation 325 

or repression by transforming the chromatin conformation into an “open” or “closed” state 326 

respectively. The closed state of the chromatin is associated with a transcriptionally 327 

repressed or silent state which is characteristic of the integrated, but latent HIV-1 provirus. 328 

Of the several histone modifications that epigenetically influence HIV-1 latency, histone 329 

methylation and acetylation processes are well characterized. Depending on the site of 330 

modification, histone methylation could result either inactivation or suppression of gene 331 

expression and in contrast, DNA methylation results in gene suppression (Cedar and 332 

Bergman, 2009; Rose and Klose, 2014). Histone acetylation results in active gene 333 

transcription (Eberharter and Becker, 2002). Histone lysine crotonylation is a newly 334 

identified epigenetic modification, and it is a robust indicator of active promoters. 335 



 

 

Lysine and arginine residues abundantly found on histones are prone to methylation 336 

by the enzymes histone methyltransferases (HMTs) (Migliori et al., 2010). HMTs such as 337 

SUV39H1, G9a, and EZH2 are closely associated with the latent provirus. Lysine residues 338 

of histone proteins can also be acetylated by histone acetyltransferases (HATs), while 339 

histone deacetylases (HDACs) mediate histone deacetylation (Yang and Seto, 2007). 340 

Promoters of actively expressed genes, as well as actively transcribed HIV-1, generally have 341 

acetylated histones whereas silent regions of the genome and silent LTRs of latent HIV-1 342 

proviruses carry deacetylated histones (Eberharter and Becker, 2002; Van Lint et al., 1996). 343 

18 HDACs are known in humans, among which HDAC1, 2 and 3, are the key players in 344 

silencing the HIV-1 promoter (Keedy et al., 2009). Numerous transcription factors such as 345 

AP4, c-Myc, and Sp1 (Imai and Okamoto, 2006; Jiang et al., 2007) YY1 (Yin Yang 1) and LSF 346 

(Late SV40 Factor) facilitate the recruitment of HDACs; and act as proviral transcription 347 

repressors. Our lab has identified a key player of the Notch signaling pathway, CBF-1, to 348 

recruit HDACs to the proviral LTR via polycomb group (PcG/PRC) corepressor complexes 349 

(PRC1 and PRC2) (Sharma et al., 2020; Tyagi and Karn, 2007). The HAT p300 mediates 350 

crotonylation at lysine 18 of Histone H3 when crotonoyl-CoA (which is formed from 351 

crotonate by the cytoplasmic/nuclear localized enzyme acyl-CoA synthetase 2 (ACSS2 or 352 

AceCS1)) is available (Luong et al., 2000; Sabari et al., 2015). It was recently reported that the 353 

latency reversal activity of the HDAC inhibitor, Vorinostat (SAHA) was augmented 354 

following ACSS2 induction and histone crotonylation (H3K4Cr) indicating that 355 

crotonylation of histone tails at the HIV-1 LTR plays a major role in regulating HIV-1 latency 356 

(Jiang et al., 2018). 357 

Epigenetic modifications of several non-histone proteins also play an important role in 358 

HIV-1 transcriptional silencing (Siliciano and Greene, 2011). Members of HAT family: p300 359 

and CBP acetyltransferase are known to acetylate Rel A/p65 subunit of NF-κB at lysine 360 

residues 218, 221, and 310 and consequently influence NF-κB functions including DNA 361 

binding and its assembly with IκBα and HIV-1 gene expression (Chen et al., 2001; Chen et 362 

al., 2002). HDAC3 and SIRT1 inhibit HIV-1 gene expression by deacetylating RelA/p65 363 

subunit at lysine residues 221 and 310 respectively (Chen et al., 2001; Yeung et al., 2004). 364 

P300 acetylates HIV-1 Tat (a non-histone protein), a necessary step for the initiation of Tat-365 

mediated transactivation; and SIRT1 deacetylates Tat both in vitro and in vivo. Tat regulates 366 

HIV-1 latency through the mechanism of reversible acetylation making it an extremely 367 

important player in the establishment of HIV-1 latency (Marcello et al., 2001; Pagans et al., 368 

2005; Pearson et al., 2008). 369 

The chromatin organization of the HIV-1 promoter is different in latent state and in a 370 

transcriptionally active state (Van Lint et al., 1996). Several reports indicate the importance 371 

of SWI/SNF complex, an ATP dependent chromatin remodeling complex that modulates 372 

chromatin remodeling of nuc-1 in HIV-1 infected cells, by remodeling the HIV-1 LTR and 373 

its contribution to the establishment and maintenance of HIV-1 latency (Treand et al., 2006). 374 

BAF and PBAF, distinct subclasses of the SWI/SNF complex, are recruited at different stages 375 

of the cell cycle and have opposing roles in HIV-1 transcription cycle. While PBAF 376 

potentiates HIV-1 transcription via acetylated Tat, BAF terminates transcription by 377 

positioning a repressive nuc-1 immediately downstream of the transcriptional start site 378 

(Agbottah et al., 2006). 379 

3.2. HIV-1 latency in Microglia 380 



 

 

Microglial cells are a part of the host's innate immune system and are the resident tissue 381 

macrophages of the CNS. Under normal physiological conditions, microglia support the 382 

development of CNS and synaptogenesis, participate in the immune response against 383 

infectious agents, and play a role in mitigating neuroinflammation. Microglia, therefore act 384 

as liaisons between the nervous and immune systems (Rojas-Celis et al., 2019).   385 

It has been previously established that microglia serve as a CNS reservoir harboring 386 

latent HIV-1 provirus. The average lifespan of microglial cells is 4 years and their 387 

regeneration is slow but occurs throughout life. This nature of microglia allows the 388 

persistence of HIV-1 in the brain of the infected person, probably for the rest of their life. 389 

Besides, these cells are resistant to apoptosis, which makes it especially difficult to eliminate 390 

the infected population (Kumar et al., 2014). Several mechanisms have been proposed for 391 

establishing latency in microglia. Microglial cells express several proteins that act as 392 

transcriptional repressors, such as Sp1, Sp2, truncated form of liver-enriched transcriptional 393 

inhibitory protein (LIP), and/or C-EBPg (Schwartz et al., 2000). Tetherin, a host restriction 394 

factor is also implicated in developing proviral latency in microglia as experimental 395 

stimulation of HIV-1 infected human fetal microglial cells with interferon (IFN)-α did not 396 

revive viral RNA and DNA, probably due to the induction of tetherin (Geffin et al., 2013). 397 

BCL11b, also known as COUP-TF interacting protein 2 (CTIP2) is an important factor 398 

for T-lymphocyte as well as spinal cord development and is highly expressed in microglia. 399 

Recently, CTIP2 has been identified as a key factor for establishing and/or maintaining viral 400 

latency in microglia by influencing cell microenvironment and favoring the formation of 401 

heterochromatin in the vicinity of the viral promoter. In the presence of CTIP2, histone 402 

deacetylases HDAC1 and HDAC2, and the histone methyltransferase (HMT), SUV39H1 are 403 

simultaneously recruited on the viral LTR, generating the repressive epigenetic mark, 404 

H3K9me3 (trimethylated lysine 9 of Histone H3) (Marban et al., 2007). Lysine specific 405 

demethylase 1 (LSD1) is discovered as a new factor working in synergy with CTIP2 towards 406 

the establishment of HIV-1 latency by recruiting two members of the hCOMPASS complex, 407 

hSet1 and WDR5 to the HIV-1 promoter, which induce another repressive epigenetic mark, 408 

H3K4me3 (trimethylated lysine 4 of Histone H3) (Le Douce et al., 2012) (Fig 1). Reports 409 

indicate that CTIP-2 also inhibits the P-TEFb by repressing its Cdk9 kinase activity (Cherrier 410 

et al., 2013). More recently, it was discovered that the repressive function of CTIP2 is linked 411 

to high mobility group AT-hook 1 (HMGA1) (Eilebrecht et al., 2014) and the recruitment of 412 

CTIP2 inactivated P-TEFb complex to the viral LTR by HMGA1 is a crucial step in inhibiting 413 

viral gene expression. Knockdown of CTIP2 in microglial cells resulted in the upregulation 414 

of cellular cyclin-dependent kinase inhibitor CDKN1A/p21waf gene (Cherrier et al., 2013). In 415 

infected macrophages, the presence of HIV-1 Vpr activates p21 transcription stimulating 416 

subsequent viral expression. The recruitment of CTIP2 to p21 promoter counteracted with 417 

HIV-1 Vpr and led to repressed gene transcription (Vazquez et al., 2005). All these results 418 

strongly support the role of CTIP2 in establishing latency.  419 

3.3. HIV-1 latency in Astrocytes 420 

Astrocytes comprise the majority of glial cells in the brain and are essential for 421 

providing structural support for neurons and maintaining neuronal homeostasis. It is still 422 

unknown if astrocytes constitute a true cellular reservoir for HIV. Although HIV-1 enters 423 

astrocytes through a CD4-independent CD81 mediated manner, it is also known to enter the 424 

cells via endocytosis; however, particles entering via endocytosis do not integrate into the 425 



 

 

host genome. In addition, astrocytes are shown to engulf fragments of HIV-1-infected 426 

macrophages, explaining the presence of viral DNA in the absence of infection, and some 427 

causes for restricted HIV-1 replication in astrocytes (Russell et al., 2017). One study 428 

demonstrated that HIV-1 production is decreased in proliferating astrocytes, but the 429 

infection of non-proliferating astrocytes leads to a robust and sustainable HIV-1 infection. 430 

Using a novel dual-color reporter virus (NL4.3 eGFP-IRES-Crimson) that encodes for all 431 

known viral proteins, researchers detected silent HIV-1 proviruses in a small fraction of 432 

astrocytes, and these could not be reactivated even in the presence of strong inducers such 433 

as tumor necrosis factor, indicating that the proviruses are either transcriptionally 434 

incompetent or have entered a state of deep latency (Barat et al., 2018). These results suggest 435 

that astrocytes may mediate pre-integration latency, and the small population that produces 436 

infection can contribute to the neurological disorders seen in infected patients.  437 

One of the mechanisms that establish latency in astrocytes is through epigenetic 438 

regulation by class I HDACs and HMTs. SU(VAR)3–9, a well-known H3K9 439 

trimethyltransferase, epigenetically silences the HIV-1 proviral DNA and causes latency in 440 

HIV-1-infected astrocytic cell models. To drive the HIV-1 out of latency, trimethylation of 441 

H3K9 is required in addition to anti-deacetylation, indicating the presence of a complex 442 

multi-layered latency structure in astrocytes and an additional step blocking latency 443 

reversal. Besides, DNA methylation, which is a well-established mechanism of latency 444 

employed in lymphocytes, does not mediate HIV-1 latency in astrocytes (Blazkova et al., 445 

2009).  446 

All these findings suggest that the cells of the CNS have developed unique mechanisms 447 

of latency that contribute to the persistence of HIV-1 in the CNS and to challenges 448 

encountered in eradicating it. 449 

4. Latent HIV-1 and pathogenesis in the CNS 450 

Normal neuronal function is disturbed by HIV-1 infection in the CNS. In the early stage 451 

of HIV-1 infection, complications in the CNS arise as a response to the detection of the virus 452 

in the form of multiple processes mediated by the immune system. In the intermediate 453 

stages, complications continue as an indirect consequence of the immune system 454 

dysfunction and the metabolic effects of the antiretroviral drugs. In later stages, the 455 

neurological complications exacerbate due to the development of opportunistic disorders in 456 

addition to the failing immune responses (Rojas-Celis et al., 2019). 457 

HIV-1-infected cells cross the BBB during early infection and subsequently initiate a 458 

cascade of inflammatory mechanisms through the release of active virus or viral protein 459 

and/or cytokines/chemokines (Irish et al., 2009; Koenig et al., 1986). Migrating infected host 460 

cells express IL-1, IL-6, (TNFα), tumor growth factor–b, and prostaglandin E2, which bind 461 

glia receptors and activate additional inflammatory genes through a positive feedback 462 

mechanism leading to neuroinflammation (Roulston et al., 1995). In addition to 463 

neuroinflammation mediated by the physiologic response to HIV-1 infection, HIV-1 464 

proteins such as Vpr, Tat, Nef, and gp120 expressed by infected cells activate interferon 465 

(IFN), apoptosis, and MAPK pathways in uninfected microglia and astrocytes and further 466 

exacerbate the inflammatory response (Yang et al., 2009a). While microglial activation and 467 

pro-inflammatory response is desirable under normal circumstances, excessive and 468 

persistent pro-inflammatory response surely leads to neurotoxicity. 469 



 

 

The presence of persistent latent virus in the brain might lead to cognitive impairment 470 

and neurodegeneration by continuous release of proinflammatory responses and altering 471 

gene expression. A study by Desplats et al. reports that patients with latent HIV-1 display 472 

cognitive deficits, neurodegenerative alterations, and neuroinflammatory changes 473 

indicating that the presence of latent virus in the brain represents a distinct condition that 474 

manifests with pathologic features (Desplats et al., 2013). Indeed, infection of the CNS by 475 

either latent or active HIV-1 has been long associated with neurologic conditions, such as 476 

HIV-associated dementia (HAD), HIV-associated neurocognitive disorders (HAND), HIV 477 

encephalitis (HIVE), etc. (Clifford and Ances, 2013; Fauci, 1988).  478 

4.1. HIV-1 Encephalitis (HIVE) 479 

HIVE is characterized by the presence of infected macrophages in CNS, microgliosis, 480 

astrogliosis, and myelin loss (Everall et al., 2009). Although latent HIV-1 and HIVE cases 481 

displayed similar clinical and neurodegenerative traits, the extent of the cognitive and 482 

pathologic alterations was greater in the HIVE group (Desplats et al., 2013). At the molecular 483 

level, patients with HIVE showed increased levels of the epigenetic modulator of HIV-1, 484 

CTIP2 (Desplats et al., 2013). CTIP2 is a common regulator of gene transcription in the brain, 485 

implicated in the negative regulation of BDNF signaling, which is altered in several 486 

neurodegenerative disorders (Desplats et al., 2008; Tang et al., 2011). In microglial cells, 487 

CTIP2 assembles a multi enzymatic chromatin-modifying complex through the recruitment 488 

of SP1, HP1a, HDAC1, HDAC2, and SUV39H to the viral LTR region, and establishes a 489 

heterochromatic environment at the viral insertion site, thus silencing HIV-1 transcription 490 

(Marban et al., 2007). Recruitment of CTIP2 to the viral insertion sites during latency 491 

possibly alters the transcription of its target proinflammatory genes, triggering chronic 492 

inflammatory responses that ultimately lead to the development of HIVE (Desplats et al., 493 

2013). Drugs that inhibit Janus Kinase (JAK) were shown to be effective in minimizing the 494 

HIVE symptoms in an HIV-1 infected SCID (severe combined immunodeficiency) mouse 495 

model (Haile et al., 2016) implicating the role of an important pathway in HIVE that can be 496 

targeted for developing therapeutic interventions in future.  497 

4.2. HIV-1-associated neurocognitive disorders (HAND) 498 

While the majority of cases of HIV-1 infection are asymptomatic, the presence of virus 499 

can be accompanied by immune activation in the CNS/CSF (Davis et al., 1992; Hecht et al., 500 

2002; Taiwo and Hicks, 2002). Active replication of HIV-1 as discussed above can result in 501 

damage leading to neurocognitive disorders. HIV-associated neurocognitive disorder 502 

(HAND) is classified into three categories of disorders with increasing severity of 503 

dysfunction: i) asymptomatic neurocognitive impairment (ANI), ii) mild neurocognitive 504 

disorder (MND), and iii) HIV-associated dementia (HAD). Before the introduction of ART, 505 

the neurocognitive disorders were severe and often presented the severe 506 

immunosuppression stage of Acquired Immunodeficiency Syndrome (AIDS). The 507 

availability of ART has greatly ameliorated but did not completely eradicate the symptoms 508 

of HAND. Despite successful reduction of plasma viremia to undetectable levels, almost 509 

50% of the patients on ART continue to suffer from less severe forms of HAND (Eggers et 510 

al., 2017). Normally, in HIV-1 infected patients, whether receiving stable ART or not, the 511 

CSF viral RNA load is typically lower than that in plasma. (Mellgren et al., 2005). However, 512 

in a subset of patients receiving stable ART for atleast 6 months, the CSF viral RNA load 513 

was found to be >200 copies/ml while the plasma viral load was <50 copies/ml (Eden et al., 514 



 

 

2010). These patients suffered neurological symptoms consistent with HAND indicating 515 

that despite successful suppression of plasma viremia with ART, HIV-1 persists in the CSF, 516 

presenting neurocognitive symptoms (Canestri et al., 2010). In these patients, HAND 517 

presents with mild symptoms such as disturbances in psychomotor function, processing, 518 

and memory, but it can swiftly take on its severe form, especially in those who interrupt 519 

treatment therapy or start treatment at an advanced disease stage (Heaton et al., 2010). 520 

Many factors can contribute to the pathogenesis of HAND such as toxicity of the 521 

antiretrovirals, CNS inflammation in response to viral infection, release of HIV-1 transcripts 522 

from quiescent/latently infected cells, or even co-infection with other viruses such as 523 

hepatitis C virus can contribute to the pathogenesis of HAND (Sutherland and Brew, 2018). 524 

Two possibilities explain the existence of mild HAND symptoms despite antiretroviral 525 

therapy: i) Antiretrovirals cannot penetrate the BBB effectively and hence cannot completely 526 

eradicate HIV-1 in the infected cells. As a result, the damage initiated by primary HIV-1 527 

infection is persistent as many cells of CNS are non-regenerating (Dahl et al., 2014; Koneru 528 

et al., 2014; McArthur et al., 2010). ii) The pro-inflammatory factors released by the infected 529 

cells in the periphery can “leak” into the CNS causing exacerbation of inflammatory 530 

responses in the CNS (Spudich and Gonzalez-Scarano, 2012). Moreover, viral factors such 531 

as the protein Tat, released by the infected cells in the periphery can freely pass the BBB and 532 

release more chemokines/cytokines and cause neuronal damage (Bagashev and Sawaya, 533 

2013; Banks et al., 2005; Moran et al., 2014; Zayyad and Spudich, 2015). Drugs targeting the 534 

JAK/STAT pathway such as baricitinib, are shown to decrease the production of these pro-535 

inflammatory factors and ameliorate the neurotoxic inflammatory response in an HIV-1 536 

infected SCID (severe combined immunodeficiency) mouse model, showing the potential of 537 

this pathway in the treatment of HAND (Gavegnano et al., 2019)  538 

Elevated levels of the macrophage activation marker, neopterin, as well as 539 

neurofilament light chain (NFL) which is associated with neuronal injury are elevated in the 540 

CSF of people suffering from HAND (Brew et al., 1996; Cinque et al., 2007; Peluso et al., 541 

2013). Recently, systemic markers such as red blood cell count, mean red blood cell volume, 542 

mean cell hemoglobin, and iron transport deficiency in the brain have been suggested to be 543 

better indicators of neurologic dysfunction in HIV-1 infected patients. More recently, 544 

plasma markers such as soluble CD14 and lipopolysaccharide have also been considered as 545 

indicators of HAND (Ancuta et al., 2008; Spudich, 2014; Sun et al., 2010). Neuroimaging is 546 

an emerging tool owing to its noninvasiveness and superior detection sensitivity and is 547 

being increasingly used to monitor preclinical changes in subjects with HAND (Wang et al., 548 

2011). Indeed, microglial activation was observed via PET in individuals undergoing ART 549 

(Vera et al., 2016).  550 

4.2.1. Effect of ART on HAND 551 

The introduction of ART has greatly improved the quality of life for people infected 552 

with HIV-1, by turning a fatal disease into a manageable chronic disease; although 553 

management of the disease is through lifelong therapy. However, it comes with its own set 554 

of challenges as even lifelong adherence to ART does not eliminate the latent reservoir. 555 

Several reports confirm the resurgence of HIV-1 derived from latent reservoirs or from 556 

persistently replicating cells (Eisele and Siliciano, 2012; Siliciano et al., 2003). Further, recent 557 

reports ruled out opportunistic infections as the reason behind emerging cases of 558 



 

 

neurocognitive disorders in HIV-1 patients, and support the fact that HIV-1 infection itself 559 

causes deficits in cognitive functioning (Christo et al., 2007).  560 

Studies evaluating the effect of antiretroviral drugs on proper functioning of CNS are 561 

ongoing. Few studies report that the use of antiretrovirals control the symptoms associated 562 

with HAND, while others report exacerbation of symptoms upon withdrawal or therapy 563 

interruption (Heaton et al., 2010; Underwood et al., 2015). Secondary effects of certain 564 

antiretrovirals are indeed associated with neurological disturbances such as changes in 565 

sleep quality, development of anxiety, and depression (Clifford et al., 2009). The onset of 566 

these conditions affects the rigidity with which patients adhere to treatment.  567 

5. Current treatment strategies to eradicate HIV-1 from CNS reservoirs 568 

The complete eradication of HIV-1 virus in the Berlin patient and London patient raised 569 

significant enthusiasm for developing a cure for HIV-1 infection (Gupta et al., 2019). Several 570 

strategies are being explored and employed to control latently infected cells, namely, ART 571 

or HAART, along with latency reversal agents (LRAs), and immune-based, cell-based, and 572 

gene editing therapies (Table 1). To tailor an approach for viral eradication, a thorough 573 

understanding of the specialized mechanisms adapted by the HIV-1 is essential to ensure 574 

its replication in tightly regulated anatomical compartments such as the CNS. A cautionary 575 

approach needs to be employed towards eradicating the virus from the CNS to minimize 576 

neurotoxicity (neuroinflammation) and subsequent cell death of non-regenerating neuronal 577 

population. 578 

Table 1: List of Current strategies to eradicate HIV-1 from CNS reservoir 579 

STRATEGY INTERVENSION REFERENCE 

ANTIRETROVIRALS EFAVIRENZ 163 

 ZIDOVUDINE 90, 222 

LATENCY REACTIVATING 

AGENTS 
ROMIDEPSIN 152 

 JQ-1 152 

 PANOBINOSTAT 152 

 BRYOSTATIN 152 

 PROSTRATIN 152 

 VORINOSTAT 43, 183, 226 

 INGENOL B 43, 183 

LATENCY PROMOTING AGENTS DIDEHYDRO-CORTISTATIN A (dCA)* 28, 130 

 ABX4641* 23 



 

 

 580 

Table 1. Strategies currently in use to eradicate the viral reservoir from CNS. * the efficacy of these 581 
interventions has not been validated in the CNS or in brain cells.  582 

5.1. Antiretroviral therapy 583 

Antiretroviral therapy is still the most effective therapy to curb HIV-1 early after 584 

infection. Relatively lower levels of microglial activation and neuronal damage markers are 585 

seen in the CSF when therapy is initiated at an early stage (Chan and Ananworanich, 2019). 586 

An antiretroviral drug with the best penetration into the brain and minimum neurotoxicity 587 

should be an obvious choice for viral suppression. As most antivirivals are administered 588 

orally, several factors contribute to their insufficient response in the CNS: First pass 589 

metabolism leading to decreased bioavailability, slow absorption and most importantly, the 590 

presence of BBB (Tatham et al., 2015). In order to increase the accessibility of the drug into 591 

the brain, several drug delivery approaches are being evaluated. Invasive methods include 592 

intracerebral injections and implants, and modulation of the BBB using ultrasound and 593 

osmosis. Non-invasive methods being explored to deliver drugs to the CNS include use of 594 

endogenous transporters, prodrugs, liposomes, nanoparticles, nanogels, dendrimers and 595 

monoclonal antibodies (Barnabas, 2019). Formulation of antiretrovirals into nanoparticles 596 

seems to be the best way to improve BBB permeability and subsequent site targeting. ART 597 

nanoparticles are envisioned to preserve the innate therapeutic and nontoxic properties of 598 

original drugs while increasing bioavailability in comparison with traditional 599 

pharmacokinetic properties (Osborne et al., 2020). To ensure effective migration across the 600 

BBB without compromising its structural integrity, the typical size of the antiretroviral 601 

nanoformulation should be less than 120 nm (Nair et al., 2016). In addition, transmigration 602 

of nanoparticles across the BBB increased 7.3-fold when utilizing a ferrous magnet-based 603 

liposome nanocarrier with synergistic support from transferrin receptors on the epithelium 604 

in vitro (Thomsen et al., 2019). Poloxamer-PLGA nanoparticles loaded with the integrase 605 

IMMUNOTHERAPEUTIC 

INTERVENTIONS 

BRAIN DERIVED HIV-1-SPECIFIC 

CYTOTOXIC T CELLS 
143 

 ANTI-INFLAMMATORY DRUGS 6 

 
BROADLY NEUTRALIZING 

ANTIBODIES (BNABS) 

(RITUXIMAB) 

111, 164, 187 

 DUAL AND MULTI-AFFINITY 

ANTIBODIES 
225 

 CHIMERIC ANTIGEN RECEPTOR 

(CAR)T CELLS 
92, 121, 144  

GENE EDITING THERAPIES CRISPR/CAS9 
4, 10, 44, 52, 99, 131, 

190, 192 

THERAPEUTIC VACCINES ALVAC-HIV + AIDSVAX B/E* 62, 151, 156 

 VACC-4X* 197 



 

 

inhibitor, elvitegravir, effectively crossed the BBB and suppressed HIV-1 replication in 606 

macrophages with low inflammatory response (Gong et al., 2020). Efavirenz, a non-607 

nucleoside reverse transcriptase inhibitor, when administered through nanodiamonds, 608 

crossed the BBB and had a higher bioavailability in the brain with minimum side effects 609 

(Roy et al., 2018). Precise delivery of the antiretrovirals across to the specific site of interest 610 

across the BBB was possible with the discovery of magnetic nanoformulation (Nair et al., 611 

2013). With the assistance of external magnetic field, magentic azidothymidine 5′-612 

triphosphate (AZTTP) liposomes permeabilized across the BBB three times more efficiently 613 

than the free drug (Saiyed et al., 2010). 614 

Many antiretrovirals that are approved by the FDA to target brain cross the BBB 615 

through an unknown mechanism. Some utilize transport proteins such as P-glycoprotein, 616 

MRP, and breast cancer resistance protein (BCRP) (Osborne et al., 2020). However, to date, 617 

even the most effective CNS penetrating drugs are associated with neurocognitive effects. 618 

Dolutegravir, a novel integrase inhibitor with excellent brain permeability was found to 619 

cause neuropsychiatric side effects (Letendre et al., 2014; Scheper et al., 2018). Infants born 620 

to women on dolutegravir showed severe neural tube defects (Zash et al., 2018). Similarly, 621 

although the nucleoside analog, Zidovudine, has been effective in treating HIV-1 Dementia 622 

(Hoogland and Portegies, 2014), a recent study has revealed that zidovudine upregulated 623 

several proinflammatory cytokines contributing to neuroinflammation in the CNS (Wu et 624 

al., 2017). Moreover, the effectiveness of these drugs is less in general in macrophages and 625 

their effect in astrocytes is not yet validated (Nath and Clements, 2011). Recently, limited 626 

off-target toxicity and improved macrophage uptake of hydrophobic lipophilic ART 627 

nanoparticles was successfully achieved through long-acting slow-effective release of 628 

antiretrovirals (LASER ART) in combination with CRISPR-Cas9 injections (Osborne et al., 629 

2020). Improved macrophage uptake was also observed in a long-acting dolutegravir 630 

prodrug encapsulated in a poloxamer nanoformulation (Sillman et al., 2018).  631 

5.2. Latency reactivating agents 632 

Several agents were investigated for their potential to reactivate latent HIV-1, and many 633 

compounds have been successfully developed into LRAs. The main principle behind latency 634 

reversal is ‘shock and kill’, where the LRA ‘shocks’ the latent cells into expressing viral 635 

antigens, and ‘kills’ them by exposing the activated cells to HIV-1-specific cytotoxic T-636 

lymphocytes (CTLs) (Margolis et al., 2016). The main disadvantage of using these agents is 637 

exacerbated cytotoxic response that can damage un-infected cells. Current LRAs are 638 

designed to reactivate the viral reservoir in CD4+T cells. Their efficacy in CNS cells is still 639 

under investigation. Some LRAs, including romidepsin, JQ-1, and panobinostat, can induce 640 

viral transcription in infected astrocytes in vitro, however, promising LRAs such as 641 

bryostatin and prostratin, when evaluated in astrocytes, have shown to contribute to 642 

neurocognitive impairment (Proust et al., 2020). Research efforts have been diverted to 643 

developing small molecule LRAs that do not induce excessive cytokine release and 644 

cytotoxicity via activated T-lymphocytes (Yang et al., 2009b). These include histone 645 

deacetylation inhibitors (HDACi) such as vorinostat; protein kinase C (PKC) agonists such 646 

as ingenols that induce NF-κB; and toll-like receptor (TLR) agonists (Spivak and Planelles, 647 

2018). Studies carried out in macrophage/microglial cell lines demonstrated that a 648 

combination of LRAs, such as vorinostat and ingenol-B can reactivate latent virus with 649 

increased HIV-1 mRNA and protein levels (Darcis et al., 2015). The reactivation of latent 650 

virus in the brain (in vivo), even when on ART, can result in the synthesis of early viral 651 



 

 

proteins that can trigger the release of proinflammatory mediators that can be neurotoxic 652 

when produced in excess. (Bruce-Keller et al., 2003). However, recent studies report that 653 

most LRAs are nontoxic to primary CNS cells at therapeutic concentrations and can be safely 654 

used for latency reversal in conjunction with ART (Gray et al., 2016b).  655 

5.3. Latency Promoting Agents 656 

Another strategy to incapacitate the ability of HIV-1 reservoir to reactivate is the “Block 657 

and Lock”. Latency promoting agents (LPAs) possess the ability to inhibit HIV-1 658 

transcription by inducing a deep latency state. An example of this approach is the potent 659 

inhibition of protein Tat from infected CD4+ T-lymphocytes by Didehydro-cortistatin A 660 

(dCA), an analog of the natural compound, cortistatin A. This inhibition, in combination 661 

with antiretroviral therapy and LRAs effectively inhibits viral reactivation (Chan and 662 

Ananworanich, 2019). dCA is shown to cross the BBB in microglia-like and astrocytic cell 663 

lines (Mediouni et al., 2015). While the potent inhibitory action of dCA is established in 664 

CD4+ T cells, its activity is yet unknown in the CNS (Mousseau et al., 2012). However, if a 665 

similar potency is seen in CNS cells, dCA will become a popular CNS intervention that can 666 

substantially mitigate Tat mediated neurotoxicity in addition to inhibiting latency reversal. 667 

Recent reports confirmed that levosimendan inhibits both the acute HIV-1 replication and 668 

the reactivation of latent HIV-1 proviruses in primary CD4+ T cells (Hayashi et al., 2017). 669 

This is a promising latency promoting candidate, which is already FDA approved. 670 

However, its efficacy and/ or toxicity needs to be evaluated in brain cells to determine its 671 

potential for eradicating the CNS reservoir. Another compound, ABX4641, targets HIV Rev, 672 

and blocks HIV-1 replication, but its efficacy is unknown in the CNS (Campos et al., 2015). 673 

Compounds targeting the viral proteins are expected to have fewer adverse effects on the 674 

host micro-environment. Hence, combining the ‘Block and Lock’ and ‘Shock and Kill’ 675 

strategies is an effective way to control the HIV-1 reservoir.  676 

5.4. Immunotherapeutic interventions 677 

Immunotherapeutic interventions are a wide range of treatment strategies that hold a 678 

lot of promise towards targeting HIV-1. Besides attempting to provide a functional cure, 679 

they also have potential to minimize morbidity associated with HIV-1 by decreasing 680 

inflammation, improving immune functioning, etc. However, the BBB poses a major barrier 681 

to the delivery of immunotherapeutics as well. The tight junctions between the endothelial 682 

cells of the BBB limit the entry of immune cells and mediators making the fight against HIV-683 

1 inside the CNS more challenging (Muldoon et al., 2013). Recent research has focused on 684 

potentiating host humoral and cell-mediated response by inducing host inflammatory 685 

cascade to mitigate neurotoxicity associated with HIV-1. A combination of boosting the 686 

existing immune response, inducing additional immune responses to existing or novel HIV-687 

1 immunogens as well as passive immunization can achieve this goal. To this effect, the 688 

generation of T cells that can recognize antigens expressed in the brain, derived from potent 689 

HIV-1-specific clones of cytotoxic T cells in the brain, is an attractive new strategy (Nath and 690 

Clements, 2011). However, the tradeoff is that the induction of the host immune response 691 

and providing additional boosts may tip the balance of the inflammatory casacade towards 692 

pro-inflammatory response, and thus, the release of excessive proinflammatory cytokines 693 

can exacerbate tissue cytotoxicity. To counter this cytotoxicity and support the insufficient 694 

immune responses in HIV-1-infected patients, the addition of anti-inflammatory drugs to 695 

immunosuppressive drugs has been an attractive approach to decrease the levels of 696 



 

 

proinflammatory cytokines related to neurotoxicity (CCL2, CCL5, and CXCL10). This 697 

approach has shown positive results in a microglial cell model (Ambrosius et al., 2017).  698 

A small subset of infected individuals generates antibodies against the highly 699 

conserved regions of the HIV env protein, which can neutralize a wide range of HIV strains, 700 

hence, these antibodies are aptly termed as broadly neutralizing antibodies (bnAB) 701 

(Stamatatos et al., 2009). However, CNS penetrance of anti–HIV-1 bnABs has yet to be 702 

evaluated in human studies. Low concentrations of the bnAB, rituximab was seen in the CSF 703 

of non-human primates infected with SIV, which translates into low CNS penetrance. This 704 

concentration increased with intrathecal administration, but its turnover was short with a 705 

low half-life (Rubenstein et al., 2003). Efforts are underway to develop recombinant 706 

antibodies, with longer half-lives and potential candidates are under evaluation in clinical 707 

trials (Lee et al., 2016).  708 

Antibodies targeting surface markers B7-H1 are being developed to encourage cellular 709 

apoptosis of reactivated latent cells (Zhang et al., 2013). These antibodies have promise in 710 

eliminating infected latent cells that are resistant to apoptosis such as microglia. 711 

Development of multi-affinity antibodies is another attractive approach to combat viral 712 

infection. While bnABs can target the virus, they are not very effective in preventing the 713 

emergence of resistant mutants. To enhance the killing potential of the latent population, 714 

Dual affinity retargeting (DART) antibodies are being developed to target the CD3 receptor 715 

on activated effector CD8+ T cells and the HIV-1-specific gag or env antigens expressed on 716 

reactivated CD4+ T cells (Yang et al., 2018).  717 

On a more technologically advanced front, designer immune responses are generated 718 

by constructing chimeric antigen receptors (CAR) by the fusion of CD4 epitope and 719 

CD3 chain signaling domain on effector T cells which facilitate the selection of HIV-1-720 

infected CD4+ cells through the interaction between HIV-1 env and CD4 (Maldini et al., 721 

2018). This strategy has not yet been optimized for specific eradication of latent population 722 

in the CNS. CAR-T cells designed against tumor cells have been demonstrated to cross the 723 

BBB showing successful outcomes in treating CNS tumors (O'Rourke et al., 2017), 724 

suggesting the utility of this therapy in overcoming CNS infection in the near future. CAR-725 

T therapy, however, is associated with its own set of challenges: CAR-T cell-related 726 

encephalopathy syndrome (CRES) and cytokine-release syndrome (CRS) are among the 727 

most common side effects ranging from mild symptoms to more severe conditions leading 728 

to multi-organ failure (Hunter and Jacobson, 2019). Several neurotoxic effects are also 729 

known to associate with this therapy including confusion, delirium, aphasia, seizure, and 730 

loss of consciousness.  731 

5.5. Gene editing based therapies 732 

CRISPR/Cas9 is a novel gene-editing tool that has become increasingly popular to target 733 

and potentially repair faulty DNA sequences. In contrast to traditional gene-editing tools 734 

such as ZFNs and TALENs, CRISPR/Cas9 technology is a fast, more specific, and a cost-735 

intensive approach and is being widely used to combat HIV-1. CRISPR/Cas9 uses a guided 736 

RNA and a Cas9 nuclease to excise target DNA sequences of cellular factors, and one of the 737 

first sequences that was targeted in the effort to eradicate HIV-1 infection is the NF-κB 738 

binding site located in the HIV-1 LTR (Ebina et al., 2013). Since then many studies have 739 

explored whether CRISPR/Cas9 could successfully excise fragments of integrated HIV-1 740 



 

 

proviral DNA and whether it can be used with ART to eliminate HIV-1 from cellular 741 

reservoirs. To evaluate the combinatorial effect of ART and CRISPR/CAS9, humanized mice 742 

were subjected to sequential treatment of ART (LASER ART) followed by CRISPR/CAS9 743 

targeted towards the HIV-1 LTR-Gag region. Complete elimination of HIV-1 was seen with 744 

no viral resurgence in the viral compartments of humanized mice even after two months 745 

following the termination of ART (Dash et al., 2019; Su et al., 2019). This is the first study to 746 

demonstrate that complete HIV-1 eradication is possible by employing multiple elimination 747 

strategies. 748 

Traditionally, Cas9 and sgRNA are encoded within the plasmid DNA of the viral 749 

vectors that randomly integrate into the human genome, potentially giving rise to 750 

unintended off-target genetic effects. While formulating CAS9 and gRNA into 751 

ribonucleoproteins was an attractive alternative, delivering these ribonucleoprotein 752 

complexes remained a major challenge. The discovery of yarn-like DNA nanoclew (DNA 753 

NC) synthesized by rolling circle amplification (RCA) provided a novel method of 754 

polymeric nanoparticle delivery of CRISPR–Cas9 (Ali et al., 2014). Partial complementarity 755 

between the DNA NC and the sgRNA guide sequence greatly enhanced the extent of gene 756 

editing, and with the incorporation of cell-specific targeting ligands, the DNA NCs can be 757 

engineered to specifically target the cell types of interest (Sun et al., 2015). However, non-758 

invasive delivery of Cas9/gRNA across the BBB is not fully explored yet. Kaushik et al. 759 

developed a novel, promising non-invasive mode of delivery that controls the release of 760 

Cas9/gRNA targeting HIV-1 LTR, on-demand, across the BBB by using magneto-electric 761 

nanoparticles (MENPs) as vehicles. These MENPs are small, ferromagnetic, non-toxic and 762 

are able to across the BBB under a static magnetic field. Treatment of latent HIV infected 763 

hμglia/HIV cells with MENPs reduced viral LTR expression levels confirming successful 764 

delivery across the BBB and targeting latent virus (Kaushik et al., 2019). 765 

CRISPR/CAS9 technology is also being explored to redesign the gene expression of cells 766 

such as CTLs to target HIV-1 infected cells with enhanced specificity, thus increasing the 767 

efficiency of the host antiviral response to HIV-1 infected cells and activated reservoirs 768 

(Mehta et al., 2017). A major limitation of this technology is that it is mostly explored in 769 

CD4+T cells. Its efficacy is unknown in CNS cells. Ex vivo studies showed that edited and 770 

redirected CD4+T cells successfully targeted only a few infected cells and this approach has 771 

still largely been unsuccessful in eliminating all of the infected cells (Wang et al., 2018). 772 

Moreover, the incidences of off-target effects, undesirable gene mutations, and 773 

chromosomal translocations pose obstacles that need to be overcome.  774 

However, gene therapy is still in its infancy but shows great promise in achieving the 775 

goal of eradicating total viral load from all the known HIV-1 reservoirs. CRISPR/Cas9 776 

targets the root of the problem: integrated proviral DNA; thus, the capability to excise or 777 

inactivate the LTR, which is required for viral gene activation and expression, makes this 778 

strategy stand out. The potential for CRISPR/Cas9 in clinical therapy is still under 779 

investigation. Several issues will have to be resolved before CRISPR/CAS9 can be used 780 

clinically for HIV eradication. First, as a consequence of mutations in the virus in the 781 

reservoirs or in neighboring sites of the targeted cells, the gRNA sequence specific to the 782 

strain may be altered as a result of which recognition and cleavage by CRISPR/CAS9 may 783 

not occur (Badia et al., 2017). Second, the HIV-1 genome is about 10,000 bps and the gRNA 784 

targets a region of only 20 bps. This drastically increases non-specific targeting sites in the 785 

provirus in latently infected cells. Establishing a platform to evaluate gRNA candidates 786 



 

 

against proviral DNA is especially important to improve tissue targeting and cleavage 787 

efficiency (Soriano, 2017). Finally, safe and effective mechanisms of delivery of CAS9 and 788 

gRNA is essential for successful therapy. While adenoviral vectors have been traditionally 789 

used in gene therapy, the packaging size of the vector is not ideal for CAS9/gRNA delivery. 790 

Substantial research is addressing these concerns and several promising modes of delivery 791 

such as DNA nanoclews and MENPs (discussed above) are being developed. Despite these 792 

roadblocks, CRISPR technology is evolving at a rapid pace and a promising pathway of 793 

complete HIV-1 eradication is not far away.  794 

 795 

5.6. Therapeutic vaccines 796 

There has been a lot of interest in developing a vaccine against HIV-1. Development of 797 

a vaccine against HIV-1 may prove effective for eliminating not only the plasma viral load 798 

but also for preventing future infections that may occur through the reactivation of latent 799 

reservoirs. The efficacy trial, RV144 study, has demonstrated a modest reduction in HIV-1 800 

infection rates using a combination of ALVAC-HIV (canarypox vector) and AIDSVAX B/E 801 

(gp120 vaccine) (Gao et al., 2018; Rerks-Ngarm et al., 2009). However, efforts are underway 802 

to improve the efficacy of this candidate (Pitisuttithum et al., 2020). Another potential 803 

candidate under study is Vacc-4x developed from highly conserved regions of HIV-1 p24 804 

viral core protein (Tapia et al., 2017). Vaccines targeted towards enhancing the cytotoxic 805 

response of T cells are of particular interest when it comes to targeting the CNS. However, 806 

the efficacy and adverse effects of enhancing the cytotoxic T cell responses in the CNS are 807 

not yet known. To date, there are no clinical studies targeted towards examining this effect 808 

in the CNS. 809 

6. Future perspectives 810 

The complete eradication of HIV-1 in two infected individuals under ART through 811 

allogenic transplantation of hematopoietic stem cells from donors expressing the naturally 812 

occurring CCR5Δ32 mutation has demonstrated that the cure for HIV-1 is possible through 813 

the transfusion of HIV-1 resistant stem cells. Besides the huge cost involved, it is unlikely 814 

that the majority of infected individuals can find compatible donors, making the search for 815 

an alternate effective strategy to eliminate the latent reservoir vital.  816 

A major limitation of most current strategies is the identification of the latent reservoir. 817 

In theory, latently infected cells have completely repressed transcription and no viral 818 

proteins should be produced from them. However, there is evidence of sporadic viral 819 

transcript production latent cells (Symons et al., 2017). These findings indicate the possibility 820 

that latent HIV-1 provirus may exhibit a distinct molecular signature. There is considerable 821 

interest to identify “biomarkers” specific to the latently infected cell populations. Cell 822 

surface molecules that could distinguish latently infected cells from uninfected cells could 823 

function as potential biomarkers. Recent research has identified CD32a as a potential 824 

biomarker of latently infected CD4+ T cells, however only ~50% of the latent population was 825 

seen to express CD32a making it unlikely to be representative of the entire latent population 826 

(Descours et al., 2017; Garcia et al., 2018). The co-localization of CTIP2 and the microglial 827 

marker (Iba1) in human cortical glia, and the presence of repressive epigenetic marks in 828 

latently infected patients but not in HIV encephalitis (HIVE) patients indicates that CTIP2 829 

can be considered a biomarker of brain HIV-1 latency (Desplats et al., 2013). Research 830 



 

 

targeted towards the identification of a biomarker, especially in the CNS, will be useful for 831 

treating people on ART but who still suffer from HIVE and HAND. 832 

Studies conducted on small molecule LRAs revealed that the “shock” caused by these 833 

small molecules is not sufficient to evoke significant latency reversal in the majority of the 834 

latent cell population (Chen et al., 2017). Future research should aim towards developing 835 

combinations of LRAs that target different areas of the genome and synergistically induce 836 

broad transcriptional responses (Hashemi et al., 2018). Development of strategies that 837 

improve the capacity of the cell to successfully “kill” may also enhance effectiveness when 838 

used in conjunction with the LRAs. Currently, there are no known small molecule 839 

compounds or drugs that lock HIV-1 provirus expression in the CNS by modulating the 840 

recruitment of HDACs, HMTs, DNA methyltransferases, etc. Identification of epigenetic 841 

modulators of transcription in the CNS represents an important focus for future research.  842 

Lastly, while vaccines present an appealing option for HIV-1 prevention, but their effect 843 

on HIV-1 latency is unknown (Castro-Gonzalez et al., 2018). The inaccessibility of the viral 844 

genome in a latent state makes it difficult for vaccine-boosted CTL responses to target 845 

infected cells. The boosting of HIV-specific T cell responses in the peripheral tissues with 846 

vaccines may be effective, but if these immune cells are not able to effectively cross the BBB, 847 

this strategy would have limited efficacy in the CNS. Hence the future focus should be 848 

directed towards the design of vaccines that can effectively cross the BBB and elicit 849 

minimum amount of cytotoxic damage to uninfected cells.  850 

7. Conclusion 851 

Four decades of research on HIV-1 infection indicate that complete viral eradication is 852 

not possible without targeting latent viral reservoirs. The role of the CNS as a latent reservoir 853 

is still controversial. The cells of the CNS developed unique mechanisms to silence the 854 

integrated viral genome and facilitate viral persistence. The long lifespan of these cells is an 855 

added advantage as the silenced virus is harbored within them lasts for a long time. Viral 856 

infection of resident immune cells in the CNS such as macrophages and microglia is 857 

clinically significant, as a disruption of cellular functioning in these cells is attributed to the 858 

pathogenesis of HIV-1 associated neurodegeneration. Due to poor antiviral drug 859 

penetration, these anatomical compartments also turn into viral sanctuaries. This suggests 860 

that the brain harbors HIV-1 regardless of its latent state and that the effect of eradication 861 

strategies on the CNS has to be carefully considered before implementation. As discussed 862 

in this review, understanding mechanisms of HIV-1 latency in CNS reservoirs and the onset 863 

of HIV-1-associated neurological disorders is critical to designing strategies to eliminate 864 

HIV-1 from the CNS. Studies have aimed at eliminating the latent virus through several 865 

approaches and it can be suggested that a carefully tailored combination of two or more of 866 

these approaches can result in successful eradication of HIV-1. 867 
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